Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2216959120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37027430

RESUMO

Developmental complexity stemming from the dynamic interplay between genetic and biomechanic factors canalizes the ways genotypes and phenotypes can change in evolution. As a paradigmatic system, we explore how changes in developmental factors generate typical tooth shape transitions. Since tooth development has mainly been researched in mammals, we contribute to a more general understanding by studying the development of tooth diversity in sharks. To this end, we build a general, but realistic, mathematical model of odontogenesis. We show that it reproduces key shark-specific features of tooth development as well as real tooth shape variation in small-spotted catsharks Scyliorhinus canicula. We validate our model by comparison with experiments in vivo. Strikingly, we observe that developmental transitions between tooth shapes tend to be highly degenerate, even for complex phenotypes. We also discover that the sets of developmental parameters involved in tooth shape transitions tend to depend asymmetrically on the direction of that transition. Together, our findings provide a valuable base for furthering our understanding of how developmental changes can lead to both adaptive phenotypic change and trait convergence in complex, phenotypically highly diverse, structures.


Assuntos
Tubarões , Dente , Animais , Tubarões/genética , Odontogênese/genética , Fenótipo , Mamíferos/genética , Evolução Biológica , Morfogênese
2.
Semin Cell Dev Biol ; 141: 23-32, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35466054

RESUMO

The functional relevance of an organoid is dependent on the differentiation, morphology, cell arrangement and biophysical properties, which collectively define the state of an organoid. For an organoid culture, an individual organoid or the cells that compose it, these state variables can be characterised, most easily by transcriptomics and by high-content image analysis. Their states can be compared to their in vivo counterparts. Current evidence suggests that organoids explore a wider state space than organs in vivo due to the lack of niche signalling and the variability of boundary conditions in vitro. Using data-driven state inference and in silico modelling, phase diagrams can be constructed to systematically sort organoids along biochemical or biophysical axes. These phase diagrams allow us to identify control strategies to modulate organoid state. To do so, the biochemical and biophysical environment, as well as the cells that seed organoids, can be manipulated.


Assuntos
Organoides , Biologia Sintética , Diferenciação Celular , Transdução de Sinais
3.
Bioessays ; 45(5): e2200215, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36864571

RESUMO

Human cancers comprise an heterogeneous array of diseases with different progression patterns and responses to therapy. However, they all develop within a host context that constrains their natural history. Since it occurs across the diversity of organisms, one can conjecture that there is order in the cancer multiverse. Is there a way to capture the broad range of tumor types within a space of the possible? Here we define the oncospace, a coordinate system that integrates the ecological, evolutionary and developmental components of cancer complexity. The spatial position of a tumor results from its departure from the healthy tissue along these three axes, and progression trajectories inform about the components driving malignancy across cancer subtypes. We postulate that the oncospace topology encodes new information regarding tumorigenic pathways, subtype prognosis, and therapeutic opportunities: treatment design could benefit from considering how to nudge tumors toward empty evolutionary dead ends in the oncospace.


Assuntos
Neoplasias , Humanos , Evolução Biológica , Carcinogênese
4.
Am Nat ; 203(1): 55-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207134

RESUMO

AbstractPlumage patterns of melanerpine (Melanerpes-Sphyrapicus) woodpeckers are strikingly diverse. Understanding the evolution and function of this diversity is challenging because of the difficulty of quantifying plumage patterns. We use a three-dimensional space to characterize the evolution of melanerpine achromatic plumage patterns. The axes of the space are three pattern features (spatial frequency, orientation, and contrast) quantified using two-dimensional fast Fourier transformation of museum specimen images. Mapping plumage in pattern space reveals differences in how species and subclades occupy the space. To quantify these differences, we derive two new measures of pattern: pattern diversity (diversity across plumage patches within a species) and pattern uniqueness (divergence of patterns from those of other species). We estimate that the melanerpine ancestor had mottled plumage and find that pattern traits across patches and subclades evolve at different rates. We also find that smaller species are more likely to display horizontal face patterning. We promote pattern spaces as powerful tools for investigating animal pattern evolution.


Assuntos
Evolução Biológica , Plumas , Animais , Filogenia , Aves/genética , Fenótipo , Pigmentação
5.
New Phytol ; 242(5): 2301-2311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148572

RESUMO

Ontogenetic shape change has long been recognized to be important in generating patterns of morphological diversity and may be especially important in plant reproductive structures. We explore how seed cone disparity in Cupressaceae changes over ontogeny by comparing pollination-stage and mature cones. We sampled cones at pollen and seed release and measured cone scales using basic morphometric shape variables. We used multivariate statistical methods, particularly hypervolume overlap calculations, to measure morphospace occupation and disparity. Cone scales at both pollination and maturity exhibit substantial variability, although the disparity is greater at maturity. Mature cone scales are also more clustered in trait space, showing less overlap with other taxa than at pollination. These patterns reflect two growth strategies that generate closed cones over maturation, either through thin laminar scales or relatively thick, peltate scales, resulting in two distinct regions of morphospace occupation. Disparity patterns in Cupressaceae seed cones change over ontogeny, reflecting shifting functional demands that require specific patterns of cone scale growth. The evolution of Cupressaceae reproductive disparity therefore represents selection for trajectories of ontogenetic shape change, a phenomenon that should be widespread across seed plants.


Assuntos
Cupressaceae , Sementes , Sementes/crescimento & desenvolvimento , Sementes/anatomia & histologia , Cupressaceae/crescimento & desenvolvimento , Cupressaceae/fisiologia , Cupressaceae/anatomia & histologia , Polinização , Pólen/crescimento & desenvolvimento , Pólen/fisiologia
6.
New Phytol ; 242(5): 2322-2337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634161

RESUMO

Shifts among functional pollinator groups are commonly regarded as sources of floral morphological diversity (disparity) through the formation of distinct pollination syndromes. While pollination syndromes may be used for predicting pollinators, their predictive accuracy remains debated, and they are rarely used to test whether floral disparity is indeed associated with pollinator shifts. We apply classification models trained and validated on 44 functional floral traits across 252 species with empirical pollinator observations and then use the validated models to predict pollinators for 159 species lacking observations. In addition, we employ multivariate statistics and phylogenetic comparative analyses to test whether pollinator shifts are the main source of floral disparity in Melastomataceae. We find strong support for four well-differentiated pollination syndromes ('buzz-bee', 'nectar-foraging vertebrate', 'food-body-foraging vertebrate', 'generalist'). While pollinator shifts add significantly to floral disparity, we find that the most species-rich 'buzz-bee' pollination syndrome is most disparate, indicating that high floral disparity may evolve without pollinator shifts. Also, relatively species-poor clades and geographic areas contributed substantially to total disparity. Finally, our results show that machine-learning approaches are a powerful tool for evaluating the predictive accuracy of the pollination syndrome concept as well as for predicting pollinators where observations are missing.


Assuntos
Flores , Melastomataceae , Polinização , Polinização/fisiologia , Flores/fisiologia , Flores/anatomia & histologia , Melastomataceae/fisiologia , Abelhas/fisiologia , Animais , Filogenia , Especificidade da Espécie , Modelos Biológicos
7.
New Phytol ; 241(3): 1348-1360, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029781

RESUMO

Flowers are the complex and highly diverse reproductive structures of angiosperms. Because of their role in sexual reproduction, the evolution of flowers is tightly linked to angiosperm speciation and diversification. Accordingly, the quantification of floral morphological diversity (disparity) among angiosperm subgroups and through time may give important insights into the evolutionary history of angiosperms as a whole. Based on a comprehensive dataset focusing on 30 characters describing floral structure across angiosperms, we used 1201 extant and 121 fossil flowers to measure floral disparity and explore patterns of floral evolution through time and across lineages. We found that angiosperms reached their highest floral disparity in the Early Cretaceous. However, decreasing disparity toward the present likely has not precluded the innovation of other complex traits at other morphological levels, which likely played a key role in the outstanding angiosperm species richness. Angiosperms occupy specific regions of the theoretical morphospace, indicating that only a portion of the possible floral trait combinations is observed in nature. The ANA grade, the magnoliids, and the early-eudicot grade occupy large areas of the morphospace (higher disparity), whereas nested groups occupy narrower regions (lower disparity).


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , Flores/anatomia & histologia , Fósseis , Reprodução , Evolução Biológica
8.
J Evol Biol ; 37(1): 76-88, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285660

RESUMO

Evolutionary tempo and mode summarize ancient and controversial subjects of theoretical biology such as gradualism, convergence, contingence, trends, and entrenchment. We employed an integrative methodological approach to explore the evolutionary tempo and mode of Lepidosaurian phalangeal formulae (PFs). This approach involves quantifying the frequencies of morphological changes along an evolutionary trajectory. The five meristic characters encoded by PFs are particularly valuable in revealing evolutionary patterns, owing to their discrete nature and extensive documentation in the literature. Based on a pre-existing dataset of PFs from 649 taxa (35 Lepidosauria families, including fossils), from which there exists a unique repertoire of 53 formulations, our approach simultaneously considers phenetic and phylogenetic data. This culminates in a diagram accounting for the phylogenetic dynamic of evolution traversing across different regions of morphospace. The method involves enumerating phenotypical options, reconstructing phenotypes across the phylogeny, projecting phenotypes onto a morphospace, and constructing a flow network from the frequency of evolutionary transitions between unique phenotypic conditions. This approach links Markovian chains and evolutionary trajectories to formally define parameters that describe the underlying transitions of morphological change. Among other results, we found that (a) PF evolution exhibits a clear trend towards reduction in the phalangeal count and that (b) evolutionary change tends to occur significantly between morphologically similar PFs. Notwithstanding, although minor but not trivial, transitions between distant formulas -jumps- occur. Our results support a pluralistic view including stasis, gradualism, and saltationism discriminating their prevalence in a target character evolution.


Assuntos
Evolução Biológica , Fósseis , Humanos , Filogenia , Cadeias de Markov , Fenótipo
9.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449333

RESUMO

In Developmental Plasticity and Evolution, Mary-Jane West-Eberhard argued that the developmental mechanisms that enable organisms to respond to their environment are fundamental causes of adaptation and diversification. Twenty years after publication of this book, this once so highly controversial claim appears to have been assimilated by a wealth of studies on 'plasticity-led' evolution. However, we suggest that the role of development in explanations for adaptive evolution remains underappreciated in this body of work. By combining concepts of evolvability from evolutionary developmental biology and quantitative genetics, we outline a framework that is more appropriate to identify developmental causes of adaptive evolution. This framework demonstrates how experimental and comparative developmental biology and physiology can be leveraged to put the role of plasticity in evolution to the test.


Assuntos
Evolução Biológica , Biologia
10.
J Plant Res ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407783

RESUMO

Heterochrony acts as a fundamental process affecting the early development of organisms in creating a subtle shift in the timing of initiation or the duration of a developmental process. In flowers this process is linked with mechanical forces that cause changes in the interaction of neighbouring floral organs by altering the timing and rate of initiation of organs. Heterochrony leads to a delay or acceleration of the development of neighbouring primordia, inducing a change in the morphospace of the flowers. As changes in the timing of development may affect organs differently at different stages of development, these shifts eventually lead to major morphological changes such as altered organ positions, fusions, or organ reductions with profound consequences for floral evolution and the diversification of flowers. By concentrating on early developmental stages in flowers it is possible to understand how heterochrony is responsible for shifts in organ position and the establishment of a novel floral Bauplan. However, it remains difficult to separate heterochrony as a process from pattern, as both are intimately linked. Therefore it is essential to connect different patterns in flowers through the process of developmental change.Examples illustrating the importance of heterochronic shifts affecting different organs of the flower are presented and discussed. These cover the transition from inflorescence to flower through the interaction of bracts and bracteoles, the pressure exercised by the perianth on the androecium and gynoecium, the inversed influence of stamens on petals, and the centrifugal influence of carpels on the androecium. Different processes are explored, including the occurrence of obdiplostemony, the onset of common primordia, variable carpel positions, and organ reduction and loss.

11.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34542628

RESUMO

Morphospaces-representations of phenotypic characteristics-are often populated unevenly, leaving large parts unoccupied. Such patterns are typically ascribed to contingency, or else to natural selection disfavoring certain parts of the morphospace. The extent to which developmental bias, the tendency of certain phenotypes to preferentially appear as potential variation, also explains these patterns is hotly debated. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. Upon random mutations, some RNA SS shapes (the frequent ones) are much more likely to appear than others. By using the RNAshapes method to define coarse-grained SS classes, we can directly compare the frequencies that noncoding RNA SS shapes appear in the RNAcentral database to frequencies obtained upon a random sampling of sequences. We show that: 1) only the most frequent structures appear in nature; the vast majority of possible structures in the morphospace have not yet been explored; 2) remarkably small numbers of random sequences are needed to produce all the RNA SS shapes found in nature so far; and 3) perhaps most surprisingly, the natural frequencies are accurately predicted, over several orders of magnitude in variation, by the likelihood that structures appear upon a uniform random sampling of sequences. The ultimate cause of these patterns is not natural selection, but rather a strong phenotype bias in the RNA genotype-phenotype map, a type of developmental bias or "findability constraint," which limits evolutionary dynamics to a hugely reduced subset of structures that are easy to "find."


Assuntos
Evolução Biológica , RNA , Mutação , Fenótipo , RNA/genética , Seleção Genética
12.
J Evol Biol ; 36(8): 1185-1197, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37428811

RESUMO

Phenotypic traits are expected to be more similar among closely related species than among species that diverged long ago (all else being equal). This pattern, known as phylogenetic niche conservatism, also applies to traits that are important to determine the niche of species. To test this hypothesis on ecological niches, we analysed isotopic data from 254 museum study skins from 12 of the 16 species of the bird genus Cinclodes and measured stable isotope ratios for four different elements: carbon, nitrogen, hydrogen and oxygen. We find that all traits, measured individually, or as a composite measurement, lack any phylogenetic signal, which in turn suggests a high level of lability in ecological niches. We compared these metrics to the measurements of morphological traits in the same genus and found that isotopic niches are uniquely evolutionarily labile compared to other traits. Our results suggest that, in Cinclodes, the realized niche evolves much faster than expected by the constraints of phylogenetic history and poses the question of whether this is a general pattern across the tree of life.


Assuntos
Motivação , Passeriformes , Animais , Filogenia , Ecossistema , Carbono
13.
Artigo em Inglês | MEDLINE | ID: mdl-35986777

RESUMO

Overall body proportions and relative limb length are highly characteristic for most insect taxa. In case of the legs, limb length has mostly been discussed with regard to parameters of locomotor performance and, in particular cases, as an adaptation to environmental factors or to the mating system. Here, we compare three species of stick and leaf insects (Phasmatodea) that differ strongly in the length ratio between antennae and walking legs, with the antennae of Medauroidea extradentata being much shorter than its legs, nearly equal length of antennae and legs in Carausius morosus, and considerably longer antennae than front legs in Aretaon asperrimus. We show that that relative limb length is directly related to the near-range exploration effort, with complementary function of the antennae and front legs irrespective of their length ratio. Assuming that these inter-species differences hold for both sexes and all developmental stages, we further explore how relative limb length differs between sexes and how it changes throughout postembryonic development. We show that the pattern of limb-to-body proportions is species-characteristic despite sexual dimorphism, and find that the change in sexual dimorphism is strongest during the last two moults. Finally, we show that antennal growth rate is consistently higher than that of front legs, but differs categorically between the species investigated. Whereas antennal growth rate is constant in Carausius, the antennae grow exponentially in Medauroidea and with a sudden boost during the last moult in Aretaon.


Assuntos
Antenas de Artrópodes , Extremidades , Neópteros , Comportamento Espacial , Neópteros/anatomia & histologia , Neópteros/fisiologia , Animais , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/fisiologia , Extremidades/anatomia & histologia , Extremidades/fisiologia , Movimento , Caracteres Sexuais , Masculino , Feminino
14.
Proc Natl Acad Sci U S A ; 117(3): 1303-1311, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31896587

RESUMO

Inspired by the patterns of multicellularity in choanoflagellates, the closest living relatives of animals, we quantify the biophysical processes underlying the morphogenesis of rosette colonies in the choanoflagellate Salpingoeca rosetta We find that rosettes reproducibly transition from an early stage of 2-dimensional (2D) growth to a later stage of 3D growth, despite the underlying variability of the cell lineages. Our perturbative experiments demonstrate the fundamental importance of a basally secreted extracellular matrix (ECM) for rosette morphogenesis and show that the interaction of the ECM with cells in the colony physically constrains the packing of proliferating cells and, thus, controls colony shape. Simulations of a biophysically inspired model that accounts for the size and shape of the individual cells, the fraction of ECM, and its stiffness relative to that of the cells suffices to explain our observations and yields a morphospace consistent with observations across a range of multicellular choanoflagellate colonies. Overall, our biophysical perspective on rosette development complements previous genetic perspectives and, thus, helps illuminate the interplay between cell biology and physics in regulating morphogenesis.


Assuntos
Coanoflagelados/crescimento & desenvolvimento , Morfogênese , Fenômenos Biomecânicos , Divisão Celular , Coanoflagelados/citologia , Coanoflagelados/metabolismo , Matriz Extracelular/metabolismo , Modelos Teóricos
15.
Ecol Lett ; 25(3): 598-610, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35199925

RESUMO

Understanding the biogeographical patterns, and evolutionary and environmental drivers, underpinning morphological diversity are key for determining its origins and conservation. Using a comprehensive set of continuous morphological traits extracted from museum collections of 8353 bird species, including geometric morphometric beak shape data, we find that avian morphological diversity is unevenly distributed globally, even after controlling for species richness, with exceptionally dense packing of species in hyper-diverse tropical hotspots. At the regional level, these areas also have high morphological variance, with species exhibiting high phenotypic diversity. Evolutionary history likely plays a key role in shaping these patterns, with evolutionarily old species contributing to niche expansion, and young species contributing to niche packing. Taken together, these results imply that the tropics are both 'cradles' and 'museums' of phenotypic diversity.


Assuntos
Biodiversidade , Aves , Animais , Bico , Evolução Biológica , Fenótipo
16.
Am Nat ; 200(6): E221-E236, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36409987

RESUMO

AbstractThe ecological theory of adaptive radiation has profoundly shaped our conceptualization of the rules that govern diversification. However, while many radiations follow classic early-burst patterns of diversification as they fill ecological space, the longer-term fates of these radiations depend on many factors, such as climatic stability. In systems with periodic disturbances, species-rich clades can contain nested adaptive radiations of subclades with their own distinct diversification histories, and how adaptive radiation theory applies in these cases is less clear. Here, we investigated patterns of ecological and phenotypic diversification within two iterative adaptive radiations of cryonotothenioid fishes in Antarctica's Southern Ocean: crocodile icefishes and notoperches. For both clades, we observe evidence of repeated diversification into disparate regions of trait space between closely related taxa and into overlapping regions of trait space between distantly related taxa. We additionally find little evidence that patterns of ecological divergence are correlated with evolution of morphological disparity, suggesting that these axes of divergence may not be tightly linked. Finally, we reveal evidence of repeated convergence in sympatry that suggests niche complementarity. These findings reflect the dynamic history of Antarctic marine habitats and may guide hypotheses of diversification dynamics in environments characterized by periodic disturbance.


Assuntos
Ecossistema , Peixes , Animais , Regiões Antárticas , Filogenia , Peixes/genética , Fenótipo
17.
New Phytol ; 234(3): 1075-1087, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35147224

RESUMO

Morphological diversity (disparity) is a key component of biodiversity and increasingly a focus of botanical research. Despite the wide range of morphologies represented by pollen grains, to date there are few studies focused on the controls on pollen disparity and morphospace occupation, and fewer still considering these parameters in a phylogenetic framework. Here, we analyse morphospace occupation, disparity and rates of morphological evolution in Asterales pollen, in a phylogenetic context. We use a dataset comprising 113 taxa from across the Asterales phylogeny, with pollen morphology described using 28 discrete characters. The Asterales pollen morphospace is phylogenetically structured around groups of related taxa, consistent with punctuated bursts of morphological evolution at key points in the Asterales phylogeny. There is no substantial difference in disparity among these groups of taxa, despite large differences in species richness and biogeographic range. There is also mixed evidence for whole-genome duplication as a driver of Asterales pollen morphological evolution. Our results highlight the importance of evolutionary history for structuring pollen morphospace. Our study is consistent with others that have shown a decoupling of biodiversity parameters, and reinforces the need to focus on disparity as a key botanical metric in its own right.


Assuntos
Magnoliopsida , Biodiversidade , Evolução Biológica , Magnoliopsida/genética , Ocupações , Filogenia , Pólen/anatomia & histologia
18.
New Phytol ; 233(3): 1479-1493, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34657297

RESUMO

Many flowers exhibit phenotypic plasticity. By inducing the production of several phenotypes, plasticity may favour the rapid exploration of different regions of the floral morphospace. We investigated how plasticity drives Moricandia arvensis, a species displaying within-individual floral polyphenism, across the floral morphospace of the entire Brassicaceae family. We compiled the multidimensional floral phenotype, the phylogenetic relationships, and the pollination niche of over 3000 species to construct a family-wide floral morphospace. We assessed the disparity between the two M. arvensis floral morphs (as the distance between the phenotypic spaces occupied by each morph) and compared it with the family-wide disparity. We measured floral divergence by comparing disparity with the most common ancestor, and estimated the convergence of each floral morph with other species belonging to the same pollination niches. Moricandia arvensis exhibits a plasticity-mediated floral disparity greater than that found between species, genera and tribes. The novel phenotype of M. arvensis moves outside the region occupied by its ancestors and relatives, crosses into a new region where it encounters a different pollination niche, and converges with distant Brassicaceae lineages. Our study suggests that phenotypic plasticity favours floral divergence and rapid appearance of convergent flowers, a process which facilitates the evolution of generalist pollination systems.


Assuntos
Brassicaceae , Adaptação Fisiológica , Brassicaceae/genética , Flores/genética , Filogenia , Polinização
19.
J Anat ; 240(5): 850-866, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34897675

RESUMO

Anolis lizards have evolved morphologies in response to different selective factors related to microhabitat use. Morphological diversity exhibits evolutionary patterns that reveal similarities and unique regional traits among the mainland and island environments and among Greater Antilles and Lesser Antilles islands. In the Greater Antilles and mainland environments anole species are classified into morphological/ecological groups, that are known as morphotypes (mainland) or ecomorphs (Greater Antilles). Morphotypes are defined only with morphological information; in contrast, for ecomorph assignment both morphology and ethology are required. For mainland species distributed in northwestern South America 10 morphotypes were proposed to include the morphological diversity of 59 species. We obtained data from body size, limbs length, tail length, and the number of lamellae for an additional ten species occurring in the same region and assigned them into morphotypes. We also collected data of the claw and toepad diversity of mainland and island Anolis from northwestern South America and compared it to the claw and toepads morphology recorded for the Greater Antilles and Lesser Antilles islands, under a phylogenetic framework. We found new island morphotypes (MT11-MT13) of Anolis from northwestern South America. When comparing claws and toepads morphology among the 13 morphotypes we found that morphological variation of these traits partially corresponds to morphotype groups. For instance, habitat specialist species like Anolis heterodermus, classified in morphotype 4 (MT4), have a characteristic design of broad toepad and reduced claws, and non-unique design of toepads and claws occurs in morphotypes MT1, MT2, MT5, MT10, and MT13. We also compared claws and toepads of fore and hindlimbs within the same individual, and found that even if limbs show differences in claws and toepads, suggesting that they perform differential biomechanical function, the degree of within individual variation is specific and not related to morphotype assignment. Our data supported the convergent and unique regional evolution among mainland and island anoles, and revealed aspects of correlative evolution of functional traits of claws and toepads that probably are related to minor differences in microhabitat use among mainland and island species, as suggested by previously published literature. Lastly, the evolutionary pattern of morphological diversity of claws and toepads of Anolis in the mainland and island environment supports both unique regional traits and common selective and historical factors that have molded Anolis morphological diversity.


Assuntos
Casco e Garras , Lagartos , Animais , Evolução Biológica , Ecossistema , Extremidades , Lagartos/anatomia & histologia , Filogenia
20.
Entropy (Basel) ; 24(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35741540

RESUMO

One of the most salient features of life is its capacity to handle novelty and namely to thrive and adapt to new circumstances and changes in both the environment and internal components. An understanding of this capacity is central to several fields: the evolution of form and function, the design of effective strategies for biomedicine, and the creation of novel life forms via chimeric and bioengineering technologies. Here, we review instructive examples of living organisms solving diverse problems and propose competent navigation in arbitrary spaces as an invariant for thinking about the scaling of cognition during evolution. We argue that our innate capacity to recognize agency and intelligence in unfamiliar guises lags far behind our ability to detect it in familiar behavioral contexts. The multi-scale competency of life is essential to adaptive function, potentiating evolution and providing strategies for top-down control (not micromanagement) to address complex disease and injury. We propose an observer-focused viewpoint that is agnostic about scale and implementation, illustrating how evolution pivoted similar strategies to explore and exploit metabolic, transcriptional, morphological, and finally 3D motion spaces. By generalizing the concept of behavior, we gain novel perspectives on evolution, strategies for system-level biomedical interventions, and the construction of bioengineered intelligences. This framework is a first step toward relating to intelligence in highly unfamiliar embodiments, which will be essential for progress in artificial intelligence and regenerative medicine and for thriving in a world increasingly populated by synthetic, bio-robotic, and hybrid beings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA