Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38342687

RESUMO

The alteration of neural interactions across different cerebral perfusion states remains unclear. This study aimed to fulfill this gap by examining the longitudinal brain dynamic information interactions before and after cerebral reperfusion. Electroencephalogram in eyes-closed state at baseline and postoperative 7-d and 3-month follow-ups (moyamoya disease: 20, health controls: 23) were recorded. Dynamic network analyses were focused on the features and networks of electroencephalogram microstates across different microstates and perfusion states. Considering the microstate features, the parameters were disturbed of microstate B, C, and D but preserved of microstate A. The transition probabilities of microstates A-B and B-D were increased to play a complementary role across different perfusion states. Moreover, the microstate variability was decreased, but was significantly improved after cerebral reperfusion. Regarding microstate networks, the functional connectivity strengths were declined, mainly within frontal, parietal, and occipital lobes and between parietal and occipital lobes in different perfusion states, but were ameliorated after cerebral reperfusion. This study elucidates how dynamic interaction patterns of brain neurons change after cerebral reperfusion, which allows for the observation of brain network transitions across various perfusion states in a live clinical setting through direct intervention.


Assuntos
Encéfalo , Eletroencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico , Perfusão , Circulação Cerebrovascular
2.
Neuroimage ; 296: 120683, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880308

RESUMO

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.


Assuntos
Epilepsia do Lobo Temporal , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Conectoma/métodos
3.
Eur J Neurosci ; 59(7): 1753-1769, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221503

RESUMO

The present study aimed to investigate the spontaneous dynamics of large-scale brain networks underlying mindfulness as a dispositional trait, through resting-state electroencephalography (EEG) microstates analysis. Eighteen participants had attended a standardized mindfulness-based stress reduction training (MBSR), and 18 matched waitlist individuals (CTRL) were recorded at rest while they were passively exposed to auditory stimuli. Participants' mindfulness traits were assessed with the Five Facet Mindfulness Questionnaire (FFMQ). To further explore the relationship between microstate dynamics at rest and mindfulness traits, participants were also asked to rate their experience according to five phenomenal dimensions. After training, MBSR participants showed a highly significant increase in FFMQ score, as well as higher observing and non-reactivity FFMQ sub-scores than CTRL participants. Microstate analysis revealed four classes of microstates (A-D) in global clustering across all subjects. The MBSR group showed lower duration, occurrence and coverage of microstate C than the control group. Moreover, these microstate C parameters were negatively correlated to non-reactivity sub-scores of FFMQ across participants, whereas the microstate A occurrence was negatively correlated to FFMQ total score. Further analysis of participants' self-reports suggested that MBSR participants showed a better sensory-affective integration of auditory interferences. In line with previous studies, our results suggest that temporal dynamics of microstate C underlie specifically the non-reactivity trait of mindfulness. These findings encourage further research into microstates in the evaluation and monitoring of the impact of mindfulness-based interventions on the mental health and well-being of individuals.


Assuntos
Atenção Plena , Humanos , Encéfalo , Eletroencefalografia , Mapeamento Encefálico/métodos , Personalidade
4.
Hum Brain Mapp ; 45(1): e26552, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050776

RESUMO

Electroencephalography (EEG) microstate analysis has become a popular tool for studying the spatial and temporal dynamics of large-scale electrophysiological activities in the brain in recent years. Four canonical topographies of the electric field (classes A, B, C, and D) have been widely identified, and changes in microstate parameters are associated with several psychiatric disorders and cognitive functions. Recent studies have reported the modulation of EEG microstate by mental workload (MWL). However, the common practice of evaluating MWL is in a specific task. Whether the modulation of microstate by MWL is consistent across different types of tasks is still not clear. Here, we studied the topographies and dynamics of microstate in two independent MWL tasks: NBack and the multi-attribute task battery (MATB) and showed that the modulation of MWL on microstate topographies and parameters depended on tasks. We found that the parameters of microstates A and C, and the topographies of microstates A, B, and D were significantly different between the two tasks. Meanwhile, all four microstate topographies and parameters of microstates A and C were different during the NBack task, but no significant difference was found during the MATB task. Furthermore, we employed a support vector machine recursive feature elimination procedure to investigate whether microstate parameters were suitable for MWL classification. An averaged classification accuracy of 87% for within-task and 78% for cross-task MWL discrimination was achieved with at least 10 features. Collectively, our findings suggest that topographies and parameters of microstates can provide valuable information about neural activity patterns with a dynamic temporal structure at different levels of MWL, but the modulation of MWL depends on tasks and their corresponding functional systems. Moreover, as a potential indicator, microstate parameters could be used to distinguish MWL.


Assuntos
Eletroencefalografia , Transtornos Mentais , Humanos , Eletroencefalografia/métodos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cognição
5.
Hum Brain Mapp ; 45(11): e26793, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037186

RESUMO

The auditory system can selectively attend to the target source in complex environments, the phenomenon known as the "cocktail party" effect. However, the spatiotemporal dynamics of electrophysiological activity associated with auditory selective spatial attention (ASSA) remain largely unexplored. In this study, single-source and multiple-source paradigms were designed to simulate different auditory environments, and microstate analysis was introduced to reveal the electrophysiological correlates of ASSA. Furthermore, cortical source analysis was employed to reveal the neural activity regions of these microstates. The results showed that five microstates could explain the spatiotemporal dynamics of ASSA, ranging from MS1 to MS5. Notably, MS2 and MS3 showed significantly lower partial properties in multiple-source situations than in single-source situations, whereas MS4 had shorter durations and MS5 longer durations in multiple-source situations than in single-source situations. MS1 had insignificant differences between the two situations. Cortical source analysis showed that the activation regions of these microstates initially transferred from the right temporal cortex to the temporal-parietal cortex, and subsequently to the dorsofrontal cortex. Moreover, the neural activity of the single-source situations was greater than that of the multiple-source situations in MS2 and MS3, correlating with the N1 and P2 components, with the greatest differences observed in the superior temporal gyrus and inferior parietal lobule. These findings suggest that these specific microstates and their associated activation regions may serve as promising substrates for decoding ASSA in complex environments.


Assuntos
Atenção , Percepção Auditiva , Eletroencefalografia , Potenciais Evocados Auditivos , Percepção Espacial , Humanos , Masculino , Atenção/fisiologia , Feminino , Adulto Jovem , Percepção Espacial/fisiologia , Potenciais Evocados Auditivos/fisiologia , Adulto , Percepção Auditiva/fisiologia , Estimulação Acústica , Mapeamento Encefálico
6.
Small ; : e2403917, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032004

RESUMO

Phosphorescence in carbon dots (CDs) from triplet exciton radiative recombination at room temperature has achieved significant advancement. Confinement and nanoconfinement, serving as valuable techniques, are commonly utilized to brighten triplet exciton in CDs, thereby enhancing their phosphorescence. However, a comprehensive and universally applicable physical description of confinement-enhanced phosphorescence is still lacking, despite efforts to understand its underlying nature. In this study, the dominance of entropy is revealed in triplet exciton emission from CDs through the establishment of a microscopic vibration state model. CDs with varying entropy levels are studied, indicating that in a low entropy system, the multi-energy triplet exciton emission in CDs exhibits enhanced brightness, accompanied by a corresponding increase in their lifetimes. The product of lifetime and intensity in CDs serves as a descriptor for their phosphorescence properties. Moreover, an entropy-dependent information variation system based on the CDs is demonstrated. Specifically, in a low-entropy system, information is retained, whereas the corresponding information is erased in a high-entropy system. This work elucidates the underlying physical nature of confinement-enhanced triplet exciton emission, offering a deeper understanding of achieving ultralong phosphorescence in the future.

7.
Cerebellum ; 23(2): 374-382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36810748

RESUMO

Few studies were devoted to investigating cerebral functional changes after acute cerebellar infarction (CI). The purpose of this study was to examine the brain functional dynamics of CI using electroencephalographic (EEG) microstate analysis. And the possible heterogenicity in neural dynamics between CI with vertigo and CI with dizziness was explored. Thirty-four CI patients and 37 age- and gender-matched healthy controls(HC) were included in the study. Each included subject underwent a 19-channel video EEG examination. Five 10-s resting-state EEG epochs were extracted after data preprocessing. Then, microstate analysis and source localization were performed using the LORETA-KEY tool. Microstate parameters such as duration, coverage, occurrence, and transition probability are all extracted. The current study showed that the duration, coverage, and occurrence of microstate(Ms) B significantly increased in CI patients, but the duration and coverage of MsA and MsD decreased. Compared CI with vertigo to dizziness, finding a decreased trend in the coverage of MsD and the transition from MsA and MsB to MsD. Taken together, our study sheds new light on the dynamics of cerebral function after CI, mainly reflecting increased activity in functional networks involved in MsB and decreased activity in functional networks involved in MsA and MsD. Vertigo and dizziness post-CI may be suggested by cerebral functional dynamics. Further longitudinal studies are needed to validate and explore the alterations in brain dynamics to what extent depict the clinical traits and their potential applications in the recovery of CI.


Assuntos
Mapeamento Encefálico , Tontura , Humanos , Tontura/etiologia , Encéfalo , Eletroencefalografia , Vertigem , Infarto
8.
Brain Topogr ; 37(2): 329-342, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38228923

RESUMO

Microstate sequences summarize the changing voltage patterns measured by electroencephalography, using a clustering approach to reduce the high dimensionality of the underlying data. A common approach is to restrict the pattern matching step to local maxima of the global field power (GFP) and to interpolate the microstate fit in between. In this study, we investigate how the anesthetic propofol affects microstate sequence periodicity and predictability, and how these metrics are changed by interpolation. We performed two frequency analyses on microstate sequences, one based on time-lagged mutual information, the other based on Fourier transform methodology, and quantified the effects of interpolation. Resting-state microstate sequences had a 20 Hz frequency peak related to dominant 10 Hz (alpha) rhythms, and the Fourier approach demonstrated that all five microstate classes followed this frequency. The 20 Hz periodicity was reversibly attenuated under moderate propofol sedation, as shown by mutual information and Fourier analysis. Characteristic microstate frequencies could only be observed in non-interpolated microstate sequences and were masked by smoothing effects of interpolation. Information-theoretic analysis revealed faster microstate dynamics and larger entropy rates under propofol, whereas Shannon entropy did not change significantly. In moderate sedation, active information storage decreased for non-interpolated sequences. Signatures of non-equilibrium dynamics were observed in non-interpolated sequences, but no changes were observed between sedation levels. All changes occurred while subjects were able to perform an auditory perception task. In summary, we show that low dose propofol reversibly increases the randomness of microstate sequences and attenuates microstate oscillations without correlation to cognitive task performance. Microstate dynamics between GFP peaks reflect physiological processes that are not accessible in interpolated sequences.


Assuntos
Encéfalo , Propofol , Humanos , Encéfalo/fisiologia , Eletroencefalografia , Ritmo alfa , Análise por Conglomerados
9.
Brain Topogr ; 37(3): 388-396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892651

RESUMO

Previous research revealed various aspects of resting-state EEG for depression and insomnia. However, the EEG characteristics of depressed subjects with insomnia are rarely studied, especially EEG microstates that capture the dynamic activities of the large-scale brain network. To fill these research gaps, the present study collected resting-state EEG data from 32 subclinical depression subjects with insomnia (SDI), 31 subclinical depression subjects without insomnia (SD), and 32 healthy controls (HCs). Four topographic maps were generated from clean EEG data after clustering and rearrangement. Temporal characteristics were obtained for statistical analysis, including cross-group variance analysis (ANOVA) and intra-group correlation analysis. In our study, the global clustering of all individuals in the EEG microstate analysis revealed the four previously discovered categories of microstates (A, B, C, and D). The occurrence of microstate B was lower in SDI than in SD and HC subjects. The correlation analysis showed that the total Pittsburgh Sleep Quality Index (PSQI) score negatively correlated with the occurrence of microstate C in SDI (r = - 0.415, p < 0.05). Conversely, there was a positive correlation between Self-rating Depression Scale (SDS) scores and the duration of microstate C in SD (r = 0.359, p < 0.05). These results indicate that microstates reflect altered large-scale brain network dynamics in subclinical populations. Abnormalities in the visual network corresponding to microstate B are an electrophysiological characteristic of subclinical individuals with symptoms of depressive insomnia. Further investigation is needed for microstate changes related to high arousal and emotional problems in people suffering from depression and insomnia.


Assuntos
Mapeamento Encefálico , Distúrbios do Início e da Manutenção do Sono , Humanos , Mapeamento Encefálico/métodos , Depressão , Eletroencefalografia , Encéfalo/fisiologia
10.
Brain Topogr ; 37(3): 377-387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36735192

RESUMO

Disorders of Consciousness are divided into two major categories such as vegetative and minimally conscious states. Objective measures that allow correct identification of patients with vegetative and minimally conscious state are needed. EEG microstate analysis is a promising approach that we believe has the potential to be effective in examining the resting state activities of the brain in different stages of consciousness by allowing the proper identification of vegetative and minimally conscious patients. As a result, we try to identify clinical evaluation scales and microstate characteristics with resting state EEGs from individuals with disorders of consciousness. Our prospective observational study included 28 individuals with a disorder of consciousness. Control group included 18 healthy subjects with proper EEG data. We made clinical evaluations using patient behavior scales. We also analyzed the EEGs using microstate analysis. In our study, microstate D coverage differed substantially between vegetative and minimally conscious state patients. Also, there was a strong connection between microstate D characteristics and clinical scale scores. Consequently, we have demonstrated that the most accurate parameter for representing consciousness level is microstate D. Microstate analysis appears to be a strong option for future use in the diagnosis, follow-up, and treatment response of patients with Disorders of Consciousness.


Assuntos
Estado de Consciência , Estado Vegetativo Persistente , Humanos , Estado de Consciência/fisiologia , Transtornos da Consciência/diagnóstico , Relevância Clínica , Eletroencefalografia
11.
Brain Topogr ; 37(1): 52-62, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812293

RESUMO

Negative bias in prospection may play a crucial role in driving and maintaining depression. Recent research suggests abnormal activation and functional connectivity in regions of the default mode network (DMN) during future event generation in depressed individuals. However, the neural dynamics during prospection in these individuals remain unknown. To capture network dynamics at high temporal resolution, we employed electroencephalogram (EEG) microstate analysis. We examined microstate properties during both positive and negative prospection in 35 individuals with subthreshold depression (SD) and 35 controls. We identified similar sets of four canonical microstates (A-D) across groups and conditions. Source analysis indicated that each microstate map partially overlapped with a subsystem of the DMN (A: verbal; B: visual-spatial; C: self-referential; and D: modulation). Notably, alterations in EEG microstates were primarily observed in negative prospection of individuals with SD. Specifically, when generating negative future events, the coverage, occurrence, and duration of microstate A increased, while the coverage and duration of microstates B and D decreased in the SD group compared to controls. Furthermore, we observed altered transitions, particularly involving microstate C, during negative prospection in the SD group. These altered dynamics suggest dysconnectivity between subsystems of the DMN during negative prospection in individuals with SD. In conclusion, we provide novel insights into the neural mechanisms of negative bias in depression. These alterations could serve as specific markers for depression and potential targets for future interventions.


Assuntos
Encéfalo , Depressão , Humanos , Encéfalo/fisiologia , Depressão/diagnóstico por imagem , Eletroencefalografia , Processamento de Sinais Assistido por Computador
12.
Brain Topogr ; 37(6): 1118-1138, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38990422

RESUMO

Shooting is a fine sport that is greatly influenced by mental state, and the neural activity of brain in the preparation stage of shooting has a direct influence on the level of shooting. In order to explore the brain neural mechanism in the preparation stage of pistol shooting under audiovisual restricted conditions, and to reveal the intrinsic relationship between brain activity and shooting behavior indicators, the electroencephalography (EEG) signals and seven shooting behaviors including shooting performance, gun holding stability, and firing stability, were experimentally captured from 30 shooters, these shooters performed pistol shooting under three conditions, normal, dim, and noisy. Using EEG microstates combined with standardized low-resolution brain electromagnetic tomography (sLORETA) traceability analysis method, we investigated the difference between the microstates characteristics under audiovisual restricted conditions and normal condition, the relationship between the microstates characteristics and the behavioral indicators during the shooting preparation stage under different conditions. The experimental results showed that microstate 1 corresponded to microstate A, microstate 2 corresponded to microstate B, and microstate 4 corresponded to microstate D; Microstate 3 was a unique template, which was localized in the occipital lobe, its function was to generate the "vision for action"; The dim condition significantly reduced the shooter's performance, whereas the noisy condition had less effect on the shooter's performance; In audiovisual restricted conditions, the microstate characteristics were significantly different from those in the normal condition. Microstate 4' parameters decreased significantly while microstate 3' parameters increased significantly under restricted visual and auditory conditions; Dim condition required more shooting skills from the shooter; There was a significant relationship between characteristics of microstates and indicators of shooting behavior; It was concluded that in order to obtain good shooting performance, shooters should improve attention and concentrate on the adjustment of collimator and target's center leveling relation, but the focus was slightly different in the three conditions; Microstates that are more important for accomplishing the task have less variation in their characteristics over time; Similar conclusions to previous studies were obtained at the same time, i.e., increased visual attention prior to shooting is detrimental to shooting performance, and there is a high positive correlation with microstate D for task completion. The experimental results further reveal the brain neural mechanism in the shooting preparation stage, and the extracted neural markers can be used as effective functional indicators for monitoring the brain state in the shooting preparation stage of pistols.


Assuntos
Encéfalo , Eletroencefalografia , Armas de Fogo , Humanos , Masculino , Eletroencefalografia/métodos , Encéfalo/fisiologia , Adulto , Adulto Jovem , Percepção Visual/fisiologia , Mapeamento Encefálico/métodos , Desempenho Psicomotor/fisiologia , Feminino , Estimulação Luminosa/métodos
13.
Brain Topogr ; 38(1): 5, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39397172

RESUMO

This research investigated the modulation of acupuncture at Quchi (LI11) on the brain activities in healthy individuals. Sub-bands power and EEG microstate analysis were carried out at pre-acupuncture, acupuncture, needle retaining and post-acupuncture periods in both the acupuncture group (n = 16) and control group (n = 18). Four microstate classes (A-D) were derived from the clustering procedure. Regression analysis was conducted, together with a two-way repeated measures ANOVA, which was then followed by Bonferroni correction. In the acupuncture group, we found the beta power during the acupuncture periods was significantly reduced. The channel-by-channel analysis revealed that acupuncture at LI11 mainly altered the power of delta, theta, and alpha waves in specific brain regions. The delta power increased predominantly in parietal, occipital, and central lobes, while theta and alpha power decreased predominantly in temporal, frontal, parietal, and occipital lobes. During the acupuncture period, participants in the acupuncture group showed a significant increase in both duration and contribution of microstate A, as well as the bidirectional transition probabilities A and B/D. Microstate analysis showed that acupuncture at LI11 significantly enhances the activity of microstate A and potentially strengthens the functional connectivity between the auditory network and either the visual network or the dorsal attention network. These correlational results indicate that acupuncture at LI11 mainly affects activities of the frontal, temporal, parietal, and occipital lobes. These findings highlight the potential of microstate as neuroimaging evidence and a specific index for elucidating the neuromodulatory effects of acupuncture at LI11.


Assuntos
Terapia por Acupuntura , Encéfalo , Eletroencefalografia , Humanos , Masculino , Encéfalo/fisiologia , Feminino , Terapia por Acupuntura/métodos , Adulto Jovem , Eletroencefalografia/métodos , Adulto , Pontos de Acupuntura , Ondas Encefálicas/fisiologia
14.
Brain Topogr ; 37(2): 265-269, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37450085

RESUMO

EEG microstates are brief, recurring periods of stable brain activity that reflect the activation of large-scale neural networks. The temporal characteristics of these microstates, including their average duration, number of occurrences, and percentage contribution have been shown to serve as biomarkers of mental and neurological disorders. However, little is known about how microstate characteristics of prototypical network types relate to each other. Normative intercorrelations among these parameters are necessary to help researchers better understand the functions and interactions of underlying networks, interpret and relate results, and generate new hypotheses. Here, we present a systematic analysis of intercorrelations between EEG microstate characteristics in a large sample representative of western working populations (n = 583). Notably, we find that microstate duration is a general characteristic that varies across microstate types. Further, microstate A and B show mutual reinforcement, indicating a relationship between auditory and visual sensory processing at rest. Microstate C appears to play a special role, as it is associated with longer durations of all other microstate types and increased global field power, suggesting a relationship of these parameters with the anterior default mode network. All findings could be confirmed using independent EEG recordings from a retest-session (n = 542).


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Percepção Visual , Sensação
15.
Brain Topogr ; 37(3): 461-474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37823945

RESUMO

Preterm neonates are at risk of long-term neurodevelopmental impairments due to disruption of natural brain development. Electroencephalography (EEG) analysis can provide insights into brain development of preterm neonates. This study aims to explore the use of microstate (MS) analysis to evaluate global brain dynamics changes during maturation in preterm neonates with normal neurodevelopmental outcome.The dataset included 135 EEGs obtained from 48 neonates at varying postmenstrual ages (26.4 to 47.7 weeks), divided into four age groups. For each recording we extracted a 5-minute epoch during quiet sleep (QS) and during non-quiet sleep (NQS), resulting in eight groups (4 age group x 2 sleep states). We compared MS maps and corresponding (map-specific) MS metrics across groups using group-level maps. Additionally, we investigated individual map metrics.Four group-level MS maps accounted for approximately 70% of the global variance and showed non-random syntax. MS topographies and transitions changed significantly when neonates reached 37 weeks. For both sleep states and all MS maps, MS duration decreased and occurrence increased with age. The same relationships were found using individual maps, showing strong correlations (Pearson coefficients up to 0.74) between individual map metrics and post-menstrual age. Moreover, the Hurst exponent of the individual MS sequence decreased with age.The observed changes in MS metrics with age might reflect the development of the preterm brain, which is characterized by formation of neural networks. Therefore, MS analysis is a promising tool for monitoring preterm neonatal brain maturation, while our study can serve as a valuable reference for investigating EEGs of neonates with abnormal neurodevelopmental outcomes.


Assuntos
Encéfalo , Eletroencefalografia , Recém-Nascido , Humanos , Eletroencefalografia/métodos , Sono , Benchmarking , Idioma
16.
Epilepsy Behav ; 154: 109729, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513568

RESUMO

OBJECTIVE: This study aims to investigate the difference between epilepsy comorbid with and without cognitive dysfunction. METHOD: Participants were classified into patients with epilepsy comorbid cognitive dysfunction (PCCD) and patients with epilepsy without comorbid cognitive dysfunction (nPCCD). Microstate analysis was applied based on 20-channel electroencephalography (EEG) to detect the dynamic changes in the whole brain. The coverage, occurrence per second, duration, and transition probability were calculated. RESULT: The occurrence per second and the coverage of microstate B in the PCCD group were higher than that of the nPCCD group. Coverage in microstate D was lower in the PCCD group than in the nPCCD group. In addition, the PCCD group has a higher probability of A to B and B to A transitions and a lower probability of A to D and D to A transitions. CONCLUSION: Our research scrutinizes the disparities observed within EEG microstates among epilepsy patients both with and without comorbid cognitive dysfunction. SIGNIFICANCE: EEG microstate analysis offers a novel metric for assessing neuropsychiatric disorders and supplies evidence for investigating the mechanisms and the dynamic change of epilepsy comorbid cognitive dysfunction.


Assuntos
Encéfalo , Disfunção Cognitiva , Eletroencefalografia , Epilepsia , Humanos , Masculino , Feminino , Epilepsia/complicações , Epilepsia/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Adulto , Encéfalo/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Testes Neuropsicológicos
17.
Cereb Cortex ; 33(13): 8594-8604, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37106566

RESUMO

Brain dynamics can be modeled by a sequence of transient, nonoverlapping patterns of quasi-stable electrical potentials named "microstates." While electroencephalographic (EEG) microstates among patients with chronic pain remained inconsistent in the literature, this study characterizes the temporal dynamics of EEG microstates among healthy individuals during experimental sustained pain. We applied capsaicin (pain condition) or control (no-pain condition) cream to 58 healthy participants in different sessions and recorded resting-state EEG 15 min after application. We identified 4 canonical microstates (A-D) that are related to auditory, visual, salience, and attentional networks. Microstate C had less occurrence, as were bidirectional transitions between microstate C and microstates A and B during sustained pain. In contrast, sustained pain was associated with more frequent and longer duration of microsite D, as well as more bidirectional transitions between microstate D and microstates A and B. Microstate D duration positively correlated with intensity of ongoing pain. Sustained pain improved global integration within microstate C functional network, but weakened global integration and efficiency within microstate D functional network. These results suggest that sustained pain leads to an imbalance between processes that load on saliency (microstate C) and processes related to switching and reorientation of attention (microstate D).


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Mapeamento Encefálico/métodos , Atenção , Dor
18.
Cereb Cortex ; 33(13): 8620-8632, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37118893

RESUMO

Sentence oral reading requires not only a coordinated effort in the visual, articulatory, and cognitive processes but also supposes a top-down influence from linguistic knowledge onto the visual-motor behavior. Despite a gradual recognition of a predictive coding effect in this process, there is currently a lack of a comprehensive demonstration regarding the time-varying brain dynamics that underlines the oral reading strategy. To address this, our study used a multimodal approach, combining real-time recording of electroencephalography, eye movements, and speech, with a comprehensive examination of regional, inter-regional, sub-network, and whole-brain responses. Our study identified the top-down predictive effect with a phrase-grouping phenomenon in the fixation interval and eye-voice span. This effect was associated with the delta and theta band synchronization in the prefrontal, anterior temporal, and inferior frontal lobes. We also observed early activation of the cognitive control network and its recurrent interactions with the visual-motor networks structurally at the phrase rate. Finally, our study emphasizes the importance of cross-frequency coupling as a promising neural realization of hierarchical sentence structuring and calls for further investigation.


Assuntos
Idioma , Leitura , Eletroencefalografia , Encéfalo/fisiologia , Linguística
19.
Neurol Sci ; 45(9): 4539-4547, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38589768

RESUMO

OBJECTIVE: The aim of the study is to analyze microstate patterns in GLUT1-DS, both before and after the ketogenic diet (KD). METHODS: We conducted microstate analysis of a patient with GLUT-1 DS and 27 healthy controls. A systematic literature review and meta-analysis was done. We compared the parameters of the patients with those of healthy controls and the incorporating findings in literature. RESULTS: The durations of the patient were notably shorter, and the occurrence rates were longer than those of healthy controls and incorporating findings from the review. After 10 months of KD, the patient's microstate durations exhibited an increase from 53.05 ms, 57.17 ms, 61.80 ms, and 49.49 ms to 60.53 ms, 63.27 ms, 71.11 ms, and 66.55 ms. The occurrence rates changed from 4.0774 Hz, 4.9462 Hz, 4.8006 Hz, and 4.0579 Hz to 3.3354 Hz, 3.7893 Hz, 3.5956 Hz, and 4.1672 Hz. In healthy controls, the durations of microstate class A, B, C, and D were 61.86 ms, 63.58 ms, 70.57 ms, and 72.00 ms, respectively. CONCLUSIONS: Our findings suggest EEG microstates may be a promising biomarker for monitoring the effect of KD. Administration of KD may normalize the dysfunctional patterns of temporal parameters.


Assuntos
Dieta Cetogênica , Eletroencefalografia , Humanos , Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/fisiopatologia , Biomarcadores/sangue , Feminino , Proteínas de Transporte de Monossacarídeos/deficiência , Masculino , Estudos Prospectivos
20.
J Integr Neurosci ; 23(9): 176, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39344234

RESUMO

BACKGROUND: Stroke remains a leading cause of disability globally and movement impairment is the most common complication in stroke patients. Resting-state electroencephalography (EEG) microstate analysis is a non-invasive approach of whole-brain imaging based on the spatiotemporal pattern of the entire cerebral cortex. The present study aims to investigate microstate alterations in stroke patients. METHODS: Resting-state EEG data collected from 24 stroke patients and 19 healthy controls matched by age and gender were subjected to microstate analysis. For four classic microstates labeled as class A, B, C and D, their temporal characteristics (duration, occurrence and coverage) and transition probabilities (TP) were extracted and compared between the two groups. Furthermore, we explored their correlations with clinical outcomes including the Fugl-Meyer assessment (FMA) and the action research arm test (ARAT) scores in stroke patients. Finally, we analyzed the relationship between the temporal characteristics and spectral power in frequency bands. False discovery rate (FDR) method was applied for correction of multiple comparisons. RESULTS: Microstate analysis revealed that the stroke group had lower occurrence of microstate A which was regarded as the sensorimotor network (SMN) compared with the control group (p = 0.003, adjusted p = 0.036, t = -2.959). The TP from microstate A to microstate D had a significant positive correlation with the Fugl-Meyer assessment of lower extremity (FMA-LE) scores (p = 0.049, r = 0.406), but this finding did not survive FDR adjustment (adjusted p = 0.432). Additionally, the occurrence and the coverage of microstate B were negatively correlated with the power of delta band in the stroke group, which did not pass adjustment (p = 0.033, adjusted p = 0.790, r = -0.436; p = 0.026, adjusted p = 0.790, r = -0.454, respectively). CONCLUSIONS: Our results confirm the abnormal temporal dynamics of brain activity in stroke patients. The study provides further electrophysiological evidence for understanding the mechanism of brain motor functional reorganization after stroke.


Assuntos
Eletroencefalografia , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Eletroencefalografia/métodos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Idoso , Adulto , Descanso/fisiologia , Córtex Cerebral/fisiopatologia , Córtex Sensório-Motor/fisiopatologia , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA