RESUMO
In bottom-up proteomics, peptide-spectrum matching is critical for peptide and protein identification. Recently, deep learning models have been used to predict tandem mass spectra of peptides, enabling the calculation of similarity scores between the predicted and experimental spectra for peptide-spectrum matching. These models follow the supervised learning paradigm, which trains a general model using paired peptides and spectra from standard data sets and directly employs the model on experimental data. However, this approach can lead to inaccurate predictions due to differences between the training data and the experimental data, such as sample types, enzyme specificity, and instrument calibration. To tackle this problem, we developed a test-time training paradigm that adapts the pretrained model to generate experimental data-specific models, namely, PepT3. PepT3 yields a 10-40% increase in peptide identification depending on the variability in training and experimental data. Intriguingly, when applied to a patient-derived immunopeptidomic sample, PepT3 increases the identification of tumor-specific immunopeptide candidates by 60%. Two-thirds of the newly identified candidates are predicted to bind to the patient's human leukocyte antigen isoforms. To facilitate access of the model and all the results, we have archived all the intermediate files in Zenodo.org with identifier 8231084.
Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Proteínas , Modelos Teóricos , Proteômica/métodos , AlgoritmosRESUMO
Stochastic, intensity-based precursor isolation can result in isotopically enriched fragment ions. This problem is exacerbated for large peptides and stable isotope labeling experiments using deuterium or 15N. For stable isotope labeling experiments, incomplete and ubiquitous labeling strategies result in the isolation of peptide ions composed of many distinct structural isomers. Unfortunately, existing proteomics search algorithms do not account for this variability in isotopic incorporation, and thus often yield poor peptide and protein identification rates. We sought to resolve this shortcoming by deriving the expected isotopic distributions of each fragment ion and incorporating them into the theoretical mass spectra used for peptide-spectrum-matching. We adapted the Comet search platform to integrate a modified spectral prediction algorithm we term Conditional fragment Ion Distribution Search (CIDS). Comet-CIDS uses a traditional database searching strategy, but for each candidate peptide we compute the isotopic distribution of each fragment to better match the observed m/z distributions. Evaluating previously generated D2O and 15N labeled data sets, we found that Comet-CIDS identified more confident peptide spectral matches and higher protein sequence coverage compared to traditional theoretical spectra generation, with the magnitude of improvement largely determined by the amount of labeling in the sample.
Assuntos
Peptídeos , Proteínas , Peptídeos/química , Proteínas/metabolismo , Sequência de Aminoácidos , Probabilidade , ÍonsRESUMO
Some mass spectrometrists believe that searching for variable PTMs like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false-positive matching. The basis for this is the premise that the algorithm compares a spectrum to both a nonphosphorylated peptide candidate and a phosphorylated candidate, which is double the number of candidates compared to a search with no possible phosphorylation. Hence, if the search space doubles, false-positive matching could increase accordingly as the algorithm considers more candidates to which false matches could be made. In this study, it is shown that the search for variable phosphoserine and phosphothreonine modifications does not always double the search space or unduly impinge upon the FDR. A breakdown of how one popular database-search algorithm deals with variable phosphorylation is presented.