Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Molecules ; 28(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138457

RESUMO

Various thicknesses of TiO2 films were prepared by the sol-gel method and spin-coating process. These prepared TiO2 films exhibit thickness-dependent photoelectrochemical performance. The 1.09-µm-thickTiO2 film with 20 spin-coating layers (TiO2-20) exhibits the highest short circuit current of 0.21 mAcm-2 and open circuit voltage of 0.58 V among all samples and exhibits a low PEC reaction energy barrier and fast kinetic process. Photoelectrocatalytic (PEC) degradation of methyl orange (MO) by TiO2 films was carried out under UV light. The roles of bias, film thickness, pH value, and ion properties were systematically studied because they are the four most important factors dominating the PEC performance of TiO2 films. The optimized values of bias, film thickness, and pH are 1.0 V, 1.09 µm, and 12, respectively, which were obtained according to the data of the PEC degradation of MO. The effect of ion properties on the PEC efficiency of TiO2-20 was also analyzed by using halide as targeted ions. The "activated" halide ions significantly promoted the PEC efficiency and the order was determined as Br > Cl > F. The PEC efficiency increased with increasing Cl content, up until the optimized value of 30 × 10-3 M. Finally, a complete degradation of MO by TiO2-20 was achieved in 1.5 h, with total optimization of the four factors: 1.0 V bias, 1.09-µm-thick, pH 12, and 30 × 10-3 M Cl ion content. The roles of reactive oxygen species and electric charge of photoelectrodes were also explored based on photoelectrochemical characterizations and membrane-separated reactors. Hydrogen peroxide, superoxide radical, and hydroxyl radical were found responsible for the decolorization of MO.

2.
Small ; 18(46): e2200510, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209383

RESUMO

To improve the photoelectrochemical (PEC) performance of photocatalysts, the doping strategy through covalent functionalization is often adopted to adjust material electronic structures. By contrast, this work demonstrates that the noncovalent interaction in the case of iodinated graphitic carbon nitride (g-CN) film can also enhance the PEC performance. Through a facile synthesis method of rapid thermal vapor condensation (RTVC), the prepared iodinated g-CN film shows a significantly improved photocurrent density (38.9 µA cm-2 ), three times that of pure g-CN film (13.0 µA cm-2 ) at 1.23 V versus reversible hydrogen electrode. Computations reveal that the noncovalent attachment of iodine anion (I- ) on g-CN plays a crucial role in modulating the bandgap states and broadening of the visible-light absorption range as well as the charge carrier separation with the photo-induced hole confined to I- and electron to g-CN film. The fully filled valence orbitals (4d10 5s2 5p6 ) of I- determine its noncovalent attachment on the g-CN film and so do the iodine species of I3 - , I5 - , etc. This work offers a favorable synthesis method to achieve efficient doping through noncovalent charge transfer between thin film and certain dopants and provides a useful modification strategy for the establishment of multi-channel transportation of charge carriers in general photocatalysts.

3.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807891

RESUMO

Because the oxides of nitrogen (NOx) cause detrimental effects on not only the environment but humans, developing a high-performance NO2 gas sensor is a crucial issue for real-time monitoring. To this end, metal oxide semiconductors have been employed for sensor materials. Because in general, semiconductor-type gas sensors require a high working temperature, photoactivation has emerged as an alternative method for realizing the sensor working at room temperature. In this regard, titanium dioxide (TiO2) is a promising material for its photocatalytic ability with ultraviolet (UV) photonic energy. However, TiO2-based sensors inevitably encounter a problem of recombination of photogenerated electron-hole pairs, which occurs in a short time. To address this challenge, in this study, TiO2 nanorods (NRs) and Pt nanoparticles (NPs) under a UV-LED were used as an NO2 gas sensor to utilize the Schottky barrier formed at the TiO2-Pt junction, thereby capturing the photoactivated electrons by Pt NPs. The separation between the electron-hole pairs might be further enhanced by plasmonic effects. In addition, it is reported that annealing TiO2 NRs can achieve noteworthy improvements in sensing performance. Elucidation of the performance enhancement is suggested with the investigation of the X-ray diffraction patterns, which implies that the crystallinity was improved by the annealing process.

4.
Angew Chem Int Ed Engl ; 59(23): 8891-8895, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32133770

RESUMO

Porous tantalum nitride (Ta3 N5 ) single crystals, combining structural coherence and porous microstructure, would substantially improve the photoelectrochemical performance. The structural coherence would reduce the recombination of charge carriers and maintain excellent transport properties while the porous microstructure would not only reduce photon scattering but also facilitate surface reactions. Here, we grow bulk-porous Ta3 N5 single crystals on a two-centimeter scale with (002), (023), and (041) facets, respectively, and show significantly enhanced photoelectrochemical performance. We show the preferential facet growth of porous crystals in a lattice reconstruction strategy in relation to lattice match and lattice channel. We present the facet engineering to enhance light absorption, exciton lifetime and transport properties. The porous Ta3 N5 single crystal boosts photoelectrochemical oxidation of alcohols with the (002) facet showing the highest performance of >99 % alcohol conversion and >99 % aldehyde/ketone selectivity.

5.
Appl Surf Sci ; 387: 89-102, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27917012

RESUMO

TiO2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals' precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Agcore-Cushell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

6.
Chemistry ; 21(43): 15360-8, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26332399

RESUMO

The development of highly efficient and robust photocatalysts has attracted great attention for solving the global energy crisis and environmental problems. Herein, we describe the synthesis of a p-n heterostructured photocatalyst, consisting of ZnO nanorod arrays (NRAs) decorated with BiOI nanoplates (NPs), by a facile solvothermal method. The product thus obtained shows high photoelectrochemical water splitting performance and enhanced photoelectrocatalytic activity for pollutant degradation under visible light irradiation. The p-type BiOI NPs, with a narrow band gap, not only act as a sensitizer to absorb visible light and promote electron transfer to the n-type ZnO NRAs, but also increase the contact area with organic pollutants. Meanwhile, ZnO NRAs provide a fast electron-transfer channel, thus resulting in efficient separation of photoinduced electron-hole pairs. Such a p-n heterojunction nanocomposite could serve as a novel and promising catalyst in energy and environmental applications.

7.
ACS Appl Mater Interfaces ; 16(26): 33611-33619, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899937

RESUMO

In the quest for sustainable energy solutions, the optimization of the photoelectrochemical (PEC) performance of hematite photoanodes through cocatalysts represents a promising avenue. This study introduces a novel machine learning approach, leveraging subtraction descriptors, to isolate and quantify the specific effects of cobalt phosphate (Co-Pi) as a cocatalyst on hematite's PEC performance. By integrating data from various analytical techniques, including photoelectrochemical impedance spectroscopy and ultraviolet-visible spectroscopy, with advanced machine learning models, we successfully predicted the PEC performance enhancement attributed to Co-Pi. The Gaussian process regression (GPR) model emerged as the most effective, revealing the critical influence of the interfacial resistance, bulk resistance, and interfacial capacitance on the PEC performance. These findings underscore the potential of cocatalysts in improving charge separation and extending charge carrier lifetimes, thereby boosting the efficiency of photocatalytic reactions. This study not only advances our understanding of the cocatalyst effect in photocatalytic systems but also demonstrates the power of machine learning in modifying complex materials and guiding the development of optimized photocatalytic materials. The implications of this research extend beyond hematite photoanodes, offering a generalizable framework for enhancing the photoelectrochemical properties of a wide range of material modifications such as cocatalyst deposition, doping, and passivation.

8.
Adv Mater ; : e2403164, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720548

RESUMO

Surface reconstruction, reorganizing the surface atoms or structure, is a promising strategy to manipulate materials' electrical, electrochemical, and surface catalytic properties. Herein, a rapid surface reconstruction of indium sulfide (In2S3) is demonstrated via a high-temperature flame treatment to improve its charge collection properties. The flame process selectively transforms the In2S3 surface into a diffusionless In2O3 layer with high crystallinity. Additionally, it controllably generates bulk sulfur vacancies within a few seconds, leading to surface-reconstructed In2S3 (sr-In2S3). When using those sr-In2S3 as photoanode for photoelectrochemical water splitting devices, these dual functions of surface In2O3/bulk In2S3 reduce the charge recombination in the surface and bulk region, thus improving photocurrent density and stability. With optimized surface reconstruction, the sr-In2S3 photoanode demonstrates a significant photocurrent density of 8.5 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE), marking a 2.5-fold increase compared to pristine In2S3 (3.5 mA cm-2). More importantly, the sr-In2S3 photoanode exhibits an impressive photocurrent density of 7.3 mA cm-2 at 0.6 V versus RHE for iodide oxidation reaction. A practical and scalable surface reconstruction is also showcased via flame treatment. This work provides new insights for surface reconstruction engineering in sulfide-based semiconductors, making a breakthrough in developing efficient solar-fuel energy devices.

9.
J Colloid Interface Sci ; 627: 1047-1060, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35908309

RESUMO

Antimony sulfide (Sb2S3) is a relatively abundant and environmentally friendly emerging photovoltaic material, which has been gradually applied in solar cells and photocatalysis. It has high light absorption capacity, but it suffers many deep-level defects and is prone to recombination of electron-hole pairs within itself. Here, by constructing the Sb2S3/CdIn2S4 S-scheme heterojunction, we avoided the problem that electrons and holes cannot be separated and transported effectively due to many Sb2S3 defects (more recombination centers), and improved its application in the field of photoelectrochemical water splitting. Meanwhile, in order to further improve the performance of Sb2S3/CdIn2S4 photoelectrode, we introduced CdS energy platform between Sb2S3 and CdIn2S4 to form a Sb2S3/CdS/CdIn2S4 cascaded S-scheme heterojunction. Compared with Sb2S3 monomer, Sb2S3/CdS/CdIn2S4 had higher absorbance intensity, IPCE value, ABPE value, and lower charge transfer resistance. In addition, the photocurrent density of the Sb2S3/CdS/CdIn2S4 photoelectrode was about 4.20 mA/cm2 (1.23 V vs. RHE), which was 1.3 times higher than that of the Sb2S3/CdIn2S4 photoelectrode (3.29 mA/cm2) and 3.2 times higher than that of monomer Sb2S3 photoelectrode (1.32 mA/cm2). This method offers new prospects for optimizing the performance of antimony chalcogenides photoelectrodes for photoelectrochemical water splitting.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35579330

RESUMO

Antimony selenide (Sb2Se3) as a light-harvesting material has gradually attracted the attention of researchers in the field of photoelectrocatalysis. Uniquely, the crystal structure consists of one-dimensional (Sb4Se6)n ribbons, with an efficient carrier transport along the ribbon [001] direction. Herein, a novel Sb2Se3@Sb2S3 core-shell nanorod radial-axial hierarchical heterostructure was successfully fabricated by epitaxial growth strategy. Taking advantage of the isomorphous and anisotropic binding modes of (Sb4S(e)6)n ribbons for Sb2Se3 and Sb2S3, the epitaxially grown core-shell heterostructure forms a van der Waals heterojunction across the radial direction and covalently bonded heterojunction along the axial direction. A photocurrent of 1.37 mA cm-2 was achieved at 0 V vs RHE for the hierarchical Sb2Se3@Sb2S3 nanorod photoelectrode with [101] preferred orientation, up to 40 times higher than for pure Sb2Se3. Moreover, the FeOOH was introduced as a cocatalyst. The photoelectrode decorated with FeOOH shows better stability with a H2 generation rate of 18.9 µmol cm-2 h-1 under neutral conditions. This study provides a new insight into the design of antimony chalcogenide heterostructure photoelectrodes for photoelectrochemical water splitting.

11.
J Colloid Interface Sci ; 588: 269-282, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412350

RESUMO

The photoelectrochemical (PEC) performance of ZnO is restricted by its low light absorption ability and high recombination rate of photogenerated carriers. In order to overcome these drawbacks, ZnO/CdS/CdSe heterostructures are prepared on Zn foil substrate using facile three-step methods containing hydrothermal growth, successive ionic layer adsorption reaction (SILAR) and modified chemical bath deposition (CBD). The effects of process parameters containing the number of SILAR cycles of CdS, sensitization sequence of CdS and CdSe, and precursors of CdSe on PEC performance of ZnO/CdS/CdSe heterostructures, and ZnO NRAs on PEC performance of CdS/CdSe co-sensitizer have been scrutinized. Through CdS and CdSe co-sensitization, a layer of CdS/CdSe nanofilm is conformally deposited on ZnO nanorod arrays (NRAs) observed by transmission electron microscopy (TEM). Both the visible-light absorption ability and separation efficiency of photogenerated carriers of ZnO NRAs are significantly enhanced evidenced by UV-vis diffuse reflectance absorption spectra, photoluminescence (PL) spectra and electrochemical impedance spectra. Due to the synergistic effect of ZnO NRAs and CdS/CdSe co-sensitizer, the ZnO/CdS/CdSe heterostructures with five SILAR cycles and one modified CBD cycle (ZnO-CdS5-CdSe) show efficient PEC properties with photocurrent density of 6.244 mA/cm2 at -0.2 V vs Ag/AgCl under light illumination of 100 mW/cm2, which are 57.28 and 4.73 times higher than those of pristine ZnO NRAs and CdS/CdSe clusters, respectively. Moreover, the photoconversion efficiency and incident photon to current conversion efficiency (IPCE) of the ZnO-CdS5-CdSe photoanode reach 4.381% and 80.92%, respectively. The heterostructures based on Zn foil substrate in this study can be a promising candidate for practical PEC application and other applications such as photocatalytic degradation and solar cell due to its low manufacturing cost, large-scale production and efficient PEC ability.

12.
Ultrason Sonochem ; 61: 104850, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31698197

RESUMO

As a novel type of carbon materials, graphynes possesses the merits of high carrier mobility and large surface areas, etc. However, to date, the main research of graphynes is focused on theoretical calculation whereas few strategies have been reported for the fabrication of graphynes. In this work, a facile method named ultrasound-promoted synthesis was developed to fabricate γ-graphyne using PhBr6 and CaC2 as the raw materials. The reaction system in argon atmosphere ultrasonically vibrated for 24 h in the ultrasonic bath at a power of 180 W and frequency of 53 kHz. The structure, morphology, and component of the obtained samples were detected by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, FT-IR spectra, scanning electron microscopy, transmission electron microscopy, and the selected area electron diffraction. The electrochemical and photoelectrochemical measurements indicate that γ-graphyne can be used as superior electrode mateirals in supercapacitor and photoelectrochemical catalysis. From the results of galvanostatic charge/discharge measurements, the γ-graphyne supercapacitor delivers a maximum specific capacitance of 81 F/g at 0.2 A/g and a capacitance retention rate of 87.5% after 5000 cycles at 3 A/g. Moreover, UV-vis light photoelectrochemical response and high carrier density are observed for γ-graphyne. It is also demonstrated that the charge-transfer resistance is low by Tafel slopes and Nyquist plots. This work puts forward a new and facile strategy for the fabrication of γ-graphyne and explores its application in the field of solar energy conversion and storage.

13.
ACS Appl Mater Interfaces ; 12(17): 20110-20118, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32255600

RESUMO

We report a simple method to control the photoelectrochemical (PEC) water-splitting performance of TiO2 nanotube arrays (NTs) by surface chemical modification. Four types of modifier molecules with different surface energy and functional groups, including amine (-NH2), n-alkane (-CnH2n+1), perfluoroalkyl (-F), and polymer molecule (-polymer), were self-assembled to the surface of TiO2 NTs, which could change the surface chemical composition and wettability from superhydrophilicity to hydrophobicity. Interestingly, different from expected results, photoelectrochemical measurement results show that the n-octadecyltrichlorosilane-modified TiO2 nanotube arrays with a contact angle of about 134° present the highest PEC property with doubled photocurrent density and more negative onset potential. And the total PEC performance order of the monolayers-modified TiO2 NTs is (-CnH2n+1) > (-F) > (-NH2) > (-OH, pristine TiO2) > (-polymer), which is due to the molecular monolayers modification being able to suppress the recombination of photogenerated electrons and holes and facilitate water oxidation by regulating the interface electric double layer, whereas a thick polymer layer on the photoelectrode surface would affect the light absorbance and decrease the PEC performance. Further investigation indicates that the surface energy and wettability of the TiO2 photoelectrode adjusted by surface modification also have an important influence on the interface reaction of water oxidation and the adsorption/desorption of newly formed oxygen, which also provides a new method for controlling the surface photocatalytic reactions.

14.
Nanomaterials (Basel) ; 9(8)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357724

RESUMO

Two-dimensional (2D) nanomaterials have distinct optical and electrical properties owing to their unique structures. In this study, smooth 2D amorphous tin disulfide (SnS2) films were fabricated by atomic layer deposition (ALD), and applied for the first time to photoelectrochemical water splitting. The optimal stable photocurrent density of the 50-nm-thick amorphous SnS2 film fabricated at 140 °C was 51.5 µA/cm2 at an oxygen evolution reaction (0.8 V vs. saturated calomel electrode (SCE)). This value is better than those of most polycrystalline SnS2 films reported in recent years. These results are attributed mainly to adjustable optical band gap in the range of 2.80 to 2.52 eV, precise control of the film thickness at the nanoscale, and the close contact between the prepared SnS2 film and substrate. Subsequently, the photoelectron separation mechanisms of the amorphous, monocrystalline, and polycrystalline SnS2 films are discussed. Considering above advantages, the ALD amorphous SnS2 film can be designed and fabricated according to the application requirements.

15.
J Colloid Interface Sci ; 530: 624-630, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30005239

RESUMO

New insight of introducing new organic compounds for the efficient photogenerated charge separation is vitally important for the current solar energy conversion. Herein, (2Z,2'Z)-4,4'-(anthracene-2,6-diylbis(azanediyl))bis(4-oxobut-2-enoic acid) (ADA)/TiO2 composite thin film is fabricated through the wet-impregnation strategy, which exhibits excellent photoelectrochemical performance (PEC). A combined study of ultraviolet-visible absorption spectra, scanning Kelvin probe maps, electrochemical and photoelectrochemical measurements reveals that the ADA/TiO2 composite with narrow bandgap of 2.42 eV extends the photo response to the visible light region. The photocurrent generated by the optimal ADA/TiO2 is 2.5 times higher than that of the pristine TiO2. The result is attributed to the broader light absorption range and the separation of photoelectrons and holes prompted by ADA. Moreover, the high stability of the ADA/TiO2 composite favors the practical application. The present work may offer a promising strategy for the low-cost PEC cell in the clean solar hydrogen production.

16.
J Colloid Interface Sci ; 526: 459-469, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29772413

RESUMO

In spite of recent progress in developing hollow micro/nanostructures, the synthesis of three-dimensional adsorbents with high adsorption efficiency and capability on the basis of these structures still remains a great challenge. Herein, we demonstrate a facile hydrothermal strategy to synthesize uniformly dispersed hollow CuWO4 spheres. The as-prepared CuWO4 spheres with unique mesoporous structure show favorable selective adsorption for cationic dyes and good recyclability. The adsorption capacity of hollow CuWO4 towards methylene blue (MB) reaches 59.82 mg g-1. Furthermore, the hollow CuWO4 spheres present enhanced photoelectrochemical performance under visible light illumination. This strategy of acquiring specifically functionalized materials from smart design and simple chemical process has opened up wide opportunities on the fabrication of alternative absorbents and photoelectrodes based on CuWO4 substrate.

17.
ACS Appl Mater Interfaces ; 10(20): 17280-17286, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29727156

RESUMO

The initiation of hydrogen energy production from sunlight through photoelectrochemical (PEC) system is an important strategy for resolving contemporary issues in energy requirement. Although precious Pt and other noble metals offer a desirable catalytic activity for this method, earth-abundant nonprecious metal catalysts must be developed for wide-scale application. In this regard, P-type silicon (P-Si) micropyramids (Si MPs) are a favorable photocathode because of their effective light-conversion properties and appropriate band gap position. In this study, we developed amorphous tungsten phosphosulfide nanosheets (WS2- xP x NSs) on Si MPs through a simple thermal annealing process for solar-driven hydrogen evolution reaction. The P substitution in the nanostructure effectively produced many defective sites at the edges. The product exhibited an efficient photocurrent density of 19.11 mA cm-2 at 0 V and a low onset potential of 0.21 VRHE compared with tungsten disulfide (WS2; 13.43 mA cm-2). The fabricated catalyst also showed desirable stability for up to 8 h for the WS0.60P1.40@Si MPs photocathode. The extraordinary activity could be due to numerous active sites provided by heteroatoms (sulfur and phosphorus) in the edges, resulting in dwindling reaction kinetics barrier and enhanced PEC activity.

18.
J Colloid Interface Sci ; 512: 86-95, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054010

RESUMO

H2O, as a product of reduced reaction by H2, may affect the chemical equilibrium according to the changing of the pressure ratio of H2O/H2 in the system. Meanwhile, the performance may also be influenced by adsorption of H2O on the surface of the material. In this work, the effect of H2O is studied by reducing plate-like array WO3 films under different pressure ratio of H2O/H2. It is controlled by changing the water temperature in the washing bottle through which the Ar/H2 (80:20) gas flows. The higher water vapor pressure not only decreases the content of W5+ but also increases the content of surface hydroxyl groups in the WO3 films. Moreover, the excess water vapor improves the crystallinity. The WO3 film shows hydrophobicity with adhesive property and high contact angle hysteresis after reduction, and the wettability increases with the increase of the pressure ratio of H2O/H2. Additionally, a built-in electric field may form by dissociation of the surface hydroxyl group and absorption of O- species, which promotes the charge separation, showing better photoelectrochemical (PEC) performance. Thus, water influences the coverage of chemical species on the surface of hydrogen reduced WO3 film, which affects the wettability and PEC performance.

19.
ACS Appl Mater Interfaces ; 10(17): 15304-15313, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29633828

RESUMO

Nano-heterostructures are widely used in the field of optoelectronic devices, and an optimal proportion usually exists between the constituents that make up the structures. Investigation on the mechanism underlying the optimal ratio is instructive for fabricating nano-heterostructures with high efficiency. In this work, BiOCl/Bi2S3 type-II nano-heterostructures with different Bi2S3/BiOCl ratios have been prepared via epitaxial growth of Bi2S3 nanorods on BiOCl nanosheets with solvothermal treatment at different sulfuration temperatures (110-180 °C) and their photoelectrochemical (PEC) performances as photoanodes have been studied. Results indicate that the Bi2S3 content increases with the sulfuration temperature. BiOCl/Bi2S3-170 (i.e., sulfurized@170 °C) exhibits the highest PEC performance under visible-light illumination, whereas BiOCl/Bi2S3-180 with the maximum Bi2S3 content shows the highest visible-light absorption, i.e., possessing the best potential for charge generation. Further analysis indicates that the BiOCl/Bi2S3 heterojunction interface is also crucial in determining the PEC performance of the obtained heterostructures by influencing the charge separation process. With increasing Bi2S3 content, the interface area in the BiOCl/Bi2S3 nano-heterostructures increases first and then decreases due to the mechanical fragility of the nanosheet-nanorod structure and the structural instability in the [010] direction of Bi2S3 with higher Bi2S3 content. Therefore, the increasing content of the Bi2S3 does not necessarily correspond to higher heterojunction area. The optimal performance of BiOCl/Bi2S3-170 results from the maximum of the synthetic coordination of the charge generation and separation. This is the first time ever to figure out the detailed explanation of the optimal property in the nano-heterostructures. The result is inspiring in designing high-performance nano-heterostructures from the point of synthesizing morphological mechanically robust heterostructure and structurally stable constituents to reach a high interfacial area, as well as high light-absorption ability.

20.
Nanoscale Res Lett ; 12(1): 261, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28395481

RESUMO

Although CdS and PbS quantum dot-sensitized TiO2 nanotube arrays (TNTAs/QDs) show photocatalytic activity in the visible-light region, the low internal quantum efficiency and the slow interfacial hole transfer rate limit their applications. This work modified the surface of the TNTAs/QDs photoelectrodes with metal-oxide overlayers by atomic layer deposition (ALD), such as coating Al2O3, TiO2, and ZnO. The ALD deposition of all these overlayers can apparently enhance the photoelectrochemical performance of the TNTAs/QDs. Under simulated solar illumination, the maximum photocurrent densities of the TNTAs/QDs with 10 cycles ZnO, 25 cycles TiO2, and 30 cycles Al2O3 overlayers are 5.0, 4.3, and 5.6 mA/cm2 at 1.0 V (vs. SCE), respectively. The photoelectrode with Al2O3 overlayer coating presents the superior performance, whose photocurrent density is 37 times and 1.6 times higher than those of the TNTAs and TNTAs/QDs, respectively. Systematic examination of the effects of various metal-oxide overlayers on the photoelectrochemical performance indicates that the enhancement by TiO2 and ZnO overcoatings can only ascribed to the decrease of the interfacial charge transfer impedance, besides which Al2O3 coating can passivate the surface states and facilitate the charge transfer kinetics. These results could be helpful to develop high-performance photoelectrodes in the photoelectrochemical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA