Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7578-7583, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38742810

RESUMO

Material absorption is a key limitation in nanophotonic systems; however, its characterization is often obscured by scattering and diffraction. Here we show that nanomechanical frequency spectroscopy can be used to characterize material absorption at the parts per million level and use it to characterize the extinction coefficient κ of stoichiometric silicon nitride (Si3N4). Specifically, we track the frequency shift of a high-Q Si3N4 trampoline in response to laser photothermal heating and infer κ from a model including stress relaxation and both conductive and radiative heat transfer. A key insight is the presence of two thermalization time scales: rapid radiative cooling of the Si3N4 film and slow parasitic heating of the Si chip. We infer κ ∼ 0.1-1 ppm for Si3N4 in the 532-1550 nm wavelength range, matching bounds set by waveguide resonators. Our approach is applicable to diverse photonic materials and may offer new insights into their potential.

2.
Nano Lett ; 24(33): 10331-10336, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133234

RESUMO

We study the temperature dependent elastic properties of Ba0.8Sr0.2TiO3 freestanding membranes across the ferroelectric-to-paraelectric phase transition using an atomic force microscope. The bending rigidity of thin membranes can be stiffer compared to stretching due to strain gradient elasticity (SGE). We measure the Young's modulus of freestanding Ba0.8Sr0.2TiO3 drumheads in bending and stretching dominated deformation regimes on a variable temperature platform, finding a peak in the difference between the two Young's moduli obtained at the phase transition. This demonstrates a dependence of SGE on the dielectric properties of a material and alludes to a flexoelectric origin of an effective SGE.

3.
Nano Lett ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213585

RESUMO

Understanding optical absorption in silicon nitride is crucial for cutting-edge technologies like photonic integrated circuits, nanomechanical photothermal infrared sensing and spectroscopy, and cavity optomechanics. Yet, the origin of its strong dependence on the film deposition and fabrication process is not fully understood. This Letter leverages nanomechanical photothermal sensing to investigate optical extinction κext at a 632.8 nm wavelength in low-pressure chemical vapor deposition (LPCVD) SiN strings across a wide range of deposition-related tensile stresses (200-850 MPa). Measurements reveal a reduction in κext from 103 to 101 ppm with increasing stress, correlated to variations in Si/N content ratio. Within the band-fluctuations framework, this trend indicates an increase of the energy bandgap with the stress, ultimately reducing absorption. Overall, this study showcases the power and simplicity of nanomechanical photothermal sensing for low absorption measurements, offering a sensitive, scattering-free platform for material analysis in nanophotonics and nanomechanics.

4.
Nano Lett ; 24(6): 2081-2086, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300507

RESUMO

Nanoscale magnetic resonance imaging (NanoMRI) is an active area of applied research with potential applications in structural biology and quantum engineering. The success of this technological vision hinges on improving the instrument's sensitivity and functionality. A particular challenge is the optimization of the magnetic field gradient required for spatial encoding and of the radio frequency field used for spin control, in analogy to the components used in clinical MRI. In this work, we present the fabrication and characterization of a magnet-in-microstrip device that yields a compact form factor for both elements. We find that our design leads to a number of advantages, among them a 4-fold increase of the magnetic field gradient compared to those achieved with traditional fabrication methods. Our results can be useful for boosting the efficiency of a variety of different experimental arrangements and detection principles in the field of NanoMRI.

5.
Small ; : e2403912, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994656

RESUMO

Functional organic nanomaterials are nowadays largely spread in the field of nanomedicine. In situ modulation of their morphology is thus expected to considerably impact their interactions with the surroundings. In this context, photoswitchable nanoparticles that are manufactured, amenable to extensive disassembling upon illumination in the visible, and reversible reshaping under UV exposure. Such reversibility turns to be strongly impaired for photochromic nanoparticles in close contact with a substrate. In situ atomic force microscopy investigations at the nanoscale actually reveal progressive disintegration of the organic nanoparticles under successive UV-vis cycles of irradiation, in the absence of intrinsic elastic forces. These results point out the dramatic interactions exerted by surfaces on the cohesion of non-covalently bonded organic nanoparticles. They invite to harness such systems, often used as biomarkers, to also serve as photoactivatable drug delivery nanocarriers.

6.
Small ; 20(6): e2304884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775942

RESUMO

The nanomechanical response of a cell depends on the frequency at which the cell is probed. The components of the cell that contribute to this property and their interplay are not well understood. Here, two force microscopy methods are integrated to characterize the frequency and/or the velocity-dependent properties of living cells. It is shown on HeLa and fibroblasts, that cells soften and fluidize upon increasing the frequency or the velocity of the deformation. This property was independent of the type and values (25 or 1000 nm) of the deformation. At low frequencies (2-10 Hz) or velocities (1-10 µm s-1 ), the response is dominated by the mechanical properties of the cell surface. At higher frequencies (>10 Hz) or velocities (>10 µm s-1 ), the response is dominated by the hydrodynamic drag of the cytosol. Softening and fluidization does not seem to involve any structural remodeling. It reflects a redistribution of the applied stress between the solid and liquid-like elements of the cell as the frequency or the velocity is changed. The data indicates that the quasistatic mechanical properties of a cell featuring a cytoskeleton pathology might be mimicked by the response of a non-pathological cell which is probed at a high frequency.


Assuntos
Mamíferos , Fenômenos Mecânicos , Humanos , Animais , Módulo de Elasticidade , Microscopia de Força Atômica , Células HeLa , Membrana Celular
7.
Small ; : e2311185, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616775

RESUMO

The layer-by-layer stacked van der Waals structures (termed vdW hetero/homostructures) offer a new paradigm for materials design-their physical properties can be tuned by the vertical stacking sequence as well as by adding a mechanical twist, stretch, and hydrostatic pressure to the atomic structure. In particular, simple twisting and stacking of two layers of graphene can form a uniform and ordered Moiré superlattice, which can effectively modulate the electrons of graphene layers and lead to the discovery of unconventional superconductivity and strong correlations. However, the twist angle of twisted bilayer graphene (tBLG) is almost unchangeable once the interlayer stacking is determined, while applying mechanical elastic strain provides an alternative way to deeply regulate the electronic structure by controlling the lattice spacing and symmetry. In this review, diverse experimental advances are introduced in straining tBLG by in-plane and out-of-plane modes, followed by the characterizations and calculations toward quantitatively tuning the strain-engineered electronic structures. It is further discussed that the structural relaxation in strained Moiré superlattice and its influence on electronic structures. Finally, the conclusion entails prospects for opportunities of strained twisted 2D materials, discussions on existing challenges, and an outlook on the intriguing emerging field, namely "strain-twistronics".

8.
Nano Lett ; 23(15): 6973-6978, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466285

RESUMO

Magnetostrictive coupling has recently attracted interest as a sensitive method for studying magnetism in two-dimensional (2D) materials by mechanical means. However, its application in high-frequency magnetic actuators and transducers requires rapid modulation of the magnetic order, which is difficult to achieve with external magnets, especially when dealing with antiferromagnets. Here, we optothermally modulate the magnetization in antiferromagnetic 2D material membranes of metal phosphor trisulfides (MPS3), to induce a large high-frequency magnetostrictive driving force. From the analysis of the temperature-dependent resonance amplitude, we provide evidence that the force is due to a thermo-magnetostrictive effect, which significantly increases near the Neél temperature, due to the strong temperature dependence of the magnetization. By studying its angle dependence, we find the effect is observed to follow anisotropic magnetostriction of the crystal lattice. The results show that the thermo-magnetostrictive effect results in a strongly enhanced thermal expansion force near the critical temperature of magnetostrictive 2D materials, which can enable more efficient actuation of nano-magnetomechanical devices and can also provide a route for studying the high-frequency coupling among magnetic, mechanical, and thermodynamic degrees of freedom down to the 2D limit.

9.
Nano Lett ; 23(11): 5076-5082, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37234019

RESUMO

Nanomechanical resonators realized from tensile-strained materials reach ultralow mechanical dissipation in the kHz to MHz frequency range. Tensile-strained crystalline materials that are compatible with epitaxial growth of heterostructures would thereby at the same time allow realizing monolithic free-space optomechanical devices, which benefit from stability, ultrasmall mode volumes, and scalability. In our work, we demonstrate nanomechanical string and trampoline resonators made from tensile-strained InGaP, which is a crystalline material that is epitaxially grown on an AlGaAs heterostructure. We characterize the mechanical properties of suspended InGaP nanostrings, such as anisotropic stress, yield strength, and intrinsic quality factor. We find that the latter degrades over time. We reach mechanical quality factors surpassing 107 at room temperature with a Q·f product as high as 7 × 1011Hz with trampoline-shaped resonators. The trampoline is patterned with a photonic crystal to engineer its out-of-plane reflectivity, desired for efficient signal transduction of mechanical motion to light.

10.
Nano Lett ; 23(17): 8162-8170, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642465

RESUMO

Studies on mechanical size effects in nanosized metals unanimously highlight both intrinsic microstructures and extrinsic dimensions for understanding size-dependent properties, commonly focusing on strengths of uniform microstructures, e.g., single-crystalline/nanocrystalline and nanoporous, as a function of pillar diameters, D. We developed a hydrogel infusion-based additive manufacturing (AM) technique using two-photon lithography to produce metals in prescribed 3D-shapes with ∼100 nm feature resolution. We demonstrate hierarchical microstructures of as-AM-fabricated Ni nanopillars (D ∼ 130-330 nm) to be nanoporous and nanocrystalline, with d ∼ 30-50 nm nanograins subtending each ligament in bamboo-like arrangements and pores with critical dimensions comparable to d. In situ nanocompression experiments unveil their yield strengths, σ, to be ∼1-3 GPa, above single-crystalline/nanocrystalline counterparts in the D range, a weak size dependence, σ ∝ D-0.2, and localized-to-homogenized transition in deformation modes mediated by nanoporosity, uncovered by molecular dynamics simulations. This work highlights hierarchical microstructures on mechanical response in nanosized metals and suggests small-scale engineering opportunities through AM-enabled microstructures.

11.
Nano Lett ; 23(11): 5155-5163, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37216440

RESUMO

Self-assembled nanoparticle superlattices (NPSLs) are an emergent class of self-architected nanocomposite materials that possess promising properties arising from precise nanoparticle ordering. Their multiple coupled properties make them desirable as functional components in devices where mechanical robustness is critical. However, questions remain about NPSL mechanical properties and how shaping them affects their mechanical response. Here, we perform in situ nanomechanical experiments that evidence up to an 11-fold increase in stiffness (∼1.49 to 16.9 GPa) and a 5-fold increase in strength (∼88 to 426 MPa) because of surface stiffening/strengthening from shaping these nanomaterials via focused-ion-beam milling. To predict the mechanical properties of shaped NPSLs, we present discrete element method (DEM) simulations and an analytical core-shell model that capture the FIB-induced stiffening response. This work presents a route for tunable mechanical responses of self-architected NPSLs and provides two frameworks to predict their mechanical response and guide the design of future NPSL-containing devices.

12.
Nano Lett ; 23(8): 3282-3290, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057989

RESUMO

Nanostructured metals are a promising class of radiation-tolerant materials. A large volume fraction of grain boundaries (GBs) can provide plenty of sinks for radiation damage, and understanding the underlying healing mechanisms is key to developing more effective radiation tolerant materials. Here, we observe radiation damage absorption by stress-assisted GB migration in ultrafine-grained Au thin films using a quantitative in situ transmission electron microscopy nanomechanical testing technique. We show that the GB migration rate is significantly higher in the unirradiated specimens. This behavior is attributed to the presence of smaller grains in the unirradiated specimens that are nearly absent in the irradiated specimens. Our experimental results also suggest that the GB mobility is decreased as a result of irradiation. This work implies that the deleterious effects of irradiation can be reduced by an evolving network of migrating GBs under stress.

13.
Rep Prog Phys ; 86(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36167057

RESUMO

The discovery of two-dimensional (2D) materials has gained worldwide attention owing to their extraordinary optical, electrical, and mechanical properties. Due to their atomic layer thicknesses, the emerging 2D materials have great advantages of enhanced interaction strength, broad operating bandwidth, and ultralow power consumption for optoelectromechanical coupling. The van der Waals (vdW) epitaxy or multidimensional integration of 2D material family provides a promising platform for on-chip advanced nano-optoelectromechanical systems (NOEMS). Here, we provide a comprehensive review on the nanomechanical properties of 2D materials and the recent advances of 2D-materials-integrated nano-electromechanical systems and nano-optomechanical systems. By utilizing active nanophotonics and optoelectronics as the interface, 2D active NOEMS and their coupling effects are particularly highlighted at the 2D atomic scale. Finally, we share our viewpoints on the future perspectives and key challenges of scalable 2D-materials-integrated active NOEMS for on-chip miniaturized, lightweight, and multifunctional integration applications.

14.
Small ; 19(41): e2302145, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37291948

RESUMO

The interface between two-dimensional (2D) materials and soft, stretchable polymeric substrates is a governing criterion in proposed 2D materials-based flexible devices. This interface is dominated by weak van der Waals forces and there is a large mismatch in elastic constants between the contact materials. Under dynamic loading, slippage, and decoupling of the 2D material is observed, which then leads to extensive damage propagation in the 2D lattice. Herein, graphene is functionalized through mild and controlled defect engineering for a fivefold increase in adhesion at the graphene-polymer interface. Adhesion is characterized experimentally using buckling-based metrology, while molecular dynamics simulations reveal the role of individual defects in the context of adhesion. Under in situ cyclic loading, the increased adhesion inhibits damage initiation and interfacial fatigue propagation within graphene. This work offers insight into achieving dynamically reliable and robust 2D material-polymer contacts, which can facilitate the development of 2D materials-based flexible devices.

15.
Nanotechnology ; 34(36)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37257428

RESUMO

In this work, we present an experimental validation of a new contact resonance atomic force microscopy model developed for sensors with long, massive tips. A derivation of a new technique and graphical method for the identification of the unknown system parameters is presented. The technique and contact resonance model are experimentally validated. The agreement between our contact resonance experimental measurements and values obtained from nanoindentation show a minimal error of 1.4%-4.5% and demonstrate the validity of the new contact resonance model and system parameter identification technique.


Assuntos
Vibração , Microscopia de Força Atômica/métodos
16.
Nanotechnology ; 35(8)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37995365

RESUMO

This work investigates the mechanical deformation and fracture characteristics of pristine bundles of vertically aligned multi-walled carbon nanotubes (MWCNTs) subjected to axial compressionin situtransmission electron microscope (TEM). Accurate measurements of force-displacement data were collected simultaneously with real-time TEM videos of the deformation process. Two distinct regimes were observed in the force-displacement curve: (1) an initial elastic section with a linear slope, followed by (2) a transition to a force plateau at a critical buckling force. Morphological data revealed coordinated buckling of the pristine bundle, indicating strong van der Waals (VdW) forces between the nanotubes. The experimental setup measured an effective modulus of 83.9 GPa for an MWCNT bundle, which was in agreement with finite element analysis (FEA) simulations. FEA also highlighted the significant role of VdW forces in the bundle mechanical reactions. Furthermore, we identified nickel nanoparticles as key players in the fracture behavior of the bundles, acting as nucleation sites for defects. The direct mechanical measurements of MWCNT bundles provide valuable insights into their mechanical deformation and fracture behavior, while correlating it to the morphology of the bundle. Understanding these interactions at the bundle level is crucial for improving the reliability and durability of VACNTs-based components.

17.
Nanomedicine ; 53: 102699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572769

RESUMO

Spinal cord injury is a dramatic disease leading to severe motor, sensitive and autonomic impairments. After injury the axonal regeneration is partly inhibited by the glial scar, acting as a physical and chemical barrier. The scarring process involves microglia, astrocytes and extracellular matrix components, such as collagen, constructing the fibrotic component of the scar. To investigate the role of collagen, we used a multimodal label-free imaging approach combining multiphoton and atomic force microscopy. The second harmonic generation signal exhibited by fibrillar collagen enabled to specifically monitor it as a biomarker of the lesion. An increase in collagen density and the formation of more tortuous fibers over time after injury are observed. Nano-mechanical investigations revealed a noticeable hardening of the injured area, correlated with collagen fibers' formation. These observations indicate the concomitance of important structural and mechanical modifications during the fibrotic scar evolution.


Assuntos
Cicatriz , Traumatismos da Medula Espinal , Camundongos , Animais , Cicatriz/patologia , Microscopia de Força Atômica , Fibrose , Astrócitos/patologia , Medula Espinal/patologia
18.
Adv Exp Med Biol ; 1402: 69-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37052847

RESUMO

Articular cartilage is a hydrated macromolecular composite mainly composed of type II collagen fibrils and the large proteoglycan, aggrecan. Aggrecan is a key determinant of the load bearing and energy dissipation functions of cartilage. Previously, studies of cartilage biomechanics have been primarily focusing on the macroscopic, tissue-level properties, which failed to elucidate the molecular-level activities that govern cartilage development, function, and disease. This chapter provides a brief summary of Dr. Alan J. Grodzinsky's seminal contribution to the understanding of aggrecan molecular mechanics at the nanoscopic level. By developing and applying a series of atomic force microscopy (AFM)-based nanomechanical tools, Grodzinsky and colleagues revealed the unique structural and mechanical characteristics of aggrecan at unprecedented resolutions. In this body of work, the "bottle-brush"-like ultrastructure of aggrecan was directly visualized for the first time. Meanwhile, molecular mechanics of aggrecan was studied using a physiological-like 2D biomimetic assembly of aggrecan on multiple fronts, including compression, dynamic loading, shear, and adhesion. These studies not only generated new insights into the development, aging, and disease of cartilage, but established a foundation for designing and evaluating novel cartilage regeneration strategies. For example, building on the scientific foundation and methodology infrastructure established by Dr. Grodzinsky, recent studies have elucidated the roles of other proteoglycans in mediating cartilage integrity, such as decorin and perlecan, and evaluated the therapeutic potential of biomimetic proteoglycans in improving cartilage regeneration.


Assuntos
Cartilagem Articular , Proteoglicanas , Agrecanas/análise , Agrecanas/química , Agrecanas/ultraestrutura , Fenômenos Biomecânicos , Proteoglicanas/química , Proteínas da Matriz Extracelular , Lectinas Tipo C
19.
Nano Lett ; 22(11): 4301-4306, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609218

RESUMO

Nanomechanical photonic metamaterials provide a wealth of active switching, nonlinear, and enhanced light-matter interaction functionalities by coupling optically and mechanically resonant subsystems. Thermal (Brownian) motion of the nanostructural components of such metamaterials leads to fluctuations in optical properties, which may manifest as noise, but which also present opportunity to characterize performance and thereby optimize design at the level of individual nanomechanical elements. We show that nanomechanical motion in an all-dielectric metamaterial ensemble of silicon-on-silicon-nitride nanowires can be controlled by light at sub-µW/µm2 intensities. Induced changes in nanowire temperature of just a few Kelvin and nonthermal optical forces generated within the structure change the few-MHz Eigenfrequencies and/or picometric displacement amplitudes of motion, and thereby metamaterial transmission. The tuning mechanism can provide active control of frequency response in photonic metadevices and may serve as a basis for bolometric, mass, and micro/nanostructural stress sensing.

20.
Nano Lett ; 22(4): 1475-1482, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35119289

RESUMO

Although 2D materials hold great potential for next-generation pressure sensors, recent studies revealed that gases permeate along the membrane-surface interface, necessitating additional sealing procedures. In this work, we demonstrate the use of free-standing complex oxides as self-sealing membranes that allow the reference cavity beneath to be sealed by a simple anneal. To test the hermeticity, we study the gas permeation time constants in nanomechanical resonators made from SrRuO3 and SrTiO3 membranes suspended over SiO2/Si cavities which show an improvement up to 4 orders of magnitude in the permeation time constant after annealing the devices. Similar devices fabricated on Si3N4/Si do not show such improvements, suggesting that the adhesion increase over SiO2 is mediated by oxygen bonds that are formed at the SiO2/complex oxide interface during the self-sealing anneal. Picosecond ultrasonics measurements confirm the improvement in the adhesion by 70% after annealing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA