RESUMO
Understanding how cognitive processes affect the responses of sensory neurons may clarify the relationship between neuronal population activity and behavior. However, tools for analyzing neuronal activity have not kept up with technological advances in recording from large neuronal populations. Here, we describe prevalent hypotheses of how cognitive processes affect sensory neurons, driven largely by a model based on the activity of single neurons or pools of neurons as the units of computation. We then use simple simulations to expand this model to a new conceptual framework that focuses on subspaces of population activity as the relevant units of computation, uses comparisons between brain areas or to behavior to guide analyses of these subspaces, and suggests that population activity is optimized to decode the large variety of stimuli and tasks that animals encounter in natural behavior. This framework provides new ways of understanding the ever-growing quantity of recorded population activity data.
Assuntos
Vias Aferentes/fisiologia , Córtex Cerebral/citologia , Cognição/fisiologia , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador , Humanos , Modelos Neurológicos , Percepção/fisiologiaRESUMO
Although much is known about how single neurons in the hippocampus represent an animal's position, how circuit interactions contribute to spatial coding is less well understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured CA1 cell-cell interactions in male rats during open field exploration. The statistics of these interactions depend on whether the animal is in a familiar or novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the informativeness of their spatial inputs. This structure facilitates linear decodability, making the information easy to read out by downstream circuits. Overall, our findings suggest that the efficient coding hypothesis is not only applicable to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain.SIGNIFICANCE STATEMENT Local circuit interactions play a key role in neural computation and are dynamically shaped by experience. However, measuring and assessing their effects during behavior remains a challenge. Here, we combine techniques from statistical physics and machine learning to develop new tools for determining the effects of local network interactions on neural population activity. This approach reveals highly structured local interactions between hippocampal neurons, which make the neural code more precise and easier to read out by downstream circuits, across different levels of experience. More generally, the novel combination of theory and data analysis in the framework of maximum entropy models enables traditional neural coding questions to be asked in naturalistic settings.
Assuntos
Região CA1 Hipocampal , Hipocampo , Ratos , Masculino , Animais , Região CA1 Hipocampal/fisiologia , Neurônios/fisiologia , Rede Nervosa/fisiologiaRESUMO
A central goal of systems neuroscience is to understand how populations of sensory neurons encode and relay information to the rest of the brain. Three key quantities of interest are 1) how mean neural activity depends on the stimulus (sensitivity), 2) how neural activity (co)varies around the mean (noise correlations), and 3) how predictive these variations are of the subject's behavior (choice probability). Previous empirical work suggests that both choice probability and noise correlations are affected by task training, with decision-related information fed back to sensory areas and aligned to neural sensitivity on a task-by-task basis. We used Utah arrays to record activity from populations of primary visual cortex (V1) neurons from two macaque monkeys that were trained to switch between two coarse orientation-discrimination tasks. Surprisingly, we find no evidence for significant trial-by-trial changes in noise covariance between tasks, nor do we find a consistent relationship between neural sensitivity and choice probability, despite recording from well-tuned task-sensitive neurons, many of which were histologically confirmed to be in supragranular V1, and despite behavioral evidence that the monkeys switched their strategy between tasks. Thus our data at best provide weak support for the hypothesis that trial-by-trial task-switching induces changes to noise correlations and choice probabilities in V1. However, our data agree with a recent finding of a single "choice axis" across tasks. They also raise the intriguing possibility that choice-related signals in early sensory areas are less indicative of task learning per se and instead reflect perceptual learning that occurs in highly overtrained subjects.NEW & NOTEWORTHY Converging evidence suggests that decision processes affect sensory neural activity, and this has informed numerous theories of neural processing. We set out to replicate and extend previous results on decision-related information and noise correlations in V1 of macaque monkeys. However, in our data, we find little evidence for a number of expected effects. Our null results therefore call attention to differences in task training, stimulus design, recording, and analysis techniques between our and prior studies.
Assuntos
Córtex Visual , Animais , Córtex Visual/fisiologia , Macaca mulatta/fisiologia , Aprendizagem , Neurônios/fisiologia , Neurônios AferentesRESUMO
Distributed population codes are ubiquitous in the brain and pose a challenge to downstream neurons that must learn an appropriate readout. Here we explore the possibility that this learning problem is simplified through inductive biases implemented by stimulus-independent noise correlations that constrain learning to task-relevant dimensions. We test this idea in a set of neural networks that learn to perform a perceptual discrimination task. Correlations among similarly tuned units were manipulated independently of an overall population signal-to-noise ratio to test how the format of stored information affects learning. Higher noise correlations among similarly tuned units led to faster and more robust learning, favoring homogenous weights assigned to neurons within a functionally similar pool, and could emerge through Hebbian learning. When multiple discriminations were learned simultaneously, noise correlations across relevant feature dimensions sped learning, whereas those across irrelevant feature dimensions slowed it. Our results complement the existing theory on noise correlations by demonstrating that when such correlations are produced without significant degradation of the signal-to-noise ratio, they can improve the speed of readout learning by constraining it to appropriate dimensions.SIGNIFICANCE STATEMENT Positive noise correlations between similarly tuned neurons theoretically reduce the representational capacity of the brain, yet they are commonly observed, emerge dynamically in complex tasks, and persist even in well-trained animals. Here we show that such correlations, when embedded in a neural population with a fixed signal-to-noise ratio, can improve the speed and robustness with which an appropriate readout is learned. In a simple discrimination task such correlations can emerge naturally through Hebbian learning. In more complex tasks that require multiple discriminations, correlations between neurons that similarly encode the task-relevant feature improve learning by constraining it to the appropriate task dimension.
Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Razão Sinal-Ruído , Animais , Atenção/fisiologia , Simulação por Computador , Discriminação Psicológica/fisiologia , HumanosRESUMO
Identifying the features of population responses that are relevant to the amount of information encoded by neuronal populations is a crucial step toward understanding population coding. Statistical features, such as tuning properties, individual and shared response variability, and global activity modulations, could all affect the amount of information encoded and modulate behavioral performance. We show that two features in particular affect information: the modulation of population responses across conditions (population signal) and the inverse population covariability along the modulation axis (projected precision). We demonstrate that fluctuations of these two quantities are correlated with fluctuations of behavioral performance in various tasks and brain regions consistently across 4 monkeys (1 female and 1 male Macaca mulatta; and 2 male Macaca fascicularis). In contrast, fluctuations in mean correlations among neurons and global activity have negligible or inconsistent effects on the amount of information encoded and behavioral performance. We also show that differential correlations reduce the amount of information encoded in finite populations by reducing projected precision. Our results are consistent with predictions of a model that optimally decodes population responses to produce behavior.SIGNIFICANCE STATEMENT The last two or three decades of research have seen hot debates about what features of population tuning and trial-by-trial variability influence the information carried by a population of neurons, with some camps arguing, for instance, that mean pairwise correlations or global fluctuations are important while other camps report opposite results. In this study, we identify the most important features of neural population responses that determine the amount of encoded information and behavioral performance by combining analytic calculations with a novel nonparametric method that allows us to isolate the effects of different statistical features. We tested our hypothesis on 4 macaques, three decision-making tasks, and two brain areas. The predictions of our theory were in agreement with the experimental data.
Assuntos
Redes Neurais de Computação , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Lobo Temporal/fisiologia , Animais , Atenção/fisiologia , Comportamento Animal , Análise Discriminante , Feminino , Macaca fascicularis , Macaca mulatta , Masculino , Modelos Neurológicos , Percepção de Movimento/fisiologia , Percepção Visual/fisiologiaRESUMO
Understanding the neural code requires understanding how populations of neurons code information. Theoretical models predict that information may be limited by correlated noise in large neural populations. Nevertheless, analyses based on tens of neurons have failed to find evidence of saturation. Moreover, some studies have shown that noise correlations can be very small, and therefore may not affect information coding. To determine whether information-limiting correlations exist, we implanted eight Utah arrays in prefrontal cortex (PFC; area 46) of two male macaque monkeys, recording >500 neurons simultaneously. We estimated information in PFC about saccades as a function of ensemble size. Noise correlations were, on average, small (â¼10-3). However, information scaled strongly sublinearly with ensemble size. After shuffling trials, destroying noise correlations, information was a linear function of ensemble size. Thus, we provide evidence for the existence of information-limiting noise correlations in large populations of PFC neurons.SIGNIFICANCE STATEMENT Recent theoretical work has shown that even small correlations can limit information if they are "differential correlations," which are difficult to measure directly. However, they can be detected through decoding analyses on recordings from a large number of neurons over a large number of trials. We have achieved both by collecting neural activity in dorsal-lateral prefrontal cortex of macaques using eight microelectrode arrays (768 electrodes), from which we were able to compute accurate information estimates. We show, for the first time, strong evidence for information-limiting correlations. Despite pairwise correlations being small (on the order of 10-3), they affect information coding in populations on the order of 100 s of neurons.
Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação/fisiologia , Animais , Macaca mulatta , Masculino , Microeletrodos , Estimulação Luminosa , Movimentos Sacádicos/fisiologiaRESUMO
Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes.
Assuntos
Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação/fisiologia , Animais , Conectoma/métodos , Interneurônios , Macaca , Masculino , Rede Nervosa/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/anatomia & histologia , Análise Espacial , Relação Estrutura-Atividade , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , VigíliaRESUMO
Both the global neuronal workspace (GNW) and integrated information theory (IIT) posit that highly complex and interconnected networks engender perceptual awareness. GNW specifies that activity recruiting frontoparietal networks will elicit a subjective experience, whereas IIT is more concerned with the functional architecture of networks than with activity within it. Here, we argue that according to IIT mathematics, circuits converging on integrative versus convergent yet non-integrative neurons should support a greater degree of consciousness. We test this hypothesis by analyzing a dataset of neuronal responses collected simultaneously from primary somatosensory cortex (S1) and ventral premotor cortex (vPM) in nonhuman primates presented with auditory, tactile, and audio-tactile stimuli as they are progressively anesthetized with propofol. We first describe the multisensory (audio-tactile) characteristics of S1 and vPM neurons (mean and dispersion tendencies, as well as noise-correlations), and functionally label these neurons as convergent or integrative according to their spiking responses. Then, we characterize how these different pools of neurons behave as a function of consciousness. At odds with the IIT mathematics, results suggest that convergent neurons more readily exhibit properties of consciousness (neural complexity and noise correlation) and are more impacted during the loss of consciousness than integrative neurons. Last, we provide support for the GNW by showing that neural ignition (i.e., same trial coactivation of S1 and vPM) was more frequent in conscious than unconscious states. Overall, we contrast GNW and IIT within the same single-unit activity dataset, and support the GNW.SIGNIFICANCE STATEMENT A number of prominent theories of consciousness exist, and a number of these share strong commonalities, such as the central role they ascribe to integration. Despite the important and far reaching consequences developing a better understanding of consciousness promises to bring, for instance in diagnosing disorders of consciousness (e.g., coma, vegetative-state, locked-in syndrome), these theories are seldom tested via invasive techniques (with high signal-to-noise ratios), and never directly confronted within a single dataset. Here, we first derive concrete and testable predictions from the global neuronal workspace and integrated information theory of consciousness. Then, we put these to the test by functionally labeling specific neurons as either convergent or integrative nodes, and examining the response of these neurons during anesthetic-induced loss of consciousness.
Assuntos
Estado de Consciência/fisiologia , Modelos Neurológicos , Modelos Teóricos , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Macaca mulatta , MasculinoRESUMO
Correlated electrical activity in neurons is a prominent characteristic of cortical microcircuits. Despite a growing amount of evidence concerning both spike-count and subthreshold membrane potential pairwise correlations, little is known about how different types of cortical neurons convert correlated inputs into correlated outputs. We studied pyramidal neurons and two classes of GABAergic interneurons of layer 5 in neocortical brain slices obtained from rats of both sexes, and we stimulated them with biophysically realistic correlated inputs, generated using dynamic clamp. We found that the physiological differences between cell types manifested unique features in their capacity to transfer correlated inputs. We used linear response theory and computational modeling to gain clear insights into how cellular properties determine both the gain and timescale of correlation transfer, thus tying single-cell features with network interactions. Our results provide further ground for the functionally distinct roles played by various types of neuronal cells in the cortical microcircuit.SIGNIFICANCE STATEMENT No matter how we probe the brain, we find correlated neuronal activity over a variety of spatial and temporal scales. For the cerebral cortex, significant evidence has accumulated on trial-to-trial covariability in synaptic inputs activation, subthreshold membrane potential fluctuations, and output spike trains. Although we do not yet fully understand their origin and whether they are detrimental or beneficial for information processing, we believe that clarifying how correlations emerge is pivotal for understanding large-scale neuronal network dynamics and computation. Here, we report quantitative differences between excitatory and inhibitory cells, as they relay input correlations into output correlations. We explain this heterogeneity by simple biophysical models and provide the most experimentally validated test of a theory for the emergence of correlations.
Assuntos
Interneurônios/fisiologia , Modelos Neurológicos , Neocórtex/fisiologia , Células Piramidais/fisiologia , Animais , Feminino , Técnicas In Vitro , Masculino , RatosRESUMO
A major goal in neuroscience is to estimate neural connectivity from large scale extracellular recordings of neural activity in vivo. This is challenging in part because any such activity is modulated by the unmeasured external synaptic input to the network, known as the common input problem. Many different measures of functional connectivity have been proposed in the literature, but their direct relationship to synaptic connectivity is often assumed or ignored. For in vivo data, measurements of this relationship would require a knowledge of ground truth connectivity, which is nearly always unavailable. Instead, many studies use in silico simulations as benchmarks for investigation, but such approaches necessarily rely upon a variety of simplifying assumptions about the simulated network and can depend on numerous simulation parameters. We combine neuronal network simulations, mathematical analysis, and calcium imaging data to address the question of when and how functional connectivity, synaptic connectivity, and latent external input variability can be untangled. We show numerically and analytically that, even though the precision matrix of recorded spiking activity does not uniquely determine synaptic connectivity, it is in practice often closely related to synaptic connectivity. This relation becomes more pronounced when the spatial structure of neuronal variability is jointly considered.
Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Algoritmos , Sinalização do Cálcio/fisiologia , Simulação por Computador , Fenômenos Eletrofisiológicos/fisiologia , Espaço Extracelular/fisiologia , Humanos , Modelos Neurológicos , Curva ROCRESUMO
Neurons in the primate lateral prefrontal cortex (LPFC) encode working memory (WM) representations via sustained firing, a phenomenon hypothesized to arise from recurrent dynamics within ensembles of interconnected neurons. Here, we tested this hypothesis by using microelectrode arrays to examine spike count correlations (rsc ) in LPFC neuronal ensembles during a spatial WM task. We found a pattern of pairwise rsc during WM maintenance indicative of stronger coupling between similarly tuned neurons and increased inhibition between dissimilarly tuned neurons. We then used a linear decoder to quantify the effects of the high-dimensional rsc structure on information coding in the neuronal ensembles. We found that the rsc structure could facilitate or impair coding, depending on the size of the ensemble and tuning properties of its constituent neurons. A simple optimization procedure demonstrated that near-maximum decoding performance could be achieved using a relatively small number of neurons. These WM-optimized subensembles were more signal correlation (rsignal )-diverse and anatomically dispersed than predicted by the statistics of the full recorded population of neurons, and they often contained neurons that were poorly WM-selective, yet enhanced coding fidelity by shaping the ensemble's rsc structure. We observed a pattern of rsc between LPFC neurons indicative of recurrent dynamics as a mechanism for WM-related activity and that the rsc structure can increase the fidelity of WM representations. Thus, WM coding in LPFC neuronal ensembles arises from a complex synergy between single neuron coding properties and multidimensional, ensemble-level phenomena.
Assuntos
Macaca/fisiologia , Memória de Curto Prazo , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação , Animais , Masculino , Córtex Pré-Frontal/citologiaRESUMO
The ability to discriminate between similar sensory stimuli relies on the amount of information encoded in sensory neuronal populations. Such information can be substantially reduced by correlated trial-to-trial variability. Noise correlations have been measured across a wide range of areas in the brain, but their origin is still far from clear. Here we show analytically and with simulations that optimal computation on inputs with limited information creates patterns of noise correlations that account for a broad range of experimental observations while at same time causing information to saturate in large neural populations. With the example of a network of V1 neurons extracting orientation from a noisy image, we illustrate to our knowledge the first generative model of noise correlations that is consistent both with neurophysiology and with behavioral thresholds, without invoking suboptimal encoding or decoding or internal sources of variability such as stochastic network dynamics or cortical state fluctuations. We further show that when information is limited at the input, both suboptimal connectivity and internal fluctuations could similarly reduce the asymptotic information, but they have qualitatively different effects on correlations leading to specific experimental predictions. Our study indicates that noise at the sensory periphery could have a major effect on cortical representations in widely studied discrimination tasks. It also provides an analytical framework to understand the functional relevance of different sources of experimentally measured correlations.
Assuntos
Ruído , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , HumanosRESUMO
The spiking activity of cortical neurons is highly variable. This variability is generally correlated among nearby neurons, an effect commonly interpreted to reflect the coactivation of neurons due to anatomically shared inputs. Recent findings, however, indicate that correlations can be dynamically modulated, suggesting that the underlying mechanisms are not well understood. Here, we investigate the hypothesis that correlations are dominated by neuronal coinactivation: the occurrence of brief silent periods during which all neurons in the local network stop firing. We recorded spiking activity from large populations of neurons in the auditory cortex of anesthetized rats across different brain states. During spontaneous activity, the reduction of correlation accompanying brain state desynchronization was largely explained by a decrease in the density of the silent periods. The presentation of a stimulus caused an initial drop of correlations followed by a rebound, a time course that was mimicked by the instantaneous silence density. We built a rate network model with fluctuation-driven transitions between a silent and an active attractor and assumed that neurons fired Poisson spike trains with a rate following the model dynamics. Variations of the network external input altered the transition rate into the silent attractor and reproduced the relation between correlation and silence density found in the data, both in spontaneous and evoked conditions. This suggests that the observed changes in correlation, occurring gradually with brain state variations or abruptly with sensory stimulation, are due to changes in the likeliness of the microcircuit to transiently cease firing.
Assuntos
Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Rede Nervosa/fisiologia , Ruído , Estimulação Acústica , Animais , Potenciais Evocados/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Ratos Sprague-Dawley , Processos EstocásticosRESUMO
The study of the neural code aims at deciphering how the nervous system maps external stimuli into neural activity-the encoding phase-and subsequently transforms such activity into adequate responses to the original stimuli-the decoding phase. Several information-theoretical methods have been proposed to assess the relevance of individual response features, as for example, the spike count of a given neuron, or the amount of correlation in the activity of two cells. These methods work under the premise that the relevance of a feature is reflected in the information loss that is induced by eliminating the feature from the response. The alternative methods differ in the procedure by which the tested feature is removed, and the algorithm with which the lost information is calculated. Here we compare these methods, and show that more often than not, each method assigns a different relevance to the tested feature. We demonstrate that the differences are both quantitative and qualitative, and connect them with the method employed to remove the tested feature, as well as the procedure to calculate the lost information. By studying a collection of carefully designed examples, and working on analytic derivations, we identify the conditions under which the relevance of features diagnosed by different methods can be ranked, or sometimes even equated. The condition for equality involves both the amount and the type of information contributed by the tested feature. We conclude that the quest for relevant response features is more delicate than previously thought, and may yield to multiple answers depending on methodological subtleties.
RESUMO
UNLABELLED: The ability to distinguish between elements of a sensory neuron's activity that are stimulus independent versus driven by the stimulus is critical for addressing many questions in systems neuroscience. This is typically accomplished by measuring neural responses to repeated presentations of identical stimuli and identifying the trial-variable components of the response as noise. In awake primates, however, small "fixational" eye movements (FEMs) introduce uncontrolled trial-to-trial differences in the visual stimulus itself, potentially confounding this distinction. Here, we describe novel analytical methods that directly quantify the stimulus-driven and stimulus-independent components of visual neuron responses in the presence of FEMs. We apply this approach, combined with precise model-based eye tracking, to recordings from primary visual cortex (V1), finding that standard approaches that ignore FEMs typically miss more than half of the stimulus-driven neural response variance, creating substantial biases in measures of response reliability. We show that these effects are likely not isolated to the particular experimental conditions used here, such as the choice of visual stimulus or spike measurement time window, and thus will be a more general problem for V1 recordings in awake primates. We also demonstrate that measurements of the stimulus-driven and stimulus-independent correlations among pairs of V1 neurons can be greatly biased by FEMs. These results thus illustrate the potentially dramatic impact of FEMs on measures of signal and noise in visual neuron activity and also demonstrate a novel approach for controlling for these eye-movement-induced effects. SIGNIFICANCE STATEMENT: Distinguishing between the signal and noise in a sensory neuron's activity is typically accomplished by measuring neural responses to repeated presentations of an identical stimulus. For recordings from the visual cortex of awake animals, small "fixational" eye movements (FEMs) inevitably introduce trial-to-trial variability in the visual stimulus, potentially confounding such measures. Here, we show that FEMs often have a dramatic impact on several important measures of response variability for neurons in primary visual cortex. We also present an analytical approach for quantifying signal and noise in visual neuron activity in the presence of FEMs. These results thus highlight the importance of controlling for FEMs in studies of visual neuron function, and demonstrate novel methods for doing so.
Assuntos
Fixação Ocular/fisiologia , Neurônios/fisiologia , Visão Ocular/fisiologia , Córtex Visual/citologia , Potenciais de Ação/fisiologia , Animais , Macaca mulatta , Masculino , Estimulação Luminosa , Estatística como Assunto , Estatísticas não Paramétricas , VigíliaRESUMO
UNLABELLED: Accurate sensory discrimination is commonly believed to require precise representations in the nervous system; however, neural stimulus responses can be highly variable, even to identical stimuli. Recent studies suggest that cortical response variability decreases during stimulus processing, but the implications of such effects on stimulus discrimination are unclear. To address this, we examined electrocorticographic cortical field potential recordings from the human nonprimary auditory cortex (superior temporal gyrus) while subjects listened to speech syllables. Compared with a prestimulus baseline, activation variability decreased upon stimulus onset, similar to findings from microelectrode recordings in animal studies. We found that this decrease was simultaneous with encoding and spatially specific for those electrodes that most strongly discriminated speech sounds. We also found that variability was predominantly reduced in a correlated subspace across electrodes. We then compared signal and variability (noise) correlations and found that noise correlations reduce more for electrodes with strong signal correlations. Furthermore, we found that this decrease in variability is strongest in the high gamma band, which correlates with firing rate response. Together, these findings indicate that the structure of single-trial response variability is shaped to enhance discriminability despite non-stimulus-related noise. SIGNIFICANCE STATEMENT: Cortical responses can be highly variable to auditory speech sounds. Despite this, sensory perception can be remarkably stable. Here, we recorded from the human superior temporal gyrus, a high-order auditory cortex, and studied the changes in the cortical representation of speech stimuli across multiple repetitions. We found that neural variability is reduced upon stimulus onset across electrodes that encode speech sounds.
Assuntos
Mapeamento Encefálico , Potenciais Evocados Auditivos/fisiologia , Dinâmica não Linear , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Eletrocorticografia , Análise Fatorial , Feminino , Análise de Fourier , Humanos , Masculino , Fatores de TempoRESUMO
Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations.NEW & NOTEWORTHY Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity.
Assuntos
Potenciais da Membrana , Modelos Neurológicos , Córtex Visual/fisiologia , Animais , Haplorrinos , Neurônios/fisiologia , Córtex Visual/citologiaRESUMO
Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We characterize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state, and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general understanding of how correlated spiking relates to the structure and function of cortical networks.
Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Ruído , Dinâmica não Linear , Estimulação Acústica/métodos , Animais , Gerbillinae , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Sensory function is mediated by interactions between external stimuli and intrinsic cortical dynamics that are evident in the modulation of evoked responses by cortical state. A number of recent studies across different modalities have demonstrated that the patterns of activity in neuronal populations can vary strongly between synchronized and desynchronized cortical states, i.e., in the presence or absence of intrinsically generated up and down states. Here we investigated the impact of cortical state on the population coding of tones and speech in the primary auditory cortex (A1) of gerbils, and found that responses were qualitatively different in synchronized and desynchronized cortical states. Activity in synchronized A1 was only weakly modulated by sensory input, and the spike patterns evoked by tones and speech were unreliable and constrained to a small range of patterns. In contrast, responses to tones and speech in desynchronized A1 were temporally precise and reliable across trials, and different speech tokens evoked diverse spike patterns with extremely weak noise correlations, allowing responses to be decoded with nearly perfect accuracy. Restricting the analysis of synchronized A1 to activity within up states yielded similar results, suggesting that up states are not equivalent to brief periods of desynchronization. These findings demonstrate that the representational capacity of A1 depends strongly on cortical state, and suggest that cortical state should be considered as an explicit variable in all studies of sensory processing.
Assuntos
Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos , Animais , Córtex Auditivo/citologia , Sincronização Cortical , Gerbillinae , Masculino , Neurônios/fisiologiaRESUMO
Recent analysis of evoked activity recorded across different brain regions and tasks revealed a marked decrease in noise correlations and trial-by-trial variability. Given the importance of correlations and variability for information processing within the rate coding paradigm, several mechanisms have been proposed to explain the reduction in these quantities despite an increase in firing rates. These models suggest that anatomical clusters and/or tightly balanced excitation-inhibition can generate intrinsic network dynamics that may exhibit a reduction in noise correlations and trial-by-trial variability when perturbed by an external input. Such mechanisms based on the recurrent feedback crucially ignore the contribution of feedforward input to the statistics of the evoked activity. Therefore, we investigated how statistical properties of the feedforward input shape the statistics of the evoked activity. Specifically, we focused on the effect of input correlation structure on the noise correlations and trial-by-trial variability. We show that the ability of neurons to transfer the input firing rate, correlation, and variability to the output depends on the correlations within the presynaptic pool of a neuron, and that an input with even weak within-correlations can be sufficient to reduce noise correlations and trial-by-trial variability, without requiring any specific recurrent connectivity structure. In general, depending on the ongoing activity state, feedforward input could either increase or decrease noise correlation and trial-by-trial variability. Thus, we propose that evoked activity statistics are jointly determined by the feedforward and feedback inputs.