Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glycobiology ; 31(8): 931-946, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978739

RESUMO

Glycan microarrays have played important roles in detection and specificity assignment of glycan recognition by proteins. However, the size and diversity of glycan libraries in current microarray systems are small compared to estimated glycomes, and these may lead to missed detection or incomplete assignment. For microarray construction, covalent and noncovalent immobilization are the two types of methods used, but a direct comparison of results from the two platforms is required. Here we develop a chemical strategy to prepare lipid-linked probes from both naturally derived aldehyde-terminating and synthetic amino-terminating glycans that addresses the two aspects: expansion of sequence-defined glycan libraries and comparison of the two platforms. We demonstrate the specific recognition by plant and mammalian lectins, carbohydrate-binding modules and antibodies and the overall similarities from the two platforms. Our results provide new knowledge on unique glycan-binding specificities for the immune receptor Dectin-1 toward ß-glucans and the interaction of rotavirus P[19] adhesive protein with mucin O-glycan cores.


Assuntos
Polissacarídeos , beta-Glucanas , Animais , Lectinas , Mamíferos/metabolismo , Análise em Microsséries/métodos , Mucinas/metabolismo , Polissacarídeos/metabolismo
2.
Glycoconj J ; 36(3): 185-197, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31016559

RESUMO

In this study, we assessed the potential of liposomes coated with a neoglycolipid containing α1-3,α1-6-mannotriose residues (Man3-DPPE; Manα1-6(Manα1-3)Manitol-DPPE) for in vitro activation and maturation of human mononuclear phagocytes. In response to treatment with Man3-DPPE-coated liposomes (Man3-OMLs), PMA-stimulated human THP-1 cells showed enhanced expression of CD40, CD80 and HLA-DR and secreted significant levels of IL-12p40. Among various linkages of Man2-DPPE-coated liposomes, only liposomes coated with Manα1-6Manitol-DPPE (α1-6Man2-DPPE) induced these cellular responses similarly to Man3-OML treatment. Liposomes coated with Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manitol-DPPE (Man5-DPPE) failed to activate the cells. These results suggest that an unsubstituted α1-6Man branch bound to a mannitol unit at the reducing end in Man3-DPPE is required for in vitro activation of human mononuclear phagocytes. Man3-OML-induced IL-12p40 production was not inhibited by BAY11-7082, an inhibitor of the MyD88-dependent signaling network, suggesting that TLRs are not involved in activation of human mononuclear phagocytes by Man3-OMLs. Stimulation of inflammatory monocytes or monocyte-derived dendritic cells (moDCs) with Man3-OMLs also induced enhanced expression of co-stimulatory molecules, HLA-DR, and CCR7, and IL-12p40 production from both types of cells. In response to Man3-OML treatment, moDCs but not inflammatory monocytes produced bioactive IL-12p70, which was enhanced by CD40 ligation. Thus, Man3-OMLs can activate naïve human mononuclear phagocytes and lead human moDCs to a fully matured status in vitro to elicit CTLs and a Th1 response without addition of inflammatory cytokines or TLR agonists.


Assuntos
Glicolipídeos/farmacologia , Lipossomos/farmacologia , Monócitos/efeitos dos fármacos , Trissacarídeos/farmacologia , 1,2-Dipalmitoilfosfatidilcolina/química , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Glicolipídeos/química , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Lipossomos/química , Monócitos/imunologia , Receptores CCR7/genética , Receptores CCR7/metabolismo , Trissacarídeos/química
3.
Neurochem Res ; 43(1): 212-218, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29019053

RESUMO

N-glycans carrying the Lewis X trisaccharide [Galß1-4 (Fucα1-3) GlcNAc] are expressed by neural stem cells (NSCs) exclusively before differentiation, and they actively contribute to the maintenance of stemness of these cells. To address the functional roles of the Lewis X-mediated molecular interactions in NSCs, we created a series of synthetic neoglycolipids that contained a Lewis X-carrying glycan connected to an acyl chain through an amide bond. The neoglycolipids formed aqueous micelles displaying functional Lewis X glycotopes. Surprisingly, the neoglycolipid micelles evoked selective apoptosis in undifferentiated NSCs, whereas their differentiated cells remained unaffected. The apoptotic activity depended on the structural integrity of the Lewis X glycotopes and also on the length of the acyl chain, with an optimum length of C18. We propose hypothetical functional mechanisms of the neoglycolipid, which involves selective NSC targeting with Lewis X glycan and apoptotic signaling by the intracellular release of fatty acids. This serendipitous finding may offer a new strategy for controlling neural cell fates using artificial glycoclusters.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Trissacarídeos/farmacologia , Animais , Células Cultivadas , Antígenos CD15/análogos & derivados , Camundongos , Células-Tronco Neurais/citologia , Polissacarídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Mol Pharm ; 14(1): 193-205, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28005376

RESUMO

Novel principles for optimizing the properties of peptide-based drugs are needed in order to leverage their full pharmacological potential. We present the design, synthesis, and evaluation of a library of neoglycolipidated glucagon-like peptide 1 (GLP-1) analogues, which are valuable drug candidates for treatment of type 2 diabetes and obesity. Neoglycolipidation of GLP-1 balanced the lipophilicity, directed formation of soluble oligomers, and mediated albumin binding. Moreover, neoglycolipidation did not compromise bioactivity, as in vitro potency of neoglycolipidated GLP-1 analogues was maintained or even improved compared to native GLP-1. This translated into pronounced in vivo efficacy in terms of both decreased acute food intake and improved glucose homeostasis in mice. Thus, we propose neoglycolipidation as a novel, general method for modulating the properties of therapeutic peptides.


Assuntos
Albuminas/metabolismo , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicolipídeos/sangue , Peptídeos/química , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose/métodos , Homeostase/efeitos dos fármacos , Hipoglicemiantes/química , Insulina/metabolismo , Masculino , Camundongos , Peptídeos/farmacologia
5.
J Biol Chem ; 289(23): 16462-77, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753245

RESUMO

Monoclonal antibody F77 was previously raised against human prostate cancer cells and has been shown to recognize a carbohydrate antigen, but the carbohydrate sequence of the antigen was elusive. Here, we make multifaceted approaches to characterize F77 antigen, including binding analyses with the glycolipid extract of the prostate cancer cell line PC3, microarrays with sequence-defined glycan probes, and designer arrays from the O-glycome of an antigen-positive mucin, in conjunction with mass spectrometry. Our results reveal F77 antigen to be expressed on blood group H on a 6-linked branch of a poly-N-acetyllactosamine backbone. We show that mAb F77 can also bind to blood group A and B analogs but with lower intensities. We propose that the close association of F77 antigen with prostate cancers is a consequence of increased blood group H expression together with up-regulated branching enzymes. This is in contrast to other epithelial cancers that have up-regulated branching enzymes but diminished expression of H antigen. With knowledge of the structure and prevalence of F77 antigen in prostate cancer, the way is open to explore rationally its application as a biomarker to detect F77-positive circulating prostate cancer-derived glycoproteins and tumor cells.


Assuntos
Antígenos de Neoplasias/química , Mucinas/química , Neoplasias da Próstata/imunologia , Sequência de Carboidratos , Humanos , Masculino , Dados de Sequência Molecular
6.
Methods Enzymol ; 598: 139-167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29306433

RESUMO

Glucans are polysaccharides of increasing biomedical interest because of their involvement in mechanisms of pathogen recognition, modulation of the immune system and anticancer, and health-promoting activities. Most of these biological activities occur through specific interactions with glucan-recognizing proteins. However, detailed molecular studies of glucan recognition remain a challenge mainly due to the inherent sequence heterogeneity and polydispersity of glucan polysaccharides, and associated difficulties in their purification and sequence characterization. It is thus ideal to have a series of sequence-defined glucooligosaccharides to represent the sequence diversity of glucan polysaccharides and to apply these to gain insight into glucan recognition processes. In this chapter, we describe the the methods for developing of oligosaccharide microarrays derived from a collection of glucans with different linkages based on the neoglycolipid (NGL) microarray system. The microscale oxime-ligation method has provided access in microarrays to over 150 sequence-defined glucooligosaccharides with different chain lengths, linkages, and branching patterns. We focus on the essential steps in the preparation of NGL-based glucooligosaccharide microarrays, which include (1) the depolymerization and purification methods to obtain oligosaccharide fractions of defined chain lengths; (2) a mass spectrometry-based method for linkage and sequence analysis of glucooligosaccharides; (3) improved procedures for preparation of oxime-linked NGLs from glucooligosaccharides for construction of microarrays; and (4) analyses of the recognition of these oligosaccharide sequences by various glucan-recognizing proteins: monoclonal antibodies, other proteins of the immune system such as Dectin-1 and DC-SIGN, and carbohydrate-binding modules of bacterial glycoside hydrolases.


Assuntos
Glucanos/química , Análise em Microsséries/métodos , Oligossacarídeos/química , Proteínas de Bactérias/química , Glucanos/isolamento & purificação , Glicosídeo Hidrolases/química , Análise em Microsséries/instrumentação , Oligossacarídeos/isolamento & purificação , Oximas/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
7.
Front Immunol ; 8: 1206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993781

RESUMO

Current tumor therapies, including immunotherapies, focus on passive eradication or at least reduction of the tumor mass. However, cancer patients quite often suffer from tumor relapse or metastasis after such treatments. To overcome these problems, we have developed a natural killer T (NKT) cell-targeted immunotherapy focusing on active engagement of the patient's immune system, but not directly targeting the tumor cells themselves. NKT cells express an invariant antigen receptor α chain encoded by Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans and recognize glycolipid ligand in conjunction with a monomorphic CD1d molecule. The NKT cells play a pivotal role in the orchestration of antitumor immune responses by mediating adjuvant effects that activate various antitumor effector cells of both innate and adaptive immune systems and also aid in establishing a long-term memory response. Here, we established NKT cell-targeted therapy using a newly discovered NKT cell glycolipid ligand, RK, which has a stronger capacity to stimulate both human and mouse NKT cells compared to previous NKT cell ligand. Moreover, RK mediates strong adjuvant effects in activating various effector cell types and establishes long-term memory responses, resulting in the continuous attack on the tumor that confers long-lasting and potent antitumor effects. Since the NKT cell ligand presented by the monomorphic CD1d can be used for all humans irrespective of HLA types, and also because NKT cell-targeted therapy does not directly target tumor cells, this therapy can potentially be applied to all cancer patients and any tumor types.

8.
Carbohydr Res ; 435: 83-96, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27721143

RESUMO

Seven lipophilic constructs containing Lewis (Lea, Leb, Ley) or chimeric Lewis/ABH (ALeb, BLeb, ALey, BLey) glycans were obtained starting from corresponding oligosaccharides in form of 3-aminopropyl glycosides. ALeb and BLeb pentasaccharides were synthesized via [3 + 1] blockwise approach. The constructs (neoglycolipids, or FSLs) were inserted in erythrocyte membrane, and obtained "kodecytes" were used to map the immunochemical specificity of historical and contemporary monoclonal and polyclonal blood group system Lewis reagents.


Assuntos
Antígenos do Grupo Sanguíneo de Lewis/química , Polissacarídeos/síntese química , Polissacarídeos/imunologia , Anticorpos Monoclonais/metabolismo , Membrana Eritrocítica/imunologia , Humanos , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Estrutura Molecular , Polissacarídeos/química
9.
Int Immunopharmacol ; 19(1): 27-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24434373

RESUMO

C-type lectin receptors expressed on cell surfaces of antigen-presenting cells can serve as not only cell adhesion molecules but also as phagocytic receptors, and therefore, are potentially useful for antigen targeting for vaccination. In the present study, we compared the carbohydrate preference of the C-type lectin SIGNR1 as a cell adhesion molecule with that of SIGNR1 as a phagocytic receptor, using a series of neoglycolipids (NGLs) and the mouse macrophage-like cells stably expressing SIGNR1. When SIGNR1-mediated cell adhesion was assessed based on the binding of the cells to NGL-coated solid phases, the order of degree of cell adhesion was Le(b)-≈Le(a)-≈Le(x)-≥Man5->Man3-≥α1-3Man2->α1-6Man2-DPPE. By contrast, when SIGNR1-mediated phagocytosis was assessed based on the uptake of NGL-coated liposomes, the order of phagocytosis of the liposomes by the cells was Le(a)-≈Man3->Man5-≈α1-3Man2->Le(x)->Le(b)->α1-6Man2-DPPE. Collectively, SIGNR1 mediates cell adhesion to Lewis blood group antigen-containing NGL-coated solid phases more preferably than those coated with terminal mannose-containing NGLs, but mediates the phagocytosis of the Man3-DPPE- and Le(a)-DPPE-coated liposomes most preferably among the tested NGLs. Thus, the subtle carbohydrate preference of SIGNR1 on the cell surface is altered depending on the function, and the preferable carbohydrate for phagocytosis elucidated using NGL-coated liposomes might be used as the appropriate targeting signals for antigen delivery.


Assuntos
Moléculas de Adesão Celular/fisiologia , Glicolipídeos/administração & dosagem , Lectinas Tipo C/fisiologia , Receptores de Superfície Celular/fisiologia , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Colesterol/química , Glicolipídeos/química , Lipossomos , Camundongos , Fagocitose/efeitos dos fármacos
10.
Nutrients ; 3(2): 228-44, 2011 02.
Artigo em Inglês | MEDLINE | ID: mdl-22254094

RESUMO

Group A rotaviruses are a major cause of diarrhea in the young of many mammalian species. In rotavirus infected piglets mortality can be as high as 60%. Previous research in this laboratory has identified a porcine intestinal GM(3) ganglioside receptor that is required for sialic acid-dependent rotavirus recognition of host cells. In addition, we previously demonstrated exogenously added GM(3) can competitively inhibit porcine rotavirus binding and infectivity of host cells in vitro. Sialyllactose, the carbohydrate moiety of GM(3), is approximately 3 orders of magnitude less effective than GM(3) at inhibiting rotavirus binding to cells. Furthermore, production of therapeutic quantities of GM(3) ganglioside for use as an oral carbomimetic in swine is cost prohibitive. In an effort to circumvent these problems, a sialyllactose-containing neoglycolipid was synthesized and evaluated for its ability to inhibit rotavirus binding and infectivity of host cells. Sialyllactose was coupled to dipalmitoylphosphatidylethanolamine (PE) by reductive amination and the product (SLPE) purified by HPLC. Characterization of the product showed a single primulin (lipid) and resorcinol (sialic acid) positive band by thin layer chromatography and quantification of phosphate and sialic acid yielded a 1:1 molar ratio. Mass spectroscopy confirmed a molecular weight coinciding with SLPE. Concentration-dependent binding of rotavirus to SLPE was demonstrated using a thin-layer overlay assay. Using concentrations comparable to GM(3), SLPE was also shown to inhibit rotavirus binding to host cells by 80%. Furthermore, SLPE was shown to decrease rotavirus infection of host cells by over 90%. Finally, preliminary results of in vivo animal challenge studies using newborn piglets in their natural environment, demonstrated SLPE afforded complete protection from rotavirus disease. The efficacy of SLPE in inhibiting rotavirus binding and infection in vitro and in vivo, coupled with its relatively low-cost, large-scale production capabilities make SLPE a promising candidate for further exploration as a possible prophylactic or therapeutic nutriceutical for combating rotavirus disease in animals. Most importantly, the results presented here provide proof of concept that the nutriceutical approach of providing natural or synthetic dietary receptor mimetics for protection against gastrointestinal virus infectious disease in all species is plausible.


Assuntos
Antivirais/uso terapêutico , Diarreia/prevenção & controle , Ácido N-Acetilneuramínico/metabolismo , Fosfatidiletanolaminas/uso terapêutico , Receptores de Superfície Celular/metabolismo , Infecções por Rotavirus/prevenção & controle , Rotavirus/patogenicidade , Ácidos Siálicos/uso terapêutico , Animais , Antivirais/síntese química , Antivirais/farmacologia , Ligação Competitiva , Diarreia/virologia , Desenho de Fármacos , Gangliosídeo G(M3)/metabolismo , Mucosa Intestinal/metabolismo , Peso Molecular , Fosfatidiletanolaminas/síntese química , Fosfatidiletanolaminas/farmacologia , Infecções por Rotavirus/virologia , Ácidos Siálicos/síntese química , Ácidos Siálicos/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA