Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 35(2): 954-973, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32893437

RESUMO

Blood-brain barrier (BBB) dysfunction has been implicated in Alzheimer's disease (AD) and is closely linked to the release of proinflammatory cytokines in brain capillary endothelial cells. We have previously reported that lychee seed polyphenols (LSP) exerted anti-neuroinflammatory effect. In this study, we aimed to explore the protective effect of LSP on BBB integrity. The monolayer permeability of bEnd.3 cells, and the mRNA level and protein expression of tight junction proteins (TJs), including Claudin 5, Occludin, and ZO-1, were examined. In addition, the inhibition of Aß(25-35)-induced NLRP3 inflammasome activation, and the autophagy induced by LSP were investigated by detecting the expression of NLRP3, caspase-1, ASC, LC3, AMPK, mTOR, and ULK1. Furthermore, the cognitive function and the expression of TJs, NLRP3, caspase-1, IL-1ß, and p62 were determined in APP/PS1 mice. The results showed that LSP significantly decreased the monolayer permeability and inhibited the NLRP3 inflammasome in Aß(25-35)-induced bEnd3 cells. In addition, LSP induced autophagy via the AMPK/mTOR/ULK1 pathway in bEnd.3 cells, and improved the spatial learning and memory function, increased the TJs expression, and inhibited the expression of NLRP3, caspase-1, IL-1ß, and p62 in APP/PS1 mice. Therefore, LSP protects BBB integrity in AD through inhibiting Aß(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/tratamento farmacológico , Autofagia/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Litchi/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Polifenóis/uso terapêutico , Sementes/química , Animais , Masculino , Camundongos , Camundongos Transgênicos , Polifenóis/farmacologia , Transfecção
2.
Int J Mol Sci ; 19(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30036972

RESUMO

Amyloid-ß (Aß) is commonly recognized as the most important factor that results in neuronal cell death and accelerates the progression of Alzheimer's disease (AD). Increasing evidence suggests that microglia activated by Aß release an amount of neurotoxic inflammatory cytokines that contribute to neuron death and aggravate AD pathology. In our previous studies, we found that lychee seed fraction (LSF), an active fraction derived from the lychee seed, could significantly improve the cognitive function of AD rats and inhibit Aß-induced neuroinflammation in vitro, and decrease neuronal injuries in vivo and in vitro. In the current study, we aimed to isolate and identify the specific components in LSF that were responsible for the anti-neuroinflammation effect using preparative high performance liquid chromatography (pre-HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) methods. To this end, we confirmed two polyphenols including catechin and procyanidin A2 that could improve the morphological status of BV-2 cells and suppress the release, mRNA levels, and protein expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) through downregulating the nuclear factor-κB (NF-κB) signaling pathway using ELISA, RT-PCR, and Western blotting methods. Furthermore, catechin and procyanidin A2 could inhibit Aß-induced apoptosis in BV-2 cells by upregulating Bcl-2 and downregulating Bax protein expression. Therefore, the current study illustrated the active substances in lychee seed, and first reported that catechin and procyanidin A2 could suppress neuroinflammation in Aß-induced BV-2 cells, which provides detailed insights into the molecular mechanism of catechin and procyanidin A2 in the neuroprotective effect, and their further validations of anti-neuroinflammation in vivo is also essential in future research.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Inflamação/tratamento farmacológico , Litchi/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polifenóis/química , Polifenóis/uso terapêutico , Sementes/química , Animais , Apoptose/efeitos dos fármacos , Catequina/metabolismo , Linhagem Celular , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , NF-kappa B/metabolismo , Neurônios/imunologia , Proantocianidinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Biomed Pharmacother ; 167: 115478, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37703661

RESUMO

Blood retinal barrier (BRB) damage is an important pathogenesis of diabetic retinopathy, and alleviating BRB damage has become a key target for DR treatment. We previously found that Lycopene seed polyphenols (LSP) maintained BRB integrity by inhibiting NLRP3 inflammasome-mediated inflammation. However, it is still unknown whether LSP inhibits retinal neovascularization with abnormal capillaries and its mechanism of action. Here, we employed db/db mice and hRECs to find that LSP increases the level of glycolipid metabolism, maintains the morphology of retinal endothelial cells and inhibits acellular capillary neogenesis. Mechanistic studies revealed that LSP inhibits the NLRP3 inflammasome, reduces cell apoptosis in retinal tissue, increases tight junction protein (TJ) expression, and reduces vascular endothelial growth factor (VEGF) and Ve-Cadherin in vivo and in vitro. Collectively, this study finds that LSP inhibits inflammation and angiogenesis to improve BRB function to ameliorate DR.


Assuntos
Retinopatia Diabética , Litchi , Camundongos , Animais , Inflamassomos/metabolismo , Polifenóis/farmacologia , Polifenóis/metabolismo , Células Endoteliais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Retinopatia Diabética/patologia , Inflamação/metabolismo , Apoptose
4.
Front Pharmacol ; 12: 737803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690773

RESUMO

Food is people's primal want. A reasonable diet and healthy food not only provide nutrients for human growth but also contribute to disease prevention and treatment, while following an unhealthy diet can lead to an increased risk of many diseases, especially metabolic disorders, such as diabetes. Nature is enriched with different food sources, and it seems that purely natural products are more in line with the current concept of health, which enhance the formation of the notion that "Food/Diet Supplements from Natural Sources as a Medicine." As a delicious fruit, the medicinal values such as anticancer, antibacterial, antioxidation, and antiglycating properties of lychee have been found. Lychee (Litchi in Chinese) is a subtropical fruit plant belonging to the family Sapindaceae. It has been widely cultivated in warm climates worldwide, particularly in China, for thousands of years. In recent years, various phytochemical components such as quercetin, procyanidin A2, and (2R)-naringenin-7-O-(3-O-αL-rhamnopyranosyl-ß-D-glucopyranoside) have been identified in a lychee seed, which may lend a lychee seed as a relatively safe and inexpensive adjuvant treatment for diabetes and diabetic complications. In fact, accumulating evidence has shown that lychee seed, lychee seed extracts, and related compounds have promising antihyperglycemic activities, including improving insulin resistance, anti-inflammatory effect, lipid regulation, neuroprotection, antineurotoxic effect, and renoprotection effect. In this review, we summarized publications on antiglycemic effects and mechanisms of lychee seed, lychee seed extracts, and related compounds, which included their efficacies as a cure for diabetes and diabetic complications in cells, animals, and humans, attempting to obtain a robust evidence basis for the clinical application and value of lychee seed.

5.
J Ethnopharmacol ; 251: 112548, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31917277

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lychee seed, the seed of Litchi chinensis Sonn. is one of the commonly used in traditional Chinese medicine (TCM). It possesses many pharmacological effects such as blood glucose and lipid-lowering effects, liver protection, and antioxidation. Our preliminary studies have proven that an active fraction derived from lychee seed (LSF) can significantly decrease the blood glucose level, inhibit amyloid-ß (Aß) fibril formation and Tau hyperphosphorylation, and improve the cognitive function and behavior of Alzheimer's disease (AD) model rats. AIM OF THE STUDY: The aim of this study was to identify the main active components in LSF that can inhibit the hyperphosphorylation of Tau through improving insulin resistance (IR) in dexamethasone (DXM)-induced HepG2 and HT22 cells. MATERIALS AND METHODS: The isolation was guided by the bioactivity evaluation of the improvement effect of IR in HepG2 and HT22 cells. The mRNA and protein expressions of IRS-1, PI3K, Akt, GSK-3ß, and Tau were measured by RT-PCR, Western blotting, and immunofluorescence methods, respectively. RESULTS: After extraction, isolation, and elucidation using chromatography and spectrum technologies, three polyphenols including catechin, procyanidin A1 and procyanidin A2 were identified from fractions 3, 5, and 9 derived from LSF. These polyphenols inhibit hyperphosphorylated Tau via the up-regulation of IRS-1/PI3K/Akt and down-regulation of GSK-3ß. Molecular docking result further demonstrate that these polyphenols exhibit good binding property with insulin receptor. CONCLUSIONS: catechin, procyanidin A1, and procyanidin A2 are the main components in LSF that inhibit Tau hyperphosphorylation through improving IR via the IRS-1/PI3K/Akt/GSK-3ß pathway. Therefore, the findings in the current study provide novel insight into the anti-AD mechanism of the components in LSF derived from lychee seed, which is valuable for the further development of a novel drug or nutrient supplement for the prevention and treatment of AD.


Assuntos
Resistência à Insulina , Litchi , Polifenóis/farmacologia , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sementes , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Biomed Pharmacother ; 130: 110575, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32768883

RESUMO

Emerging evidence indicates that the enhancement of microglial autophagy inhibits the NLRP3 inflammasome mediated neuroinflammation in Alzheimer's disease (AD). Meanwhile, low density lipoprotein receptor-related protein 1 (LRP1) highly expressed in microglia is able to negatively regulate neuroinflammation and positively regulate autophagy. In addition, we have previously reported that an active lychee seed fraction enriching polyphenol (LSP) exhibits anti-neuroinflammation in Aß-induced BV-2 cells. However, its molecular mechanism of action is still unclear. In this study, we aim to investigate whether LSP inhibits the NLRP3 inflammasome mediated neuroinflammation and clarify its molecular mechanism in Aß-induced BV-2 cells and APP/PS1 mice. The results showed that LSP dose- and time-dependently activated autophagy by increasing the expression of Beclin 1 and LC3II in BV-2 cells, which was regulated by the upregulation of LRP1 and its mediated AMPK signaling pathway. In addition, both the Western blotting and fluorescence microscopic results demonstrated that LSP could significantly suppress the activation of NLRP3 inflammasome by inhibiting the expression of NLRP3, ASC, the cleavage of caspase-1, and the release of IL-1ß in Aß(1-42)-induced BV-2 cells. In addition, the siRNA LRP1 successfully abolished the effect of LSP on the activation of AMPK and its mediated autophagy, as well as the inhibition of NLRP3 inflammasome. Furthermore, LSP rescued PC-12 cells which were induced by the conditioned medium from Aß(1-42)-treated BV-2 cells. Moreover, LSP improved the cognitive function and inhibited the NLRP3 inflammasome in APP/PS1 mice. Taken together, LSP inhibited the NLRP3 inflammasome-mediated neuroinflammation in the in vitro and in vivo models of AD, which was closely associated with the LRP1/AMPK-mediated autophagy. Thus, the findings from this study further provide evidences for LSP serving as a potential drug for the treatment of AD in the future.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides , Inflamassomos/antagonistas & inibidores , Litchi , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos , Polifenóis/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Inflamassomos/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Interferente Pequeno , Ratos , Sementes
7.
Front Pharmacol ; 9: 380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740316

RESUMO

In our previous studies, an active fraction derived from lychee seed could inhibit ß-amyloid-induced apoptosis of PC12 cells and neurons. The primarily microglia cells are recognized as the brain's resident macrophages and thought to remodel of the brain by removing presumably redundant, apoptotic neurons. In the current study, we aimed to investigate the anti-neuroinflammation effect of lychee seed fraction (LSF) in Aß(1-42)-induced BV-2 cells and the underlying mechanism. The morphology results displayed that LSF could improve the status of Aß(1-42)-induced BV-2 cells. The enzyme-linked immunosorbent assay, real-time PCR, and Western blotting results showed that LSF could significantly reduce the release, mRNA levels, and protein expressions of the pro-inflammatory cytokines such as interleukin-1ß (IL-1ß), tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in Aß(1-42)-induced BV-2 cells, which were downregulated through suppressing the NF-κB signaling pathway. Furthermore, LSF could upregulate Bcl-2 and downregulate Bax, Caspase-3, and cleaved-PARP protein expressions. Taken together, our results first demonstrated that LSF could suppress the inflammatory response via inhibiting NF-κB signaling pathway, and inhibit apoptosis in Aß(1-42)-induced BV-2 cells. Our findings further prove that LSF as a potential drug may be used for treating AD in the future.

8.
Nutrients ; 9(4)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28353652

RESUMO

Neuronal apoptosis plays a critical role in the pathogenesis of Alzheimer's disease (AD). Previous studies have shown that lychee seed saponins (LSS), isolated and extracted from traditional Chinese medicine lychee seeds, possess many beneficial activities including anti-oxidation, anti-diabetes, anti-AD, etc. In the present study, we established an in vitro neuronal apoptotic model of PC12 cells induced by Aß25-35 and studied the effect of LSS on apoptosis by the methods of Hoechst 33342/propidium iodide (PI) fluorescence double staining, Annexin V/PI double staining, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL). We also investigated the effects of LSS on mitochondria membrane potential, the expressions of Bcl-2 and Bax proteins, and the mRNA expression and the nuclear translocation of NF-κBp65 in PC12 cells. The results showed that LSS markedly inhibited apoptosis, improved the mitochondria membrane potentials, upregulated the expression of Bcl-2 protein, downregulated the expression of Bax protein, and decreased the mRNA expression and nuclear translocation of NF-κBp65 in PC12 cells. The study demonstrated that LSS significantly inhibited apoptosis induced by Aß25-35 via regulation of the apoptotic and NF-κB pathways in PC12 cells. Therefore, LSS has the potential to be developed as a novel agent or nutrient supplement for the prevention and/or treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apoptose/efeitos dos fármacos , Litchi/química , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Saponinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Animais , Sobrevivência Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Saponinas/uso terapêutico , Sementes , Transdução de Sinais
9.
Nutrients ; 9(2)2017 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165366

RESUMO

Lychee seed is a traditional Chinese medicine and possesses many activities, including hypoglycemia, liver protection, antioxidation, antivirus, and antitumor. However, its effect on neuroprotection is still unclear. The present study investigated the effects of lychee seed saponins (LSS) on neuroprotection and associated mechanisms. We established a rat model of Alzheimer's disease (AD) by injecting Aß25-35 into the lateral ventricle of rats and evaluated the effect of LSS on spatial learning and memory ability via the Morris water maze. Neuronal apoptosis was analyzed by hematoxylin and eosin stain and terminal deoxynucleotidyl transferase (Tdt)-mediated dUTP nick-end labeling analysis, and mRNA expression of caspase-3 and protein expressions of Bax and Bcl-2 by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The results showed that LSS remarkably improved cognitive function and alleviated neuronal injury by inhibiting apoptosis in the hippocampus of AD rats. Furthermore, the mRNA expression of caspase-3 and the protein expression of Bax were downregulated, while the protein expression of Bcl-2 and the ratio of Bcl-2/Bax were increased by LSS. We demonstrate that LSS significantly improves cognitive function and prevent neuronal injury in the AD rats via regulation of the apoptosis pathway. Therefore, LSS may be developed as a nutritional supplement and sold as a drug for AD prevention and/or treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Apoptose/efeitos dos fármacos , Litchi , Fitoterapia , Saponinas/farmacologia , Sementes/química , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides , Animais , Caspase 3/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA