Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Legal Med ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190119

RESUMO

The Lophophora genus of the Cactaceae family includes Lophophora diffusa and Lophophora williamsii, which has traditionally been used as a natural analgesic; however, its use is now under strict regulation worldwide as it contains mescaline, a unique psychotropic agent. Recently, non-medical and illegal distribution and abuse of L. williamsii have increased worldwide; thus, effective species identification methods are urgently needed. Here, we identified a new variable number tandem repeat (VNTR) marker in the trnL intron region to identify and characterize species in forensic analyses. The VNTR marker has a unique structure of tandem repeats, each with 13 nucleotides; one repeat unit was found in L. williamsii and two in L. diffusa. Phylogenetic and length polymorphism analyses confirmed that this novel VNTR marker could distinguish between Lophophora species. Furthermore, our newly developed TaqMan genotyping assay utilizes two probes; the color and position of dots on the discrimination plot differ according to the tandem repeat count within the VNTR marker. The limits of detection of the assay were 0.000063 ng (LW-VNTR probe-1) and 0.000066 ng (LW-VNTR probe-2), indicating high sensitivity. Moreover, when crime scene samples of 16 presumed L. williamsii species were analyzed, the results coincided with those of gas chromatography-mass spectrometry, confirming the applicability of our marker for Lophophora species identification. Thus, the tandem repeats within the trnL intron region can be exploited as a VNTR marker to identify L. williamsii and L. diffusa. Our dual TaqMan genotyping assay based on a novel marker demonstrates potential for forensic applications.

2.
Exp Cell Res ; 423(1): 113442, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521777

RESUMO

Cancer is responsible for about one in six deaths in the world. Conventional cancer treatments like chemotherapy, radiotherapy, and surgery are associated with drug poisoning and poor prognosis. Thanks to advances in RNA delivery and target selection, new cancer medicines are now conceivable to improve the quality of life and extend the lives of cancer patients. Antisense oligonucleotides (ASOs) and siRNAs are the most important tools in RNA therapies. Locked Nucleic Acids (LNAs) are one of the newest RNA analogs, exhibiting more affinity to binding, sequence specificity, thermal stability, and nuclease resistance due to their unique properties. Assays using LNA are also used in molecular diagnostic methods and provide accurate and rapid mutation detection that improves specificity and sensitivity. This study aims to review the special properties of LNA oligonucleotides that make them safe and effective antisense drugs for cancer treatment by controlling gene expression. Following that, we go over all of the molecular detection methods and cancer treatment antisense tactics that are possible with LNA technology.


Assuntos
Neoplasias , Qualidade de Vida , Humanos , Oligonucleotídeos/genética , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/química , RNA , Conformação de Ácido Nucleico , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia
3.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124893

RESUMO

G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that have gathered significant interest in medicinal chemistry over the past two decades due to their unique structural features and potential roles in a variety of biological processes and disorders. Traditionally, research efforts have focused on stabilizing G4s, while in recent years, the attention has progressively shifted to G4 destabilization, unveiling new therapeutic perspectives. This review provides an in-depth overview of recent advances in the development of small molecules, starting with the controversial role of TMPyP4. Moreover, we described effective metal complexes in addition to G4-disrupting small molecules as well as good G4 stabilizing ligands that can destabilize G4s in response to external stimuli. Finally, we presented antisense strategies as a promising approach for destabilizing G4s, with a particular focus on 2'-OMe antisense oligonucleotide, peptide nucleic acid, and locked nucleic acid. Overall, this review emphasizes the importance of understanding G4 dynamics as well as ongoing efforts to develop selective G4-unfolding strategies that can modulate their biological function and therapeutic potential.


Assuntos
Quadruplex G , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ligantes
4.
Bioorg Med Chem ; 78: 117148, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36580743

RESUMO

2'-Amino-LNA has the potential to acquire various functions through chemical modification at the 2'-nitrogen atom. This study focused on 2'-N-alkylaminocarbonyl 2'-amino-LNA, which is a derivative of 2'-amino-LNA. We evaluated its practical usefulness as a chemical modification of anti-miRNA oligonucleotide. The synthesis of phosphoramidites of 2'-N-alkylaminocarbonyl substituted 2'-amino-LNA bearing thymine and 5-methylcytosine proceeded in good yields. Incorporating the 2'-N-alkylaminocarbonyl-2'-amino-LNA monomers into oligonucleotides improved the duplex stability for complementary RNA strands and robust nuclease resistance. Moreover, 2'-N-alkylaminocarbonyl-2'-amino-LNA is a promising scaffold that significantly increases the potency of anti-miRNA oligonucleotides.


Assuntos
MicroRNAs , Oligonucleotídeos/farmacologia , Alcanos/química
5.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834294

RESUMO

RNase H-dependent gapmer antisense oligonucleotides (ASOs) are a promising therapeutic approach via sequence-specific binding to and degrading target RNAs. However, the efficacy and mechanism of antiviral gapmer ASOs have remained unclear. Here, we investigated the inhibitory effects of gapmer ASOs containing locked nucleic acids (LNA gapmers) on proliferating a mosquito-borne flavivirus, Japanese encephalitis virus (JEV), with high mortality. We designed several LNA gapmers targeting the 3' untranslated region of JEV genomic RNAs. In vitro screening by plaque assay using Vero cells revealed that LNA gapmers targeting a stem-loop region effectively inhibit JEV proliferation. Cell-based and RNA cleavage assays using mismatched LNA gapmers exhibited an underlying mechanism where the inhibition of viral production results from JEV RNA degradation by LNA gapmers in a sequence- and modification-dependent manner. Encouragingly, LNA gapmers potently inhibited the proliferation of five JEV strains of predominant genotypes I and III in human neuroblastoma cells without apparent cytotoxicity. Database searching showed a low possibility of off-target binding of our LNA gapmers to human RNAs. The target viral RNA sequence conservation observed here highlighted their broad-spectrum antiviral potential against different JEV genotypes/strains. This work will facilitate the development of an antiviral LNA gapmer therapy for JEV and other flavivirus infections.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Oligonucleotídeos Antissenso , Animais , Chlorocebus aethiops , Humanos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/metabolismo , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Ribonuclease H/metabolismo , Células Vero , RNA Viral/genética , Antivirais/farmacologia
6.
Nanomedicine ; 39: 102469, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606999

RESUMO

Whereas locked nucleic acid (LNA) has been extensively used to control gene expression, it has never been exploited to control Candida virulence genes. Thus, the main goal of this work was to compare the efficacy of five different LNA-based antisense oligonucleotides (ASO) with respect to the ability to control EFG1 gene expression, to modulate filamentation and to reduce C. albicans virulence. In vitro, all LNA-ASOs were able to significantly reduce C. albicans filamentation and to control EFG1 gene expression. Using the in vivo Galleria mellonella model, important differences among the five LNA-ASOs were revealed in terms of C. albicans virulence reduction. The inclusion of PS-linkage and palmitoyl-2'-amino-LNA chemical modification in these five LNA gapmers proved to be the most promising combination, increasing the survival of G. mellonella by 40%. Our work confirms that LNA-ASOs are useful tools for research and therapeutic development in the candidiasis field.


Assuntos
Candida albicans , Candidíase , Candida albicans/genética , Oligonucleotídeos/farmacologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia
7.
Molecules ; 27(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36364210

RESUMO

Previously reported (S)-5'-C-aminopropyl-2'-arabinofluoro-thymidine (5ara-T) and newly synthesized (S)-5'-C-aminopropyl-2'-arabinofluoro-5-methyl-cytidine (5ara-MeC) analogs were incorporated into a series of antisense gapmers containing multiple phosphorothioate (PS) linkages and locked nucleic acids (LNAs) in their wing regions. The functional properties of the gapmers were further evaluated in vitro. Compared with the positive control, for the LNA-wing full PS gapmer without 5ara modification, it was revealed that each gapmer could have a high affinity and be thermally stable under biological conditions. Although the cleavage pattern was obviously changed; gapmers with 5ara modification could still efficiently activate E. coli RNase H1. In addition, incorporating one 5ara modification into the two phosphodiester linkages could reverse the destabilization in enzymatic hydrolysis caused by fewer PS linkages. In vitro cellular experiments were also performed, and the Lipofectamine® 2000 (LFA)+ group showed relatively higher antisense activity than the LFA-free group. KN5ara-10, which contains fewer PS linkages, showed similar or slightly better antisense activity than the corresponding full PS-modified KN5ara-3. Hence, KN5ara-10 may be the most promising candidate for KNTC2-targeted cancer therapy.


Assuntos
Nucleosídeos , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/metabolismo , Escherichia coli/metabolismo
8.
Small ; 17(2): e2006370, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325632

RESUMO

The analysis of mutant nucleic acid (NA) variants can provide crucial clinical and biological insights for many diseases. Yet, existing analysis techniques are generally constrained by nonspecific "noise" signals from excessive wildtype background sequences, especially under rapid isothermal multiplexed target amplification conditions. Herein, the molecular hybridization chemistry between NA bases is manipulated to suppress noise signals and achieve ultraselective multiplexed detection of cancer gene fusion NA variants. Firstly, modified locked NA (LNA) bases are rationally introduced into oligonucleotide sequences as designed "locker probes" for high affinity hybridization to wildtype sequences, leading to enrichment of mutant variants for multiplexed isothermal amplification. Secondly, locker probes are coupled with a customized "proximity-programmed" (SERS) readout which allows precise control of hybridization-based plasmonic signaling to specifically detect multiple target amplicons within a single reaction. Moreover, the use of triple bond Raman reporters endows NA noise signal-free quantification in the Raman silent region (≈1800-2600 cm-1 ). With this dual molecular hybridization-based strategy, ultraselective multiplexed detection of gene fusion NA variants in cancer cellular models is actualized with successful noise suppression of native wildtype sequences. The distinct benefits of isothermal NA amplification and SERS multiplexing ability are simultaneously harnessed.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , Hibridização de Ácido Nucleico
9.
Virol J ; 18(1): 70, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827614

RESUMO

BACKGROUND: The porcine circovirus type 2 (PCV2) is divided into eight genotypes including the previously described genotypes PCV2a to PCV2f and the two new genotypes PCV2g and PCV2h. PCV2 genotyping has become an important task in molecular epidemiology and to advance research on the prophylaxis and pathogenesis of PCV2 associated diseases. Standard genotyping of PCV2 is based on the sequencing of the viral genome or at least of the open reading frame 2. Although, the circovirus genome is small, classical sequencing is time consuming, expensive, less sensitive and less compatible with mass testing compared with modern real-time PCR assays. Here we report about a new PCV2 genotyping method using qPCR. METHODS: Based on the analysis of several hundred PCV2 full genome sequences, we identified PCV2 genotype specific sequences or single-nucleotide polymorphisms. We designed six TaqMan PCR assays that are specific for single genotypes PCV2a to PCV2f and two qPCRs targeting two genotypes simultaneously (PCV2g/PCV2d and PCV2h/PCV2c). To improve specific binding of oligonucleotide primers and TaqMan probes, we used locked nucleic acid technology. We evaluated amplification efficiency, diagnostic sensitivity and tested assay specificity for the respective genotypes. RESULTS: All eight PCV2 genotype specific qPCRs demonstrated appropriate amplification efficiencies between 91 and 97%. Testing samples from an epidemiological field study demonstrated a diagnostic sensitivity of the respective genotype specific qPCR that was comparable to a highly sensitive pan-PCV2 qPCR system. Genotype specificity of most qPCRs was excellent. Limited unspecific signals were obtained when a high viral load of PCV2b was tested with qPCRs targeting PCV2d or PCV2g. The same was true for the PCV2a specific qPCR when high copy numbers of PCV2d were tested. The qPCR targeting PCV2h/PCV2c showed some minor cross-reaction with PCV2d, PCV2f and PCV2g. CONCLUSION: Genotyping of PCV2 is important for routine diagnosis as well as for epidemiological studies. The introduced genotyping qPCR system is ideal for mass testing and should be a valuable complement to PCV2 sequencing, especially in the case of simultaneous infections with multiple PCV2 genotypes, subclinically infected animals or research studies that require large sample numbers.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Animais , Infecções por Circoviridae/diagnóstico , Infecções por Circoviridae/veterinária , Circovirus/genética , Genótipo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia
10.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947152

RESUMO

Previously, we have revealed that the miR-130 family (miR-130b, miR-301a, and miR-301b) functions as an oncomiR in bladder cancer. The pharmacological inhibition of the miR-130 family molecules by the seed-targeting strategy with an 8-mer tiny locked nucleic acid (LNA) inhibits the growth, migration, and invasion of bladder cancer cells by repressing stress fiber formation. Here, we searched for a functionally advanced target sequence with LNA for the miR-130 family with low cytotoxicity and found LNA #9 (A(L)^i^i^A(L)^T(L)^T(L)^G(L)^5(L)^A(L)^5(L)^T(L)^G) as a candidate LNA. LNA #9 inhibited cell growth in vitro and in an in vivo orthotopic bladder cancer model. Proteome-wide tyrosine phosphorylation analysis suggested that the miR-130 family upregulates a wide range of receptor tyrosine kinases (RTKs) signaling via the expression of phosphorylated Src (pSrcTyr416). SILAC-based proteome analysis and a luciferase assay identified protein tyrosine phosphatase non-receptor type 1 (PTPN1), which is implicated as a negative regulator of multiple signaling pathways downstream of RTKs as a target gene of the miR-130 family. The miR-130-targeted LNA increased and decreased PTPN1 and pSrcTyr416 expressions, respectively. PTPN1 knockdown led to increased tumor properties (cell growth, invasion, and migration) and increased pSrcTyr416 expression in bladder cancer cells, suggesting that the miR-130 family upregulates multiple RTK signaling by targeting PTPN1 and subsequent Src activation in bladder cancer. Thus, our newly designed miR-130 family targeting LNA could be a promising nucleic acid therapeutic agent for bladder cancer.


Assuntos
Antineoplásicos/uso terapêutico , MicroRNAs/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Oligonucleotídeos/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , RNA Neoplásico/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Camundongos , MicroRNAs/genética , RNA Neoplásico/genética , Receptores Proteína Tirosina Quinases/biossíntese , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Molecules ; 26(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200016

RESUMO

The increase in antibacterial resistance is a serious challenge for both the health and defence sectors and there is a need for both novel antibacterial targets and antibacterial strategies. RNA degradation and ribonucleases, such as the essential endoribonuclease RNase E, encoded by the rne gene, are emerging as potential antibacterial targets while antisense oligonucleotides may provide alternative antibacterial strategies. As rne mRNA has not been previously targeted using an antisense approach, we decided to explore using antisense oligonucleotides to target the translation initiation region of the Escherichia coli rne mRNA. Antisense oligonucleotides were rationally designed and were synthesised as locked nucleic acid (LNA) gapmers to enable inhibition of rne mRNA translation through two mechanisms. Either LNA gapmer binding could sterically block translation and/or LNA gapmer binding could facilitate RNase H-mediated cleavage of the rne mRNA. This may prove to be an advantage over the majority of previous antibacterial antisense oligonucleotide approaches which used oligonucleotide chemistries that restrict the mode-of-action of the antisense oligonucleotide to steric blocking of translation. Using an electrophoretic mobility shift assay, we demonstrate that the LNA gapmers bind to the translation initiation region of E. coli rne mRNA. We then use a cell-free transcription translation reporter assay to show that this binding is capable of inhibiting translation. Finally, in an in vitro RNase H cleavage assay, the LNA gapmers facilitate RNase H-mediated mRNA cleavage. Although the challenges of antisense oligonucleotide delivery remain to be addressed, overall, this work lays the foundations for the development of a novel antibacterial strategy targeting rne mRNA with antisense oligonucleotides.


Assuntos
Antibacterianos/farmacologia , Endorribonucleases/genética , Escherichia coli/enzimologia , Oligonucleotídeos/farmacologia , Sistema Livre de Células , Endorribonucleases/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Oligonucleotídeos/síntese química , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA Mensageiro/antagonistas & inibidores
12.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500849

RESUMO

Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries. The relative advantages and disadvantages of both strategies are discussed and compared.


Assuntos
Peptídeos Penetradores de Células/química , Preparações de Ação Retardada/química , Oligonucleotídeos/química , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/metabolismo , Química Click , Liberação Controlada de Fármacos , Humanos , Ácidos Nucleicos , Oligonucleotídeos/metabolismo , RNA Interferente Pequeno/química , Técnicas de Síntese em Fase Sólida
13.
Biochem Biophys Res Commun ; 529(3): 707-713, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736696

RESUMO

Despite improved therapeutic efficacy of the locked nucleic acid (LNA)- and peptide nucleic acid (PNA)-modified antisense microRNAs (anti-miRs), their wider application in clinical practice is still not thoroughly investigated. This study aimed to investigate the stability and therapeutic efficacy of the modified LNA- and PNA-type anti-miRs in a murine prostate cancer model under various treatment conditions. After verifying the anti-cancer potential of anti-miR21 by targeting tumor suppressor PTEN, the potential of the modified LNA- and PNA-type anti-miR21s was compared in vitro and in vivo. We found that PNA-type anti-miR21 showed better stability and therapeutic efficacy in the xenografted mouse tumor model than the LNA-type anti-miR21. Furthermore, PNA-type anti-miR21 treatment showed reduced tumor metastasis. This study may serve as a ground for exploring diverse choices in therapeutic oligonucleotide modification techniques to improve cancer treatment.


Assuntos
Antagomirs/uso terapêutico , MicroRNAs/genética , Oligonucleotídeos/uso terapêutico , Ácidos Nucleicos Peptídicos/uso terapêutico , Neoplasias da Próstata/terapia , Animais , Antagomirs/genética , Linhagem Celular Tumoral , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/genética , Metástase Neoplásica/terapia , Oligonucleotídeos/genética , Células PC-3 , Ácidos Nucleicos Peptídicos/genética , Neoplasias da Próstata/genética
14.
Cancer Immunol Immunother ; 69(1): 57-67, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31802183

RESUMO

Tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade attack by the immune system. Despite promising success with blockade of immune checkpoints like PD-1 the majority of patients does not respond to current immunotherapies. The degradation of tryptophan into immunosuppressive kynurenine is an important immunosuppressive pathway. Recent attempts to target the key enzymes of this pathway-IDO1 and TDO2-have so far failed to show therapeutic benefit in the clinic, potentially caused by insufficient target engagement. We, therefore, sought to add an alternative, highly efficient approach to block the degradation of tryptophan by inhibiting the expression of IDO1 and TDO2 using locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs). We show that LNA-modified ASOs can profoundly inhibit the expression of IDO1 and TDO2 in cancer cells in vitro without using a transfection reagent with IC50 values in the sub-micromolar range. We furthermore measured kynurenine production by ASO-treated cancer cells in vitro and observed potently reduced kynurenine levels. Accordingly, inhibiting IDO1 expression in cancer cells in an in vitro system leads to increased proliferation of activated T cells in coculture. We furthermore show that combined treatment of cancer cells in vitro with IDO1-specific ASOs and small molecule inhibitors can reduce the production of kynurenine by cancer cells in a synergistic manner. In conclusion, we propose that a combination of LNA-modified ASOs and small molecule inhibitors should be considered as a strategy for efficient blockade of the degradation of tryptophan into kynurenine in cancer immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias/terapia , Oligonucleotídeos Antissenso/farmacologia , Triptofano Oxigenase/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Concentração Inibidora 50 , Cinurenina/imunologia , Cinurenina/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Neoplasias/imunologia , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/química , Oligonucleotídeos Antissenso/química , Linfócitos T/imunologia , Triptofano/imunologia , Triptofano/metabolismo , Triptofano Oxigenase/metabolismo
15.
BMC Microbiol ; 20(1): 371, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287731

RESUMO

BACKGROUND: Aspiculuris tetraptera, as a parasitic pinworm, is most frequently detected in laboratory mice, and transmission is mediated by the eggs contained in the faeces of infected mice. A highly sensitive and quantitative faeces-based diagnostic tool would be useful for the early detection of A. tetraptera to inhibit the expansion of infection. In this study, we developed a quantitative assay that exhibits high sensitivity in detecting A. tetraptera in faeces using PCR techniques. RESULTS: Endpoint PCR demonstrated the detection of A. tetraptera DNA in 0.5 ng genomic DNA extracted from the faeces of infected mice. To quantitatively detect the small amount of A. tetraptera DNA, locked nucleic acid (LNA)-based primers and LNA-based TaqMan probes were used for the quantitative PCR assay (qPCR). The combination of LNA-based DNA increased detection sensitivity by more than 100-fold compared to using normal oligo DNAs. The copy number of the A. tetraptera DNA detected was positively related to the infected faeces-derived genomic DNA with a simple linearity regression in the range of 20 pg to 15 ng of the genomic DNA. To more conveniently detect infection using faeces, the LNA-based TaqMan assay was applied to the crude fraction of the faeces without DNA purification. An assay using ethanol precipitation of the faeces yielded results consistent with those of direct microscopic observation. CONCLUSION: The LNA-TaqMan assay developed in this study quantitatively detects A. tetraptera infection in mouse faeces.


Assuntos
DNA de Helmintos/análise , Fezes/parasitologia , Oxyuroidea/isolamento & purificação , Carga Parasitária/normas , Animais , Primers do DNA , DNA de Helmintos/genética , Camundongos , Oligonucleotídeos , Oxyuroidea/genética , Carga Parasitária/métodos , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
16.
J Med Virol ; 92(12): 3073-3080, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31981228

RESUMO

Multiplex real-time quantitative polymerase chain reaction (mRT-qPCR) assay is commonly used to detect respiratory viruses, however, the sensitivity is limited for most reports. A panel of locked nucleic acid based multiplex closed one-tube nested real-time PCR (mOTNRT-PCR) assay consisting of five separate internally controlled RT-qPCR assays was developed for detection of 14 respiratory viruses. The sensitivity and reproducibility of mOTNRT-PCR panel were evaluated using plasmid standards and the specificity was evaluated using clinical samples. The clinical performance of mOTNRT-PCR panel was further evaluated with 468 samples collected from patients with an acute respiratory infection and compared with individual real-time PCR (RT-qPCR) assay. The analytical sensitivities of mOTNRT-PCR panel ranged from 2 to 20 copies/reaction, and no cross-reaction with common respiratory viruses was observed. The coefficients of variation of intra-assay and inter-assay were between 0.35% and 8.29%. Totally 35 clinical samples detected by mOTNRT-PCR assay panel were missed by RT-qPCR and confirmed true positive by sequencing of nested PCR products. The mOTNRT-PCR assay panel provides a more sensitive and high-throughput method for the detection of 14 respiratory viruses.

17.
Mikrochim Acta ; 187(3): 172, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062754

RESUMO

Emerging evidence suggests that exosomal microRNAs are potential biomarkers for the early diagnosis and prognostic assessment of tumor. Here, we design a strand displacement-initiated G-quadruplex/rolling circle amplification (RCA) strategy for highly specific and sensitive electrochemical sensing of exosomal microRNAs. In the presence of exosomal miRNA-21, a locked nucleic acid (LNA)-labeled toehold mediated strand displacement reaction (TMSDR) is initiated, releasing output P2 to trigger the subsequent RCA reaction by hybridizing with the C-rich circular template. Then the obtained G-rich RCA products can bind to the probe anchored on the surface of gold electrode and generate G-quadruplex conformations. Based on the TMSDR-triggered G-quadruplex/RCA strategy, the detection limit of this electrochemical biosensor is down to 2.75 fM. Moreover, our biosensor exhibits excellent repeatability, stability, and high consistency compared to RT-PCR for clinical detection. In conclusion, this assay is expected to provide a hopeful strategy for the early non-invasive diagnosis and prognostic estimation of cancer. Graphical abstract Schematic illustration of electrochemical sensing of exosomal microRNAs based on strand displacement-initiated G-quadruplex/rolling circle amplification (RCA) strategy.


Assuntos
Bioensaio/métodos , Técnicas Eletroquímicas/métodos , Quadruplex G , MicroRNAs/química , Humanos
18.
Bioorg Med Chem ; 27(14): 3201-3207, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31171404

RESUMO

In this report, structural characterization, aptamer stability and thrombin of a new modified thrombin-ligand complex binding aptamer (TBA) containing anti-guanine bases and a loop position locked nucleic acid (LNA) are presented. NMR, circular dichroic spectroscopy and molecular modeling were used to characterize the three-dimensional structure of two G-quadruplexes. LNA-modification of the anti-guanosines yields G-quadruplexes that show affinity and inhibitory activity toward thrombin, whereas LNA-modification of a thymine nucleotide in the TGT loop increases the thermal stability of TBA. As assessed by denatured PAGE electrophoresis, all modified aptamers display an increase in environmental stability. The prothrombin time assay and fibrinogen assay showed that the aptamers still had good inhibitory activity, and 15 of them had the longest PT time. Therefore, the LNA modification is well suited to improve the physicochemical and biological properties of the native thrombin-binding aptamer.


Assuntos
Aptâmeros de Nucleotídeos/química , Simulação de Dinâmica Molecular/normas , Oligonucleotídeos/química , Relação Estrutura-Atividade
19.
Proc Natl Acad Sci U S A ; 113(15): 4122-7, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26951689

RESUMO

Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.


Assuntos
DNA de Cadeia Simples , Escherichia coli/genética , Animais , Pareamento Incorreto de Bases , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Oligonucleotídeos/genética
20.
World J Microbiol Biotechnol ; 35(11): 176, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673867

RESUMO

The aim of this study was to clarify effects of soil and climatic conditions on community structure of sweet potato bacterial endophytes by applying locked nucleic acid oligonucleotide-PCR clamping technique and metagenomic analysis. For this purpose, the soil samples in three locations were transferred each other and sweet potato nursery plants from the same farm were cultivated for ca. 3 months. After removal of plastid, mitochondria and undefined sequences, the averaged numbers of retained sequences and operational taxonomic units per sample were 20,891 and 846, respectively. Proteobacteria (85.0%), Bacteroidetes (6.6%) and Actinobacteria (6.3%) were the three most dominant phyla, accounting for 97.9% of the reads, and γ-Proteobacteria (66.3%) being the most abundant. Top 10 genera represented 81.2% of the overall reads in which Pseudomonas (31.9-45.0%) being the most predominant. The overall endophytic bacterial communities were similar among the samples which indicated that the soil and the climatic conditions did not considerably affect the entire endophytic community. The original endophytic bacterial community might be kept during the cultivation period.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Clima , Endófitos/classificação , Ipomoea batatas/microbiologia , Metagenoma , Microbiota , Solo/química , Bactérias/genética , Sequência de Bases , Biodiversidade , DNA Bacteriano/análise , DNA Mitocondrial/análise , Endófitos/genética , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA