RESUMO
It is impossible to do justice in one review article to a researcher of the stature of Christopher Dobson. His career spanned almost five decades, resulting in more than 870 publications and a legacy that will continue to influence the lives of many for decades to come. In this review, I have attempted to capture Chris's major contributions: his early work, dedicated to understanding protein-folding mechanisms; his collaborative work with physicists to understand the process of protein aggregation; and finally, his later career in which he developed strategies to prevent misfolding. However, it is not only this body of work but also the man himself who inspired an entire generation of scientists through his patience, ability to mentor, and innate generosity. These qualities remain a hallmark of the way in which he conducted his research-research that will leave a lasting imprint on science.
RESUMO
Protein folding in the cell is mediated by an extensive network of >1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology-informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.
Assuntos
Chaperonas Moleculares/genética , Técnicas de Sonda Molecular , Proteoma/genética , Deficiências na Proteostase/genética , Proteostase/genética , Animais , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Meia-Vida , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Engenharia de Proteínas/métodos , Dobramento de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteoma/química , Proteoma/metabolismo , Proteostase/efeitos dos fármacos , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacosRESUMO
Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.
Assuntos
Escherichia coli/genética , Chaperonas Moleculares/genética , Biossíntese de Proteínas , Proteoma/química , Ribossomos/genética , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteoma/biossíntese , Proteoma/genética , Proteostase/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Ribossomos/metabolismo , Ribossomos/ultraestruturaRESUMO
Ribosome assembly is an efficient but complex and heterogeneous process during which ribosomal proteins assemble on the nascent rRNA during transcription. Understanding how the interplay between nascent RNA folding and protein binding determines the fate of transcripts remains a major challenge. Here, using single-molecule fluorescence microscopy, we follow assembly of the entire 3' domain of the bacterial small ribosomal subunit in real time. We find that co-transcriptional rRNA folding is complicated by the formation of long-range RNA interactions and that r-proteins self-chaperone the rRNA folding process prior to stable incorporation into a ribonucleoprotein (RNP) complex. Assembly is initiated by transient rather than stable protein binding, and the protein-RNA binding dynamics gradually decrease during assembly. This work questions the paradigm of strictly sequential and cooperative ribosome assembly and suggests that transient binding of RNA binding proteins to cellular RNAs could provide a general mechanism to shape nascent RNA folding during RNP assembly.
Assuntos
Dobramento de RNA , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Modelos Biológicos , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade de RNA , RNA Ribossômico/química , Transcrição GênicaRESUMO
Protein phosphorylation is a prevalent and ubiquitous mechanism of regulation. Kinases are popular drug targets, but identifying selective phosphatase inhibitors has been challenging. Here, we used surface plasmon resonance to design a method to enable target-based discovery of selective serine/threonine phosphatase inhibitors. The method targeted a regulatory subunit of protein phosphatase 1, PPP1R15B (R15B), a negative regulator of proteostasis. This yielded Raphin1, a selective inhibitor of R15B. In cells, Raphin1 caused a rapid and transient accumulation of its phosphorylated substrate, resulting in a transient attenuation of protein synthesis. In vitro, Raphin1 inhibits the recombinant R15B-PP1c holoenzyme, but not the closely related R15A-PP1c, by interfering with substrate recruitment. Raphin1 was orally bioavailable, crossed the blood-brain barrier, and demonstrated efficacy in a mouse model of Huntington's disease. This identifies R15B as a druggable target and provides a platform for target-based discovery of inhibitors of serine/threonine phosphatases.
Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Proteína Fosfatase 1/antagonistas & inibidores , Animais , Peso Corporal , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Guanidinas/química , Células HeLa , Humanos , Doença de Huntington/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Proteostase , Proteínas Recombinantes/farmacologia , Ressonância de Plasmônio de SuperfícieRESUMO
The majority of protein molecules must fold into defined three-dimensional structures to acquire functional activity. However, protein chains can adopt a multitude of conformational states, and their biologically active conformation is often only marginally stable. Metastable proteins tend to populate misfolded species that are prone to forming toxic aggregates, including soluble oligomers and fibrillar amyloid deposits, which are linked with neurodegeneration in Alzheimer and Parkinson disease, and many other pathologies. To prevent or regulate protein aggregation, all cells contain an extensive protein homeostasis (or proteostasis) network comprising molecular chaperones and other factors. These defense systems tend to decline during aging, facilitating the manifestation of aggregate deposition diseases. This volume of the Annual Review of Biochemistry contains a set of three articles addressing our current understanding of the structures of pathological protein aggregates and their associated disease mechanisms. These articles also discuss recent insights into the strategies cells have evolved to neutralize toxic aggregates by sequestering them in specific cellular locations.
Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , Deficiências na Proteostase/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Regulação da Expressão Gênica , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Conformação Proteica , Dobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologiaRESUMO
J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified ß-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the ß-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP ß-hairpin as a highly specific target for cancer therapeutics.
Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de ProteínaRESUMO
Cells and organisms have evolved numerous mechanisms to cope with and to adapt to unexpected challenges and harsh conditions. Proteins are essential to perform the vast majority of cellular and organismal functions. To maintain a healthy proteome, cells rely on a network of factors and pathways collectively known as protein quality control (PQC) systems, which not only ensure that newly synthesized proteins reach a functional conformation but also are essential for surveillance, prevention, and rescue of protein defects. The main players of PQC systems are chaperones and protein degradation systems: the ubiquitin-proteasome system and autophagy. Here we provide an integrated overview of the diverse PQC systems in eukaryotic cells in health and diseases, with an emphasis on the key regulatory aspects and their cross talks. We also highlight how PQC regulation may be exploited for potential therapeutic benefit.
Assuntos
Proteínas/metabolismo , Aminoácidos/metabolismo , Animais , Doença , Células Eucarióticas/metabolismo , Homeostase , Humanos , Estresse FisiológicoRESUMO
The conserved regulon of heat shock factor 1 in budding yeast contains chaperones for general protein folding as well as zinc-finger protein Zpr1, whose essential role in archaea and eukaryotes remains unknown. Here, we show that Zpr1 depletion causes acute proteotoxicity driven by biosynthesis of misfolded eukaryotic translation elongation factor 1A (eEF1A). Prolonged Zpr1 depletion leads to eEF1A insufficiency, thereby inducing the integrated stress response and inhibiting protein synthesis. Strikingly, we show by using two distinct biochemical reconstitution approaches that Zpr1 enables eEF1A to achieve a conformational state resistant to protease digestion. Lastly, we use a ColabFold model of the Zpr1-eEF1A complex to reveal a folding mechanism mediated by the Zpr1's zinc-finger and alpha-helical hairpin structures. Our work uncovers the long-sought-after function of Zpr1 as a bespoke chaperone tailored to the biogenesis of one of the most abundant proteins in the cell.
Assuntos
Proteínas de Transporte , Chaperonas Moleculares , Proteínas de Transporte/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Zinco/metabolismo , Dedos de Zinco , Fator 1 de Elongação de Peptídeos/metabolismoRESUMO
Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.
Assuntos
Proteínas de Escherichia coli , Dobramento de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Conformação Proteica , Dissulfetos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismoRESUMO
Loss of protein homeostasis (proteostasis) is a common feature of aging and disease that is characterized by the appearance of nonnative protein aggregates in various tissues. Protein aggregation is routinely suppressed by the proteostasis network (PN), a collection of macromolecular machines that operate in diverse ways to maintain proteome integrity across subcellular compartments and between tissues to ensure a healthy life span. Here, we review the composition, function, and organizational properties of the PN in the context of individual cells and entire organisms and discuss the mechanisms by which disruption of the PN, and related stress response pathways, contributes to the initiation and progression of disease. We explore emerging evidence that disease susceptibility arises from early changes in the composition and activity of the PN and propose that a more complete understanding of the temporal and spatial properties of the PN will enhance our ability to develop effective treatments for protein conformational diseases.
Assuntos
Envelhecimento/patologia , Proteínas/metabolismo , Animais , Estresse do Retículo Endoplasmático , Humanos , Redes e Vias Metabólicas , Doenças Neurodegenerativas/patologia , ProteóliseRESUMO
Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Mamíferos , Controle de Qualidade , Transdução de SinaisRESUMO
Aberrant phase separation of globular proteins is associated with many diseases. Here, we use a model protein system to understand how the unfolded states of globular proteins drive phase separation and the formation of unfolded protein deposits (UPODs). We find that for UPODs to form, the concentrations of unfolded molecules must be above a threshold value. Additionally, unfolded molecules must possess appropriate sequence grammars to drive phase separation. While UPODs recruit molecular chaperones, their compositional profiles are also influenced by synergistic physicochemical interactions governed by the sequence grammars of unfolded proteins and cellular proteins. Overall, the driving forces for phase separation and the compositional profiles of UPODs are governed by the sequence grammars of unfolded proteins. Our studies highlight the need for uncovering the sequence grammars of unfolded proteins that drive UPOD formation and cause gain-of-function interactions whereby proteins are aberrantly recruited into UPODs.
Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Chaperonas Moleculares/metabolismoRESUMO
Loss of protein homeostasis (proteostasis) is a common hallmark of aging and age-associated diseases. Considered as the guardian of proteostasis, the proteostasis network (PN) acts to preserve the functionality of proteins during their lifetime. However, its activity declines with age, leading to disease manifestation. While reactive oxygen species (ROS) were traditionally considered culprits in this process, recent research challenges this view. While harmful at high concentrations, moderate ROS levels protect the cell against age-mediated onset of proteotoxicity by activating molecular chaperones, stress response pathways, and autophagy. This review explores the nuanced roles of ROS in proteostasis and discusses the most recent findings regarding the redox regulation of the PN and its potential in extending healthspan and delaying age-related pathologies.
Assuntos
Proteostase , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Animais , Oxidantes/metabolismo , Autofagia , Oxirredução , Envelhecimento/metabolismo , Estresse OxidativoRESUMO
Slower translation rates reduce protein misfolding. Such reductions in speed can be mediated by the presence of non-optimal codons, which allow time for proper folding to occur. Although this phenomenon is conserved from bacteria to humans, it is not known whether there are additional eukaryote-specific mechanisms which act in the same way. MicroRNAs (miRNAs), not present in prokaryotes, target both coding sequences (CDS) and 3' untranslated regions (UTR). Given their low suppressive efficiency, it has been unclear why miRNAs are equally likely to bind to a CDS. Here, we show that miRNAs transiently stall translating ribosomes, preventing protein misfolding with little negative effect on protein abundance. We first analyzed ribosome profiles and miRNA binding sites to examine whether miRNAs stall ribosomes. Furthermore, either global or specific miRNA deficiency accelerated ribosomes and induced aggregation of a misfolding-prone polypeptide reporter. These defects were rescued by slowing ribosomes using non-cleaving shRNAs as miRNA mimics. We finally show that proinsulin misfolding, associated with type II diabetes, was resolved by non-cleaving shRNAs. Our findings provide a eukaryote-specific mechanism of co-translational protein folding and a previously unknown mechanism of action to target protein misfolding diseases.
Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , MicroRNAs/metabolismo , Biossíntese de Proteínas , Eucariotos/genética , Eucariotos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , RNA Mensageiro/genética , Ribossomos/metabolismo , Proteínas/metabolismoRESUMO
Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.
Assuntos
Príons , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/metabolismo , Isoformas de Proteínas/metabolismo , Príons/metabolismo , Peptídeos , AminoácidosRESUMO
RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.
Assuntos
Temperatura Baixa , Conformação de Ácido Nucleico , Transição de Fase , RNA , RNA/química , Dobramento de RNA , Pareamento de Bases , Estabilidade de RNA , Termodinâmica , Água/químicaRESUMO
The process of protein phase separation into liquid condensates has been implicated in the formation of membraneless organelles (MLOs), which selectively concentrate biomolecules to perform essential cellular functions. Although the importance of this process in health and disease is increasingly recognized, the experimental identification of proteins forming MLOs remains a complex challenge. In this study, we addressed this problem by harnessing the power of AlphaFold2 to perform computational predictions of the conformational properties of proteins from their amino acid sequences. We thus developed the CoDropleT (co-condensation into droplet transformer) method of predicting the propensity of co-condensation of protein pairs. The method was trained by combining experimental datasets of co-condensing proteins from the CD-CODE database with curated negative datasets of non-co-condensing proteins. To illustrate the performance of the method, we applied it to estimate the propensity of proteins to co-condense into MLOs. Our results suggest that CoDropleT could facilitate functional and therapeutic studies on protein condensation by predicting the composition of protein condensates.
Assuntos
Proteínas , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Organelas/metabolismo , Conformação Proteica , Bases de Dados de Proteínas , Sequência de AminoácidosRESUMO
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Animais , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Proteotóxico , Proteínas/metabolismo , Mamíferos/metabolismoRESUMO
When faced with proteotoxic stress, cells mount adaptive responses to eliminate aberrant proteins. Adaptive responses increase the expression of protein folding and degradation factors to enhance the cellular quality control machinery. However, it is unclear whether and how this augmented machinery acquires new activities during stress. Here, we uncover a regulatory cascade in budding yeast that consists of the hydrophilin protein Roq1/Yjl144w, the HtrA-type protease Ynm3/Nma111, and the ubiquitin ligase Ubr1. Various stresses stimulate ROQ1 transcription. The Roq1 protein is cleaved by Ynm3. Cleaved Roq1 interacts with Ubr1, transforming its substrate specificity. Altered substrate recognition by Ubr1 accelerates proteasomal degradation of misfolded as well as native proteins at the endoplasmic reticulum membrane and in the cytosol. We term this pathway stress-induced homeostatically regulated protein degradation (SHRED) and propose that it promotes physiological adaptation by reprogramming a key component of the quality control machinery.