Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(6): 995-1007.e18, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303429

RESUMO

Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Animais , Epitopos , Glicoproteínas/química , Subunidades Proteicas
2.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L482-L495, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318664

RESUMO

Chlorine gas (Cl2) has been repeatedly used as a chemical weapon, first in World War I and most recently in Syria. Life-threatening Cl2 exposures frequently occur in domestic and occupational environments, and in transportation accidents. Modeling the human etiology of Cl2-induced acute lung injury (ALI), forensic biomarkers, and targeted countermeasures development have been hampered by inadequate large animal models. The objective of this study was to develop a translational model of Cl2-induced ALI in swine to understand toxico-pathophysiology and evaluate whether it is suitable for screening potential medical countermeasures and to identify biomarkers useful for forensic analysis. Specific pathogen-free Yorkshire swine (30-40 kg) of either sex were exposed to Cl2 (≤240 ppm for 1 h) or filtered air under anesthesia and controlled mechanical ventilation. Exposure to Cl2 resulted in severe hypoxia and hypoxemia, increased airway resistance and peak inspiratory pressure, and decreased dynamic lung compliance. Cl2 exposure resulted in increased total leucocyte and neutrophil counts in bronchoalveolar lavage fluid, vascular leakage, and pulmonary edema compared with the air-exposed group. The model recapitulated all three key histopathological features of human ALI, such as neutrophilic alveolitis, deposition of hyaline membranes, and formation of microthrombi. Free and lipid-bound 2-chlorofatty acids and chlorotyrosine-modified proteins (3-chloro-l-tyrosine and 3,5-dichloro-l-tyrosine) were detected in plasma and lung tissue after Cl2 exposure. In this study, we developed a translational swine model that recapitulates key features of human Cl2 inhalation injury and is suitable for testing medical countermeasures, and validated chlorinated fatty acids and protein adducts as biomarkers of Cl2 inhalation.NEW & NOTEWORTHY We established a swine model of chlorine gas-induced acute lung injury that exhibits several features of human acute lung injury and is suitable for screening potential medical countermeasures. We validated chlorinated fatty acids and protein adducts in plasma and lung samples as forensic biomarkers of chlorine inhalation.


Assuntos
Lesão Pulmonar Aguda , Cloro , Humanos , Animais , Suínos , Cloro/toxicidade , Cloro/metabolismo , Pulmão/metabolismo , Líquido da Lavagem Broncoalveolar , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Biomarcadores/metabolismo , Ácidos Graxos/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396999

RESUMO

Fibrosis is a chronic pathology resulting from excessive deposition of extracellular matrix components that leads to the loss of tissue function. Pulmonary fibrosis can follow a variety of diverse insults including ischemia, respiratory infection, or exposure to ionizing radiation. Consequently, treatments that attenuate the development of debilitating fibrosis are in desperate need across a range of conditions. Sphingolipid metabolism is a critical regulator of cell proliferation, apoptosis, autophagy, and pathologic inflammation, processes that are all involved in fibrosis. Opaganib (formerly ABC294640) is the first-in-class investigational drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Opaganib inhibits key enzymes in sphingolipid metabolism, including sphingosine kinase-2 and dihydroceramide desaturase, thereby reducing inflammation and promoting autophagy. Herein, we demonstrate in mouse models of lung damage following exposure to ionizing radiation that opaganib significantly improved long-term survival associated with reduced lung fibrosis, suppression of granulocyte infiltration, and reduced expression of IL-6 and TNFα at 180 days after radiation. These data further demonstrate that sphingolipid metabolism is a critical regulator of fibrogenesis, and specifically show that opaganib suppresses radiation-induced pulmonary inflammation and fibrosis. Because opaganib has demonstrated an excellent safety profile during clinical testing in other diseases (cancer and COVID-19), the present studies support additional clinical trials with this drug in patients at risk for pulmonary fibrosis.


Assuntos
Adamantano/análogos & derivados , Contramedidas Médicas , Neoplasias , Pneumonia , Fibrose Pulmonar , Piridinas , Camundongos , Animais , Humanos , Esfingolipídeos/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Fibrose , Inflamação/tratamento farmacológico
4.
J Virol ; 95(24): e0083321, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586862

RESUMO

Filoviruses cause high-consequence infections with limited approved medical countermeasures (MCMs). MCM development is dependent upon well-characterized animal models for the assessment of antiviral agents and vaccines. Following large-scale Ebola virus (EBOV) disease outbreaks in Africa, some survivors are left with long-term sequelae and persistent virus in immune-privileged sites for many years. We report the characterization of the ferret as a model for Ebola virus infection, reproducing disease and lethality observed in humans. The onset of clinical signs is rapid, and EBOV is detected in the blood, oral, and rectal swabs and all tissues studied. We identify viral RNA in the eye (a site of immune privilege) and report on specific genomic changes in EBOV present in this structure. Thus, the ferret model has utility in testing MCMs that prevent or treat long-term EBOV persistence in immune-privileged sites. IMPORTANCE Recent reemergence of Ebola in Guinea that caused over 28,000 cases between 2013 and 2016 has been linked to the original virus from that region. It appears the virus has remained in the region for at least 5 years and is likely to have been maintained in humans. Persistence of Ebola in areas of the body for extended periods of time has been observed, such as in the eye and semen. Despite the importance of reintroduction of Ebola from this route, such events are rare in the population, which makes studying medical interventions to clear persistent virus difficult. We studied various doses of Ebola in ferrets and detected virus in the eyes of most ferrets. We believe this model will enable the study of medical interventions that promote clearance of Ebola virus from sites that promote persistence.


Assuntos
Ebolavirus/genética , Evolução Molecular , Olho/virologia , Doença pelo Vírus Ebola/fisiopatologia , Doença pelo Vírus Ebola/virologia , Animais , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Ebolavirus/imunologia , Feminino , Furões/imunologia , Doença pelo Vírus Ebola/imunologia , Masculino , RNA Viral/genética
5.
Exp Eye Res ; 221: 109156, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716762

RESUMO

Vesicants, from vesica (Latin for blister), can cause local and systemic toxicity. They include the chemotherapy drug nitrogen mustard and chemical warfare agents sulfur mustard, Lewisite, and phosgene oxime. These agents are commonly released in vapor form and consequently, eyes and skin are the most vulnerable. The ocular and cutaneous injuries can be acute, subacute, or chronic, and can predispose casualties to secondary deleterious effects. Underlying these broad organ responses are shared and tissue-specific cellular and molecular biological cascades that attempt to counteract such chemical injuries. Depending on the severity of the chemical insult, biological responses often lead to inadequate wound healing and result in long-term pathology instead. Exposure to other toxic industrial chemicals such as acrolein, chloropicrin, and hydrogen fluoride, can also cause prominent eye and skin damage. There are currently no FDA-approved drugs to counteract these injuries. Hence, the possibility of a mass casualty emergency involving these chemicals is a major public health concern. Recognizing this critical challenge, the United States Department of Health and Human Services (HHS) is committed to the development of medical countermeasures to advance national health and medical preparedness against these highly toxic chemicals. Here, we provide an overview of various HHS funding and scientific opportunities available in this space, emphasizing parallels between eye and skin response to chemical injury. We also discuss a main limitation of existing data and suggest ways to overcome it.


Assuntos
Queimaduras Químicas , Substâncias para a Guerra Química , Contramedidas Médicas , Gás de Mostarda , Queimaduras Químicas/tratamento farmacológico , Substâncias para a Guerra Química/toxicidade , Humanos , Mecloretamina , Gás de Mostarda/toxicidade , Pele , Estados Unidos
6.
Crit Rev Biotechnol ; 41(6): 849-864, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33715563

RESUMO

Space missions have always assumed that the risk of spacecraft malfunction far outweighs the risk of human system failure. This assumption breaks down for longer duration exploration missions and exposes vulnerabilities in space medical systems. Space agencies can no longer reduce the majority of the human health and performance risks through crew members selection process and emergency re-supply or evacuation. No mature medical solutions exist to address this risk. With recent advances in biotechnology, there is promise for lessening this risk by augmenting a space pharmacy with a biologically-based space foundry for the on-demand manufacturing of high-value medical products. Here we review the challenges and opportunities of molecular pharming, the production of pharmaceuticals in plants, as the basis of a space medical foundry to close the risk gap in current space medical systems. Plants have long been considered to be an important life support object in space and can now also be viewed as programmable factories in space. Advances in molecular pharming-based space foundries will have widespread applications in promoting simple and accessible pharmaceutical manufacturing on Earth.


Assuntos
Agricultura Molecular , Voo Espacial , Humanos , Lua , Plantas
7.
Adv Exp Med Biol ; 1062: 303-318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29845541

RESUMO

The United States Army Medical Research Institute of Infectious Diseases (USAMRIID) possesses an array of expertise in diverse capabilities for the characterization of emerging infectious diseases from the pathogen itself to human or animal infection models. The recent Zika virus (ZIKV) outbreak was a challenge and an opportunity to put these capabilities to work as a cohesive unit to quickly respond to a rapidly developing threat. Next-generation sequencing was used to characterize virus stocks and to understand the introduction and spread of ZIKV in the United States. High Content Imaging was used to establish a High Content Screening process to evaluate antiviral therapies. Functional genomics was used to identify critical host factors for ZIKV infection. An animal model using the temporal blockade of IFN-I in immunocompetent laboratory mice was investigated in conjunction with Positron Emission Tomography to study ZIKV. Correlative light and electron microscopy was used to examine ZIKV interaction with host cells in culture and infected animals. A quantitative mass spectrometry approach was used to examine the protein and metabolite type or concentration changes that occur during ZIKV infection in blood, cells, and tissues. Multiplex fluorescence in situ hybridization was used to confirm ZIKV replication in mouse and NHP tissues. The integrated rapid response approach developed at USAMRIID presented in this review was successfully applied and provides a new template pathway to follow if a new biological threat emerges. This streamlined approach will increase the likelihood that novel medical countermeasures could be rapidly developed, evaluated, and translated into the clinic.


Assuntos
Academias e Institutos , Infecção por Zika virus/virologia , Zika virus/fisiologia , Academias e Institutos/tendências , Animais , Pesquisa Biomédica , Humanos , Zika virus/genética
8.
Anaerobe ; 35(Pt B): 77-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238688

RESUMO

The prevailing scenario of bioterrorism warrants development of medical countermeasures with expanded coverage of select agents. Clostridium perfringens is a pathogen of medical, veterinary and military importance, and has been listed as Validated Biological Agent. We employed 2DE-MS approach to identify a total of 134 unique proteins (529 protein spot features) from the extractable proteome of four type A and type C strains. Proteins showing altered expression under host-simulated conditions from virulent type A strain (ATCC13124) were also elucidated. Significant among the differentially expressed proteins were elongation factor, molecular chaperones, ribosomal proteins, carbamoyl phosphate synthase, clpB protein, choloylglycine hydrolase, phosphopyruvate hydratase, and trigger factor. Predictive elucidation, of putative virulence associated proteins and sequence conservation pattern of selected candidates, was carried out using homologous proteins from other bacterial select agents to screen for the commonality of putative antigenic determinants. Pathogens (17 select agents) were observed to form three discrete clusters; composition of I and II being consistent in most of the phylogenetic reconstructions. This work provides a basis for further validation of putative candidate proteins as prophylactic agents and for their ability to provide protection against clusters of pathogenic select bacterial agents; aimed at mitigating the shadows of biothreat.


Assuntos
Proteínas de Bactérias/análise , Clostridium perfringens/química , Proteoma/análise , Fatores de Virulência/análise , Animais , Proteínas de Bactérias/isolamento & purificação , Infecções por Clostridium/microbiologia , Clostridium perfringens/patogenicidade , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Camundongos , Proteoma/isolamento & purificação , Análise de Sobrevida , Virulência , Fatores de Virulência/isolamento & purificação
9.
Expert Opin Drug Discov ; 19(5): 537-551, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606475

RESUMO

INTRODUCTION: Mammarenaviruses are negative-sense bisegmented enveloped RNA viruses that are endemic in Africa, the Americas, and Europe. Several are highly virulent, causing acute human diseases associated with high case fatality rates, and are considered to be significant with respect to public health impact or bioterrorism threat. AREAS COVERED: This review summarizes the status quo of treatment development, starting with drugs that are in advanced stages of evaluation in early clinical trials, followed by promising candidate medical countermeasures emerging from bench analyses and investigational animal research. EXPERT OPINION: Specific therapeutic treatments for diseases caused by mammarenaviruses remain limited to the off-label use of ribavirin and transfusion of convalescent sera. Progress in identifying novel candidate medical countermeasures against mammarenavirus infection has been slow in part because of the biosafety and biosecurity requirements. However, novel methodologies and tools have enabled increasingly efficient high-throughput molecular screens of regulatory-agency-approved small-molecule drugs and led to the identification of several compounds that could be repurposed for the treatment of infection with several mammarenaviruses. Unfortunately, most of them have not yet been evaluated in vivo. The most promising treatment under development is a monoclonal antibody cocktail that is protective against multiple lineages of the Lassa virus in nonhuman primate disease models.


Assuntos
Antivirais , Infecções por Arenaviridae , Arenaviridae , Desenvolvimento de Medicamentos , Humanos , Animais , Antivirais/farmacologia , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/virologia , Arenaviridae/efeitos dos fármacos , Virulência , Desenho de Fármacos
10.
Drug Discov Today ; 29(2): 103856, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097137

RESUMO

Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair. The drug has been evaluated clinically for its pharmacokinetics and safety. The United States Food and Drug Administration granted investigational new drug status to its injectable depot formulation (NEUMUNE). Its safety and efficacy profiles make it an attractive candidate for further development as a radiation countermeasure.


Assuntos
Síndrome Aguda da Radiação , Protetores contra Radiação , Estados Unidos , Humanos , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Androstenodiol/farmacocinética , Imunidade Inata
11.
Clin Pharmacol Drug Dev ; 12(2): 190-201, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36301689

RESUMO

A pharmaceutical formulation of genistein, produced as an amorphous solid dispersion by hot melt extrusion (genistein HME), has been developed that can be administered prophylactically to improve outcomes and survival following radiation exposure. Here, genistein HME was evaluated in a phase 1, open-label, single ascending dose (SAD) and multiple single dose (MSD) study enrolling 34 healthy volunteers. In the SAD study, participants were administered a single dose (500, 1000, 2000, or 3000 mg) and in the MSD study, participants were administered a single daily dose for six consecutive days (3000 mg/day). The overall adverse event profile and pharmacokinetics of genistein HME were determined. Additionally, biomarkers of genistein HME were evaluated by profiling whole blood for changes in gene expression by RNA sequencing. Genistein HME was found to be safe at doses up to 3000 mg. Most toxicities were mild to moderate gastrointestinal events, and no dose-limiting toxicities were reported. The maximum tolerated dose was not determined and the no observable adverse effect level was 500 mg. Genistein HME bioavailability greatly increased between the 2000 mg and 3000 mg doses. RNA sequencing analysis revealed that the majority of drug-related changes in gene expression occurred 8-12 hours after the sixth dose in the MSD study. Based on these results, the putative effective dose in humans is 3000 mg.


Assuntos
Genisteína , Protetores contra Radiação , Humanos , Disponibilidade Biológica , Biomarcadores/sangue , Composição de Medicamentos/métodos , Genisteína/efeitos adversos , Genisteína/sangue , Genisteína/farmacocinética , Voluntários Saudáveis , Protetores contra Radiação/efeitos adversos , Protetores contra Radiação/farmacocinética
12.
Res Sq ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37293000

RESUMO

Background: Human milk fat globule epidermal growth factor-factor VIII (MFG-E8) functions as a bridging molecule to promote the removal of dying cells by professional phagocytes. E. coli-expressed histidine-tagged recombinant human MFG-E8 (rhMFG-E8) is protective in various disease conditions. However, due to improper recombinant protein glycosylation, misfolding and possible antigenicity, E. coli-expressed histidine-tagged rhMFG-E8 is unsuitable for human therapy. Therefore, we hypothesize that human cell-expressed, tag-free rhMFG-E8 can be developed as a safe and effective novel biologic to treat inflammatory diseases such as radiation injury and acute kidney injury (AKI). Methods: We produced a new tag-free rhMFG-E8 protein by cloning the human MFG-E8 full-length coding sequence without any fusion tag into a mammalian vector and expressed it in HEK293-derived cells. The construct includes the leader sequence of cystatin S to maximize secretion of rhMFG-E8 into the culture medium. After purification and confirmation of the protein identity, we first evaluated its biological activity in vitro. We then determined its efficacy in vivo utilizing two experimental rodent models of organ injury: partial body irradiation (PBI) and ischemia/reperfusion-induced AKI. Results: HEK293 cell supernatant containing tag-free rhMFG-E8 protein was concentrated, purified, and rhMFG-E8 was verified by SDS-PAGE analysis and mass spectrometry. The biological activity of human cell-expressed tag-free rhMFG-E8 was superior to that of E. coli-expressed His-tagged rhMFG-E8. Toxicity, stability, and pharmacokinetic studies indicate that tag-free rhMFG-E8 is safe, highly stable after lyophilization and long-term storage, and with an adequate half-life for therapeutic applications. In the PBI model, a dose-dependent improvement of the 30-day survival rate was observed after tag-free rhMFG-E8 treatment with a 30-day survival of 89%, which was significantly higher than the 25% survival in the vehicle group. The dose modification factor (DMF) of tag-free rhMFG-E8 was 1.073. Tag-free rhMFG-E8 also attenuated gastrointestinal damage after PBI. In the model of AKI, tag-free rhMFG-E8 treatment significantly attenuated kidney injury and inflammation, and improved the 10-day survival. Conclusion: Our new human cell-expressed tag-free rhMFG-E8 can be further developed as a safe and effective therapy to treat victims of severe acute radiation injury and patients with acute kidney injury.

13.
Chem Biol Interact ; 363: 109996, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35654125

RESUMO

Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited. Plasma derived human butyrylcholinesterase (huBChE) is a promising novel bioscavenger MCM strategy, but is prohibitively expensive to isolate from human plasma at scale. Efforts to produce recombinant huBChE (rBChE) in various protein expression platforms have failed to achieve key critical attributes of huBChE such as circulatory half-life. These proteins often lack critical features such as tetrameric structure and requisite post-translational modifications. This review evaluates previous attempts to generate rBChE and assesses recent advances in mammalian cell expression and protein engineering strategies that could be deployed to achieve the required half-life and yield for a viable rBChE MCM. This includes the addition of a proline-rich attachment domain, fusion proteins, post translational modifications, expression system selection and optimised downstream processes. Whilst challenges remain, a combinatorial application of these strategies demonstrates potential as a technically feasible approach to achieving a bioactive and cost effective bioscavenger MCM.


Assuntos
Contramedidas Médicas , Agentes Neurotóxicos , Intoxicação por Organofosfatos , Animais , Butirilcolinesterase/química , Humanos , Mamíferos/metabolismo , Intoxicação por Organofosfatos/tratamento farmacológico , Compostos Organofosforados , Proteínas Recombinantes/química
14.
Vaccines (Basel) ; 10(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36016101

RESUMO

The Ebola virus disease outbreak that occurred in Western Africa from 2013-2016, and subsequent smaller but increasingly frequent outbreaks of Ebola virus disease in recent years, spurred an unprecedented effort to develop and deploy effective vaccines, therapeutics, and diagnostics. This effort led to the U.S. regulatory approval of a diagnostic test, two vaccines, and two therapeutics for Ebola virus disease indications. Moreover, the establishment of fieldable diagnostic tests improved the speed with which patients can be diagnosed and public health resources mobilized. The United States government has played and continues to play a key role in funding and coordinating these medical countermeasure efforts. Here, we describe the coordinated U.S. government response to develop medical countermeasures for Ebola virus disease and we identify lessons learned that may improve future efforts to develop and deploy effective countermeasures against other filoviruses, such as Sudan virus and Marburg virus.

15.
Disaster Med Public Health Prep ; 17: e112, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027098

RESUMO

Monoclonal antibody therapeutics to treat coronavirus disease (COVID-19) have been authorized by the US Food and Drug Administration under Emergency Use Authorization (EUA). Many barriers exist when deploying a novel therapeutic during an ongoing pandemic, and it is critical to assess the needs of incorporating monoclonal antibody infusions into pandemic response activities. We examined the monoclonal antibody infusion site process during the COVID-19 pandemic and conducted a descriptive analysis using data from 3 sites at medical centers in the United States supported by the National Disaster Medical System. Monoclonal antibody implementation success factors included engagement with local medical providers, therapy batch preparation, placing the infusion center in proximity to emergency services, and creating procedures resilient to EUA changes. Infusion process challenges included confirming patient severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity, strained staff, scheduling, and pharmacy coordination. Infusion sites are effective when integrated into pre-existing pandemic response ecosystems and can be implemented with limited staff and physical resources.


Assuntos
COVID-19 , SARS-CoV-2 , Estados Unidos , Humanos , COVID-19/epidemiologia , Pandemias , Saúde Pública , Ecossistema , Anticorpos Monoclonais/uso terapêutico
16.
Front Genome Ed ; 4: 781531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35199100

RESUMO

Respiratory system damage is the primary cause of mortality in individuals who are exposed to vesicating agents including sulfur mustard (SM). Despite these devastating health complications, there are no fielded therapeutics that are specific for such injuries. Previous studies reported that SM inhalation depleted the tracheobronchial airway epithelial stem cell (TSC) pool and supported the hypothesis, TSC replacement will restore airway epithelial integrity and improve health outcomes for SM-exposed individuals. TSC express Major Histocompatibility Complex (MHC-I) transplantation antigens which increases the chance that allogeneic TSC will be rejected by the patient's immune system. However, previous studies reported that Beta-2 microglobulin (B2M) knockout cells lacked cell surface MHC-I and suggested that B2M knockout TSC would be tolerated as an allogeneic graft. This study used a Cas9 ribonucleoprotein (RNP) to generate B2M-knockout TSC, which are termed Universal Donor Stem Cells (UDSC). Whole genome sequencing identified few off-target modifications and demonstrated the specificity of the RNP approach. Functional assays demonstrated that UDSC retained their ability to self-renew and undergo multilineage differentiation. A preclinical model of SM inhalation was used to test UDSC efficacy and identify any treatment-associated adverse events. Adult male Sprague-Dawley rats were administered an inhaled dose of 0.8 mg/kg SM vapor which is the inhaled LD50 on day 28 post-challenge. On recovery day 2, vehicle or allogeneic Fisher rat UDSC were delivered intravenously (n = 30/group). Clinical parameters were recorded daily, and planned euthanasia occurred on post-challenge days 7, 14, and 28. The vehicle and UDSC treatment groups exhibited similar outcomes including survival and a lack of adverse events. These studies establish a baseline which can be used to further develop UDSC as a treatment for SM-induced airway disease.

17.
Crit Care Explor ; 4(4): e0662, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35506015

RESUMO

The Seraph100 Microbind Affinity Blood Filter (Seraph 100) (ExThera Medical, Martinez, CA) is an extracorporeal therapy that can remove pathogens from blood, including severe acute respiratory syndrome coronavirus 2. The aim of this study was to evaluate safety and efficacy of Seraph 100 treatment for COVID-19. DESIGN: Retrospective cohort study. SETTING: Nine participating ICUs. PATIENTS: COVID-19 patients treated with Seraph 100 (n = 53) and control patients matched by study site (n = 53). INTERVENTION: Treatment with Seraph 100. MEASUREMENTS AND MAIN RESULTS: At baseline, there were no differences between the groups in terms of sex, race/ethnicity, body mass index, and need for mechanical ventilation. However, patients in the Seraph 100 group were younger (median age, 54 yr; interquartile range [IQR], 41-65) compared with controls (median age, 64 yr; IQR, 56-69; p = 0.009). Charlson comorbidity index scores were lower in the Seraph 100 group (2; IQR, 0-3) compared with the control group (3; IQR, 2-4; p = 0.006). Acute Physiology and Chronic Health Evaluation II scores were also lower in Seraph 100 subjects (12; IQR, 9-17) compared with controls (16; IQR, 12-21; p = 0.011). The Seraph 100 group had higher vasopressor-free days with an incidence rate ratio of 1.30 on univariate analysis. This difference was not significant after adjustment. Seraph 100-treated subjects were less likely to die compared with controls (32.1% vs 64.2%; p = 0.001), a difference that remained significant after adjustment. However, no difference in mortality was observed in a post hoc analysis utilizing an external control group. In the full cohort of 86 treated patients, there were 177 total treatments, in which only three serious adverse events were recorded. CONCLUSIONS: Although this study did not demonstrate consistently significant clinical benefit across all endpoints and comparisons, the findings suggest that broad spectrum, pathogen agnostic, blood purification can be safely deployed to meet new pathogen threats while awaiting targeted therapies and vaccines.

18.
Front Pharmacol ; 12: 633131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981223

RESUMO

Purpose: There is a need to identify new biomarkers of radiation exposure both for use in the development of biodosimetry blood diagnostics for radiation exposure and for clinical use as markers of radiation injury. In the current study, a novel high-throughput proteomics screening approach was used to identify proteomic markers of radiation exposure in the plasma of total body irradiated mice. A subset panel of significantly altered proteins was selected to build predictive models of radiation exposure and received radiation dose useful for population screening in a future radiological or nuclear event. Methods: Female C57BL6 Mice of 8-14 weeks of age received a single total body irradiation (TBI) dose of 2, 3.5, 8 Gy or sham radiation and plasma was collected by cardiac puncture at days 1, 3, and 7 post-exposure. Plasma was then screened using the aptamer-based SOMAscan proteomic assay technology, for changes in expression of 1,310 protein analytes. A subset panel of protein biomarkers which demonstrated significant changes (p < 0.05) in expression following radiation exposure were used to build predictive models of radiation exposure and radiation dose. Results: Detectable values were obtained for all 1,310 proteins included in the SOMAscan assay. For the Control vs. Radiation model, the top predictive proteins were immunoglobulin heavy constant mu (IGHM), mitogen-activated protein kinase 14 (MAPK14), ectodysplasin A2 receptor (EDA2R) and solute carrier family 25 member 18 (SLC25A18). For the Control vs. Dose model, the top predictive proteins were cyclin dependent kinase 2/cyclin A2 (CDK2. CCNA2), E-selectin (SELE), BCL2 associated agonist of cell death (BAD) and SLC25A18. Following model validation with a training set of samples, both models tested with a new sample cohort had overall predictive accuracies of 85% and 73% for the Control vs. Radiation and Control vs. Dose models respectively. Conclusion: The SOMAscan proteomics platform is a useful screening tool to evaluate changes in biomarker expression. In our study we were able to identify a novel panel of radiation responsive proteins useful for predicting whether an animal had received a radiation exposure and to what dose they had received. Such diagnostic tools are needed for future medical management of radiation exposures.

19.
Disaster Med Public Health Prep ; 15(2): 232-238, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32146912

RESUMO

Public health practitioners face challenging, potentially high-consequence, problems that require computational support. Available computational tools may not adequately fit these problems, thus forcing practitioners to rely on qualitative estimates when making critical decisions. Scientists at the Center for Computational Epidemiology and Response Analysis and practitioners from the Texas Department of State Health Services (TXDSHS) have established a participatory development cycle where public health practitioners work closely with academia to foster the development of data-driven solutions for specific public health problems and to translate these solutions to practice. Tools developed through this cycle have been deployed at TXDSHS offices where they have been used to refine and enhance the region's medical countermeasure distribution and dispensing capabilities. Consequently, TXDSHS practitioners planning for a 49-county region in North Texas have achieved a 29% reduction in the number of points of dispensing required to complete dispensing to the region within time limitations. Further, an entire receiving, staging, and storing site has been removed from regional plans, thus freeing limited resources (eg, personnel, security, and infrastructure) for other uses. In 2018, planners from Southeast Texas began using these tools to plan for a multi-county, full-scale exercise which was scheduled to be conducted in October 2019.

20.
Front Pharmacol ; 12: 643283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084131

RESUMO

Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA