RESUMO
Metastasis is an important contributor to increased mortality rates in non-small cell lung cancer (NSCLC). The TGF-ß signalling pathway plays a crucial role in facilitating tumour metastasis through epithelial-mesenchymal transition (EMT). Glycolysis, a key metabolic process, is strongly correlated with NSCLC metastasis. Pirfenidone (PFD) has been shown to safely and effectively inhibit TGF-ß1 in patients with lung diseases. Furthermore, TGF-ß1 and glycolysis demonstrate an interdependent relationship within the tumour microenvironment. Our previous study demonstrated that PFD effectively inhibited glycolysis in NSCLC cells, prompting further investigation into its potential antitumour effects in this context. Therefore, the present study aims to investigate the potential antitumour effect of PFD in NSCLC and explore the relationship among TGF-ß1, glycolysis and EMT through further experimentation. The antitumour effects of PFD were evaluated using five different NSCLC cell lines and a xenograft tumour model. Notably, PFD demonstrated a significant antitumour effect specifically in highly glycolytic H1299 cells. To elucidate the underlying mechanism, we compared the efficacy of PFD after pretreatment with either TGF-ß1 or a TGF-ß receptor inhibitor (LY2109761). The energy metabolomics analysis of tumour tissue demonstrated that PFD, a chemosensitizing agent, reduced lactate and ATP production, thereby inhibiting glycolysis and exerting synergistic antineoplastic effects. Additionally, PFD combined with cisplatin targeted TGF-ß1 to inhibit glycolysis during EMT and enhanced the chemosensitization of A549 and H1299 cells. The magnitude of the anticancer effect exhibited by PFD was intricately linked to its metabolic properties.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Piridonas , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Reprogramação Metabólica , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral , AnimaisRESUMO
Furin (Fur) is a member of the protease convertase family; its expression is crucial for cleaving and maturing many proteins. Fur also represents a therapeutic target in cancer, autoimmune diseases, and viral infections. Pioglitazone (PGZ) and rosiglitazone (RGZ) are thiazolidinediones prescribed to type 2 diabetes patients and are structurally similar to the known Fur inhibitors naphthofluorescein (NPF) and pirfenidone (PFD). Thus, this study used molecular docking and molecular dynamics to assess and compare the affinities and the molecular interactions of these four ligands with the Fur active site (FurAct) and the recently described Fur allosteric site (FurAll). The 7QXZ Fur structure was used for molecular dockings, and for the best pose complexes, molecular dynamics were run for 100 ns. The best affinities of the ligand/FurAct and ligand/FurAll complexes were with NPF, PGZ, and RGZ, while PFD presented the lowest affinity. Asp154 was the central residue involved in FurAct complex formation, while Glu488 and Asn310 were the central residues involved in FurAll complex formation. This study shows the potential of RGZ, PGZ, and PFD as Fur competitive (FurAct) and non-competitive (FurAll) inhibitors. Therefore, they are candidates for repurposing in response to future emerging diseases through the modulation of Fur activity.
RESUMO
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality rates. It has been shown that pirfenidone (PFD) and nintedanib (Ofev) can slow down the decline in lung function of IPF patients, but their efficacy remains suboptimal. Some studies have suggested that the combination of PFD and Ofev may yield promising results. However, there is a lack of research on the combined application of these two medications in the treatment of IPF. A mouse model of bleomycin-induced (BLM) pulmonary fibrosis was established to investigate the impact of combination therapy on pulmonary fibrosis of mice. The findings demonstrated a significant reduction in lung tissue damage in mice treated with the combination therapy. Subsequent transcriptome analysis identified the differential gene secreted phosphoprotein 1 (SPP1), which was found to be associated with macrophages and fibroblasts based on multiple immunofluorescence staining results. Analysis of a phosphorylated protein microarray indicated that SPP1 plays a regulatory role in macrophages and fibroblasts via the AKT pathway. Consequently, the regulation of macrophages and fibroblasts in pulmonary fibrosis by the combination of PFD and Ofev is mediated by SPP1 through the AKT pathway, potentially offering a novel therapeutic option for IPF patients. Further investigation into the targeting of SPP1 for the treatment of pulmonary fibrosis is warranted.
Assuntos
Fibroblastos , Indóis , Macrófagos , Camundongos Endogâmicos C57BL , Osteopontina , Proteínas Proto-Oncogênicas c-akt , Piridonas , Animais , Camundongos , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Bleomicina , Quimioterapia Combinada , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Indóis/farmacologia , Indóis/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Osteopontina/efeitos dos fármacos , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/farmacologia , Piridonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacosRESUMO
Metabolic syndrome (MetS) is largely coupled with chronic kidney disease (CKD). Glycogen synthase kinase-3ß (GSK-3ß) pathway drives tubular injury in animal models of acute kidney injury; but its contribution in CKD is still elusive. This study investigated the effect empagliflozin and/or pirfenidone against MetS-induced kidney dysfunction, and to clarify additional underpinning mechanisms particularly the GSK-3ß signaling pathway. Adult male rats received 10%w/v fructose in drinking water for 20 weeks to develop MetS, then treated with either drug vehicle, empagliflozin (30 mg/kg/day) and/or pirfenidone (100 mg/kg/day) via oral gavage for subsequent 4 weeks, concurrently with the high dietary fructose. Age-matched rats receiving normal drinking water were used as controls. After 24 weeks, blood and kidneys were harvested for subsequent analyses. Rats with MetS showed signs of kidney dysfunction, structural changes and interstitial fibrosis. Activation of GSK-3ß, decreased cyclinD1 expression and enhanced apoptotic signaling were found in kidneys of MetS rats. There was abundant alpha-smooth muscle actin (α-SMA) expression along with up-regulation of TGF-ß1/Smad3 in kidneys of MetS rats. These derangements were almost alleviated by empagliflozin or pirfenidone, with evidence that the combined therapy was more effective than either individual drug. This study emphasizes a novel mechanism underpinning the beneficial effects of empagliflozin and pirfenidone on kidney dysfunction associated with MetS through targeting GSK-3ß signaling which can mediate the regenerative capacity, anti-apoptotic effects and anti-fibrotic properties of such drugs. These findings recommend the possibility of using empagliflozin and pirfenidone as promising therapies for management of CKD in patients with MetS.
Assuntos
Compostos Benzidrílicos , Glucosídeos , Glicogênio Sintase Quinase 3 beta , Túbulos Renais , Síndrome Metabólica , Piridonas , Animais , Piridonas/farmacologia , Masculino , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Compostos Benzidrílicos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Ratos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/complicações , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Regeneração/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacosRESUMO
Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3ß/ß-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/ß-catenin signaling pathways.
Assuntos
1-Naftilisotiocianato , Colestase , Glicogênio Sintase Quinase 3 beta , NF-kappa B , Piridonas , Receptores Citoplasmáticos e Nucleares , Fator de Necrose Tumoral alfa , Via de Sinalização Wnt , Animais , Piridonas/farmacologia , NF-kappa B/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , 1-Naftilisotiocianato/toxicidade , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Colestase/induzido quimicamente , Colestase/metabolismo , Colestase/tratamento farmacológico , Colestase/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Camundongos Endogâmicos C57BL , beta Catenina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologiaRESUMO
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease (ILD) with a high mortality rate. The antifibrotic medications pirfenidone and nintedanib have been in use since 2014 for this disorder and are associated with improved rate of lung function decline. Less is known about their long-term outcomes outside of the clinical trial context. METHODS: The Pulmonary Fibrosis Foundation Patient Registry was used for this study. Patients with an IPF diagnosis made within a year of enrollment were included. The treated group was defined as patients receiving either pirfenidone or nintedanib for at least 180 days. The untreated group did not have any record of antifibrotic use. Demographic data, comorbidities, serial lung function, hospitalization, and vital status data were collected from the registry database. The primary outcomes were transplant-free survival, time to first respiratory hospitalization, and time to 10% absolute FVC decline. Time-to-event analyses were performed utilizing Cox proportional hazards models and the log-rank test. Model covariates included age, gender, smoking history, baseline lung function, comorbidities, and oxygen use. RESULTS: The registry contained 1212 patients with IPF; ultimately 288 patients met inclusion criteria for the treated group, and 101 patients were designated as untreated. Patients treated with antifibrotics were significantly younger (69.8 vs. 72.6 years, p = 0.008) and less likely to have smoked (61.1% ever smokers vs. 72.3% never smokers, p = 0.04). No significant differences were seen in race, gender, comorbidities, or baseline pulmonary function between groups. The primary outcome of transplant-free survival was not significantly different between the two groups (adjusted HR 0.799, 95% CI 0.534-1.197, p = 0.28). Time to respiratory hospitalization was significantly shorter in the treated group (adjusted HR 2.12, 95% CI 1.05-4.30, p = 0.04). No significant difference in time to pulmonary function decline was seen between groups. CONCLUSIONS: This multicenter study demonstrated 63% of newly diagnosed IPF patients had continuous antifibrotic usage. Antifibrotics were not associated with improved transplant-free survival or pulmonary function change but was associated with an increased hazard of respiratory hospitalization. Future studies should further investigate the role of antifibrotic therapy in clinically important outcomes in real-world patients with IPF and other progressive ILDs.
Assuntos
Antifibróticos , Fibrose Pulmonar Idiopática , Indóis , Piridonas , Sistema de Registros , Humanos , Masculino , Feminino , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/diagnóstico , Idoso , Pessoa de Meia-Idade , Antifibróticos/uso terapêutico , Resultado do Tratamento , Piridonas/uso terapêutico , Indóis/uso terapêutico , Fatores de TempoRESUMO
BACKGROUND AND OBJECTIVE: Pooled analyses of previous randomized controlled trials reported that antifibrotics improved survival in patients with idiopathic pulmonary fibrosis (IPF), but the results were only based on short-term outcome data from selected patients who met strict criteria. Observational studies/meta-analyses also suggested that antifibrotics improve survival, but these studies failed to control for immortal time bias that considerably exaggerates drug effects. Therefore, whether antifibrotics truly improve long-term survival in patients with IPF in the real world remains undetermined and requires external validity. METHODS: We used data from the Japanese National Claims Database to estimate the intention-to-treat effect of antifibrotics on mortality. To address immortal time bias, we employed models treating antifibrotic initiation as a time-dependent covariate and target trial emulation (TTE), both incorporating new-user designs for antifibrotics and treating lung transplantation as a competing event. RESULTS: Of 30,154 patients with IPF, 14,525 received antifibrotics. Multivariate Fine-Gray models with antifibrotic initiation as a time-dependent covariate revealed that compared with no treatment, nintedanib (adjusted hazard ratio [aHR], 0.85; 95% confidence interval [CI], 0.81-0.89) and pirfenidone (aHR, 0.89; 95% CI, 0.86-0.93) were associated with reduced mortality. The TTE model also replicated the associations of nintedanib (aHR, 0.69; 95% CI, 0.65-0.74) and pirfenidone (aHR, 0.81; 95% CI, 0.78-0.85) with reduced mortality. Subgroup analyses confirmed this association regardless of age, sex, and comorbidities, excluding certain subpopulations. CONCLUSIONS: The results of this large-scale real-world analysis support the generalizability of the association between antifibrotics and improved survival in various IPF populations.
Assuntos
Antifibróticos , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/diagnóstico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Antifibróticos/uso terapêutico , Fatores de Tempo , Japão/epidemiologia , Viés , Piridonas/uso terapêutico , Reprodutibilidade dos Testes , Bases de Dados Factuais/tendências , Taxa de Sobrevida/tendências , Resultado do Tratamento , IndóisRESUMO
Hypertrophic scar (HS) formation is a cutaneous fibroproliferative disease that occurs after skin injuries and results in severe functional and esthetic disability. To date, few drugs have shown satisfactory outcomes for the treatment of HS formation. Transforming growth factor-beta (TGF-ß)/Notch interaction via small mothers against decapentaplegic 3 (Smad3) could facilitate HS formation; therefore, targeting TGF-ß/ Notch interaction via Smad3 is a potential therapeutic strategy to attenuate HS formation. In addition, optic atrophy 1 (OPA1)-mediated mitochondrial fusion contributes to fibroblast proliferation, and TGF-ß/Smad3 axis and the Notch1 pathway facilitate OPA1-mediated mitochondrial fusion. Thus, the aim of this study was to investigate whether drugs targeting TGF-ß/Notch interaction via Smad3 suppressed fibroblast proliferation to attenuate HS formation through OPA1-mediated mitochondrial fusion. We found that the TGF-ß pathway, Notch pathway, and TGF-ß/Notch interaction via Smad3 were inhibited by pirfenidone, the gamma- secretase inhibitor DAPT, and SIS3 in human keloid fibroblasts (HKF) and an HS rat model, respectively. Protein interaction was detected by co-immunoprecipitation, and mitochondrial morphology was determined by electron microscopy. Our results indicated that pirfenidone, DAPT, and SIS3 suppressed the proliferation of HKFs and attenuated HS formation in the HS rat model by inhibiting TGF-ß/Notch interaction via Smad3. Moreover, pirfenidone, DAPT, and SIS3 hindered OPA1-mediated mitochondrial fusion through inhibiting TGF-ß/Notch interaction, thereby suppressing the proliferation of HS fibroblasts and HS formation. In summary, these findings investigating the effects of drugs targeting TGF-ß/Notch interaction on HS formation might lead to novel drugs for the treatment of HS formation.
Assuntos
Cicatriz Hipertrófica , Fibroblastos , Dinâmica Mitocondrial , Proteína Smad3 , Fator de Crescimento Transformador beta , Humanos , Animais , Ratos , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína Smad3/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Notch/metabolismo , Masculino , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , FemininoRESUMO
Idiopathic pulmonary fibrosis (IPF) is a fatal progressive and irreversible ailment associated with the proliferation of fibroblast and accumulation of extracellular matrix (ECM) with gradual scarring of lung tissue. Despite several research studies, the treatments available are not efficient enough for the reversal of the disease and are constantly in progress. No drugs other than Pirfenidone and Nintedanib have been approved for the treatment of IPF, necessitating the exploration of novel therapeutic strategies. Recently, lipid-based nanoparticles (LNPs) have drawn more attention because of their potential to enhance the solubility of drugs, cross biological barriers of the lungs and specifically target lung fibrotic tissues, overcoming various challenges in treating IPF. LNPs offer a versatile platform to encapsulate a wide range of drugs, both hydrophilic and lipophilic, improving their bioavailability, allowing sustained release and reducing toxicity, which radiates their significant role in addressing the complexities of IPF. This review summarizes the pathogenesis and conventional treatment of idiopathic pulmonary fibrosis, along with their drawbacks. The review focuses on different types of lipid-based nanoparticles that have been tested in the treatment of idiopathic pulmonary fibrosis, including nanoemulsions, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, niosomes and lipid-polymer hybrid nanoparticles. The review also highlights the future prospects that can offer a potential approach for developing novel strategies to treat idiopathic pulmonary fibrosis.
RESUMO
BACKGROUND: Idiopathic pulmonary fibrosis is a progressive and fatal lung disease lacking effective therapeutics. Treatment with pirfenidone or nintedanib is recommended for patients to delay the progression of their disease. Adverse reactions caused by anti-fibrosis drugs can sometimes interrupt treatment and even change the progression of the disease. OBJECTIVE: This study aimed to investigate the clinical use, adverse reactions, tolerability of pirfenidone and nintedanib in patients with idiopathic pulmonary fibrosis and the efficacy of antifibrotic therapy in a real world. METHODS: We recruited patients with idiopathic pulmonary fibrosis treated with pirfenidone or nintedanib at China-Japan Friendship Hospital from February 2017 to February 2022. We investigated the medication situation, adverse reactions, tolerability and survival of patients taking medications. RESULTS: A total of 303 patients with idiopathic pulmonary fibrosis were enrolled in the study. Treatment was divided between 205 patients receiving pirfenidone and 98 patients receiving nintedanib. Baseline data between the two groups were not significantly different. Patients treated with nintedanib had a higher overall discontinuation rate than those treated with pirfenidone (61.22 vs. 32.68 %, p < 0.001). Across all patient groups, the most common reason for discontinuing treatment was medication-related adverse effects. Compared to pirfenidone, nintedanib had a significantly higher discontinuation rate due to adverse events (48.98 % vs 27.80 %, p < 0.001). The most common side effect of both drugs was diarrhea. Pirfenidone was associated with a higher rate of extra-digestive adverse effects than nintedanib. Survival was not significantly different between the two drugs and using pirfenidone above 1200 mg/day did not confer significant survival benefits. The survival rate of patients who adhere to anti-fibrosis therapy for more than 6 months can be significantly improved (HR = 0.323, p = 0.0015). CONCLUSION: Gastrointestinal adverse effects were the most common adverse effects and the main reason of discontinuation of antifibrotic therapy, especially nintedanib. Consistent adherence to antifibrotic therapy may make the patients benefit from adjusting their antifibrotic medications, dosage, and active management of side effects.
Assuntos
Fibrose Pulmonar Idiopática , Humanos , Resultado do Tratamento , Fibrose , Taxa de Sobrevida , Piridonas/efeitos adversos , JapãoRESUMO
BACKGROUND AND OBJECTIVE: Multiple randomized controlled studies have shown that pirfenidone and nintedanib are effective and safe for treating idiopathic pulmonary fibrosis. This study aimed to evaluate their efficacy, safety, and tolerability in a real-world setting. METHODS: We searched PubMed, Embase, Cochrane Library, and ClinicalTrials.gov databases for real-world studies published up to March 3, 2023, on pirfenidone and nintedanib for idiopathic pulmonary fibrosis. RESULTS: A total of 74 studies with 23,119 participants were included. After 12 months of treatment, the change from baseline in percent predicted FVC (%FVC) was - 0.75% for pirfenidone and - 1.43% for nintedanib. The change from baseline in percent predicted DLCO (%DCLO) was - 2.32% for pirfenidone and - 3.95% for nintedanib. The incidence of acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) was 12.5% for pirfenidone and 14.4% for nintedanib. The IPF-related mortality rates of pirfenidone and nintedanib were 13.4% and 7.2%, respectively. The all-cause mortality was 20.1% for pirfenidone and 16.6% for nintedanib. In the pirfenidone group, 16.6% of patients discontinued treatment because of adverse events, and in the nintedanib group, 16.2% of patients discontinued treatment because of adverse events. The incidence of adverse events was 56.4% and 69.7% for pirfenidone and nintedanib, respectively. CONCLUSION: The results of this study indicate that pirfenidone and nintedanib are both effective in slowing down the decline of lung function in IPF patients in real-world settings. The incidence of adverse events with pirfenidone is lower than that with nintedanib, but both are below the clinical trial data, and no new major adverse events have been observed. The discontinuation rates due to adverse reactions of the two drugs are consistent with clinical trial data, indicating good tolerability. However, the mortality rates and AE-IPF incidence rates of these two drugs in real-world settings are higher than those in previous clinical trials, with pirfenidone patients showing a higher mortality rate. Further large-sample studies are needed to investigate the risks of these drugs in these aspects. Additionally, we recommend that future real-world studies pay more attention to patients' subjective symptoms and conduct stratified analyses of the efficacy and safety of pirfenidone and nintedanib based on factors such as patients' baseline lung function, comorbidities, and age, in order to provide more personalized medication advice for IPF patients in clinical practice.
Assuntos
Fibrose Pulmonar Idiopática , Indóis , Piridonas , Humanos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/efeitos adversos , Antifibróticos/administração & dosagem , Antifibróticos/efeitos adversos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/fisiopatologia , Indóis/administração & dosagem , Indóis/efeitos adversos , Piridonas/administração & dosagem , Piridonas/efeitos adversos , Resultado do TratamentoRESUMO
Idiopathic pulmonary fibrosis (IPF) is a fatal, chronic and progressive lung disease that threaten public health like many cancers. In this study, targeting the significant driving factor, inflammatory response, of the IPF, several conjugates of pirfenidone (PFD) with non-steroidal anti-inflammatory drugs (NSAIDs), along with their derivatives, were designed and synthesized to enhance the anti-IPF potency of PFD. Among these compounds, the (S)-ibuprofen-PFD conjugate 5b exhibited the most potent anti-proliferation activity against NIH3T3 cells, demonstrating up to a 343-fold improvement compared to PFD (IC50 = 0.04 mM vs IC50 = 13.72 mM). Notably, 5b exhibited superior activity in inhibiting the migration of macrophages induced by TGF-ß compared to PFD. Additionally, 5b demonstrated significant suppression of TGF-ß-induced migration of NIH3T3 cells and induction of apoptosis in NIH3T3 cells. Mechanistic studies revealed that 5b reduced the expression of collagen I and α-SMA by inhibiting the TGF-ß/SMAD3 pathway. In a bleomycin-induced pulmonary fibrosis model, treatment with 5b (40 mg/kg/day, orally) exhibited a more pronounced effect on reducing the degree of histopathological changes in lung tissue and alleviating collagen deposition compared to PFD (100 mg/kg/day, orally). Moreover, 5b could block the expression of collagen I, α-SMA, fibronectin, and pro-inflammatory factors (IL-6, IFN-γ, and TNF-α) compared to PFD, while demonstrating low toxicity in vivo. These preliminary results indicated that the hybridization of PFD with NSAIDs represented an effective modification approach to improve the anti-IPF potency of PFD. Consequently, 5b emerged as a promising candidate for the further development of new anti-IPF agents.
Assuntos
Fibrose Pulmonar Idiopática , Animais , Camundongos , Humanos , Células NIH 3T3 , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Piridonas/farmacologia , Piridonas/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Colágeno/metabolismo , Colágeno/uso terapêutico , Colágeno Tipo I/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
BACKGROUND: Lung fibrosis is a chronic lung disease with a high mortality rate with only two approved drugs (pirfenidone and nintedanib) to attenuate its progression. To date, there are no reliable biomarkers to assess fibrosis development and/or treatment effects for these two drugs. Osteoprotegerin (OPG) is used as a serum marker to diagnose liver fibrosis and we have previously shown it associates with lung fibrosis as well. METHODS: Here we used murine and human precision-cut lung slices to investigate the regulation of OPG in lung tissue to elucidate whether it tracks with (early) fibrosis development and responds to antifibrotic treatment to assess its potential use as a biomarker. RESULTS: OPG mRNA expression in murine lung slices was higher after treatment with profibrotic cytokines TGFß1 or IL13, and closely correlated with Fn and PAI1 mRNA expression. More OPG protein was released from fibrotic human lung slices than from the control human slices and from TGFß1 and IL13-stimulated murine lung slices compared to control murine slices. This OPG release was inhibited when murine slices were treated with pirfenidone or nintedanib. OPG release from human fibrotic lung slices was inhibited by pirfenidone treatment. CONCLUSION: OPG can already be detected during the early stages of fibrosis development and responds, both in early- and late-stage fibrosis, to treatment with antifibrotic drugs currently on the market for lung fibrosis. Therefore, OPG should be further investigated as a potential biomarker for lung fibrosis and a potential surrogate marker for treatment effect.
Assuntos
Antifibróticos , Biomarcadores , Indóis , Pulmão , Osteoprotegerina , Fibrose Pulmonar , Piridonas , Fator de Crescimento Transformador beta1 , Animais , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Humanos , Indóis/farmacologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Piridonas/farmacologia , Piridonas/uso terapêutico , Camundongos , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino , RNA Mensageiro/metabolismo , RNA Mensageiro/genéticaRESUMO
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on global health and economies, resulting in millions of infections and deaths. This retrospective cohort study aimed to investigate the effect of antifibrotic agents (nintedanib and pirfenidone) on 1-year mortality in COVID-19 patients with acute respiratory failure. METHODS: Data from 61 healthcare organizations in the TriNetX database were analyzed. Adult patients with COVID-19 and acute respiratory failure were included. Patients with a pre-existing diagnosis of idiopathic pulmonary fibrosis before their COVID-19 diagnosis were excluded. The study population was divided into an antifibrotic group and a control group. Propensity score matching was used to compare outcomes, and hazard ratios (HR) for 1-year mortality were calculated. RESULTS: The antifibrotic group exhibited a significantly lower 1-year mortality rate compared to the control group. The survival probability at the end of the study was 84.42% in the antifibrotic group and 69.87% in the control group. The Log-Rank test yielded a p-value of less than 0.001. The hazard ratio was 0.434 (95% CI: 0.264-0.712), indicating a significant reduction in 1-year mortality in the antifibrotic group. Subgroup analysis demonstrated significantly improved 1-year survival in patients receiving nintedanib treatment and during periods when the Wuhan strain was predominant. DISCUSSION: This study is the first to demonstrate a survival benefit of antifibrotic agents in COVID-19 patients with acute respiratory failure. Further research and clinical trials are needed to confirm the efficacy of these antifibrotic agents in the context of COVID-19 and acute respiratory failure.
Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Insuficiência Respiratória , Adulto , Humanos , Antifibróticos , Estudos Retrospectivos , Teste para COVID-19 , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/diagnóstico , Insuficiência Respiratória/tratamento farmacológico , Piridonas/uso terapêutico , Resultado do TratamentoRESUMO
INTRODUCTION: We investigated the potential of LPS (10-300 µg/rat) administered intratracheally (i.t.) to induce reproducible features of acute lung injury (ALI) and compared the pharmacological efficacy of anti-inflammatory glucocorticoids and antifibrotic drugs to reduce the disease. Additionally, we studied the time-dependent progression of ALI in this LPS rat model. METHODS: We conducted (1) dose effect studies of LPS administered i.t. at 10, 30, 100, and 300 µg/rat on ALI at 4 h timepoint; (2) pharmacological interventions using i.t. fluticasone (100 and 300 µg/rat), i.t. pirfenidone (4,000 µg/rat), and peroral dexamethasone (1 mg/kg) at 4 h timepoint; (3) kinetic studies at 0, 2, 4, 6, 8, 10, and 24 h post-LPS challenge. Phenotype or pharmacological efficacy was assessed using predetermined ALI features such as pulmonary inflammation, edema, and inflammatory mediators. RESULTS: All LPS doses induced a similar increase of inflammation, edema, and inflammatory mediators, e.g., IL6, IL1ß, TNFα, and CINC-1. In pharmacological intervention studies, we showed fluticasone and dexamethasone ameliorated ALI by inhibiting inflammation (>60-80%), edema (>70-100%), and the increase of cytokines IL6, IL1ß, and TNFα (≥70-90%). We also noticed some inhibition of CINC-1 (25-35%) and TIMP1 (57%) increase with fluticasone and dexamethasone. Conversely, pirfenidone failed to inhibit inflammation, edema, and mediators of inflammation. Last, in ALI kinetic studies, we observed progressive pulmonary inflammation and TIMP1 levels, which peaked at 6 h and remained elevated up to 24 h. Progressive pulmonary edema started between 2 and 4 h and was sustained at later timepoints. On average, levels of IL6 (peak at 6-8 h), IL1ß (peak at 2-10 h), TNFα (peak at 2 h), CINC-1 (peak at 2-6 h), and TGFß1 (peak at 8 h) were elevated between 2 and 10 h and declined toward 24 h post-LPS challenge. CONCLUSION: Our data show that 10 µg/rat LPS achieved a robust, profound, and reproducible experimental ALI phenotype. Glucocorticoids ameliorated key ALI features at the 4-h timepoint, but the antifibrotic pirfenidone failed. Progressive inflammation and sustained pulmonary edema were present up to 24 h, whereas levels of inflammatory mediators were dynamic during ALI progression. This study's data might be helpful in designing appropriate experiments to test the potential of new therapeutics to cure ALI.
Assuntos
Lesão Pulmonar Aguda , Pneumonia , Edema Pulmonar , Piridonas , Ratos , Animais , Lipopolissacarídeos/toxicidade , Fluticasona/uso terapêutico , Fluticasona/farmacologia , Fator de Necrose Tumoral alfa/genética , Interleucina-6 , Cinética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão , Pneumonia/induzido quimicamente , Inflamação , Mediadores da Inflamação , Dexametasona/farmacologia , Dexametasona/uso terapêutico , EdemaRESUMO
Oral submucous fibrosis (OSF) is a chronic disorder with a high malignant transformation rate. Epithelial-mesenchymal transition (EMT) and angiogenesis are key events in OSF. The Notch signaling plays an essential role in the pathogenesis of various fibrotic diseases, including OSF. Our study aimed to explore the effects of Notch on the EMT and angiogenesis processes during the development of OSF. The expression of Notch in OSF tissues versus normal buccal mucosa samples was compared. Arecoline was used to induce myofibroblast transdifferentiation of buccal mucosal fibroblasts (BMFs). Short hairpin RNA technique was used to knockdown Notch in BMFs. Pirfenidone and SRI-011381 were used to inhibit and activate the TGF-ß1 signaling pathway in BMFs, respectively. The expression of Notch was markedly upregulated in OSF tissues and fibrotic BMFs. Knockdown of Notch significantly decreased the viability and promoted apoptosis in BMFs subjected to arecoline stimulation. Downregulation of Notch also significantly suppressed the EMT process, as shown by the reduction of N-cadherin and vimentin with concomitant upregulation of E-cadherin. In addition, knockdown of Notch upregulated VEGF and enhanced the angiogenic activity of fBMFs. Moreover, inhibition of TGF-ß1 suppressed viability and EMT, promoted apoptosis, and induced angiogenesis of fBMFs, while activation of TGF-ß1 significantly diminished the effects of Notch knockdown on fBMFs. Knockdown of Notch suppressed EMT and induced angiogenesis in OSF by regulating TGF-ß1, suggesting that the Notch-TGF-ß1 pathway may serve as a therapeutic intervention target for OSF.
RESUMO
Cardiac fibrosis is a severe outcome of Chagas disease (CD), caused by the protozoan Trypanosoma cruzi. Clinical evidence revealed a correlation between fibrosis levels with impaired cardiac performance in CD patients. Therefore, we sought to analyze the effect of inhibitors of TGF-ß (pirfenidone), p38-MAPK (losmapimod) and c-Jun (SP600125) on the modulation of collagen deposition in cardiac fibroblasts (CF) and in vivo models of T. cruzi chronic infection. Sirius Red/Fast Green dye was used to quantify both collagen expression and total protein amount, assessing cytotoxicity. The compounds were also used to treat C57/Bl6 mice chronically infected with T. cruzi, Brazil strain. We identified an anti-fibrotic effect in vitro for pirfenidone (TGF-ß inhibitor, IC50 114.3 µM), losmapimod (p38 inhibitor, IC50 17.6 µM) and SP600125 (c-Jun inhibitor, IC50 3.9 µM). This effect was independent of CF proliferation since these compounds do not affect T. cruzi-induced host cell multiplication as measured by BrdU incorporation. Assays of chronic infection of mice with T. cruzi have shown a reduction in heart collagen by pirfenidone. These results propose a novel approach to fibrosis therapy in CD, with the prospect of repurposing pirfenidone to prevent the onset of ECM accumulation in the hearts of the patients.
Assuntos
Cardiomiopatia Chagásica , Fibrose , Camundongos Endogâmicos C57BL , Piridonas , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Camundongos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Miocárdio/patologia , Miocárdio/metabolismo , Colágeno/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Humanos , Doença Crônica , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Masculino , AntracenosRESUMO
Acute respiratory distress syndrome (ARDS) occurs as an acute onset condition, and patients present with diffuse alveolar damage, refractory hypoxemia, and non-cardiac pulmonary edema. ARDS progresses through an initial exudative phase, an inflammatory phase, and a final fibrotic phase. Pirfenidone, a powerful anti-fibrotic agent, is known as an agent that inhibits the progression of fibrosis in idiopathic pulmonary fibrosis. In this study, we studied the treatment efficiency of pirfenidone on lipopolysaccharide (LPS) and bleomycin-induced ARDS using rats. The ARDS rat model was created by the intratracheal administration of 3 mg/kg LPS of and 3 mg/kg of bleomycin dissolved in 0.2 mL of normal saline. The pirfenidone treatment group was administered 100 or 200 mg/kg of pirfenidone dissolved in 0.5 mL distilled water orally 10 times every 2 days for 20 days. The administration of LPS and bleomycin intratracheally increased lung injury scores and significantly produced pro-inflammatory cytokines. ARDS induction increased the expressions of transforming growth factor (TGF)-ß1/Smad-2 signaling factors. Additionally, matrix metalloproteinase (MMP)-9/tissue inhibitor of metalloproteinase (TIMP)-1 imbalance occurred, resulting in enhanced fibrosis-related factors. Treatment with pirfenidone strongly suppressed the expressions of TGF-ß1/Smad-2 signaling factors and improved the imbalance of MMP-9/TIMP-1 compared to the untreated group. These effects led to a decrease in fibrosis factors and pro-inflammatory cytokines, promoting the recovery of damaged lung tissue. These results of this study showed that pirfenidone administration suppressed inflammation and fibrosis in the ARDS animal model. Therefore, pirfenidone can be considered a new early treatment for ARDS.
Assuntos
Bleomicina , Lipopolissacarídeos , Piridonas , Síndrome do Desconforto Respiratório , Transdução de Sinais , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Ratos , Masculino , Bleomicina/efeitos adversos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteína Smad2/metabolismo , Ratos Sprague-Dawley , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Modelos Animais de Doenças , Metaloproteinase 9 da Matriz/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Proteínas Smad/metabolismoRESUMO
Two anti-fibrotic drugs, pirfenidone (PFD) and nintedanib (NTD), are currently used to treat idiopathic pulmonary fibrosis (IPF). Peripheral blood mononuclear cells (PBMCs) are immunocompetent cells that could orchestrate cell-cell interactions associated with IPF pathogenesis. We employed RNA sequencing to examine the transcriptome signature in the bulk PBMCs of patients with IPF and the effects of anti-fibrotic drugs on these signatures. Differentially expressed genes (DEGs) between "patients with IPF and healthy controls" and "before and after anti-fibrotic treatment" were analyzed. Enrichment analysis suggested that fatty acid elongation interferes with TGF-ß/Smad signaling and the production of oxidative stress since treatment with NTD upregulates the fatty acid elongation enzymes ELOVL6. Treatment with PFD downregulates COL1A1, which produces wound-healing collagens because activated monocyte-derived macrophages participate in the production of collagen, type I, and alpha 1 during tissue damage. Plasminogen activator inhibitor-1 (PAI-1) regulates wound healing by inhibiting plasmin-mediated matrix metalloproteinase activation, and the inhibition of PAI-1 activity attenuates lung fibrosis. DEG analysis suggested that both the PFD and NTD upregulate SERPINE1, which regulates PAI-1 activity. This study embraces a novel approach by using RNA sequencing to examine PBMCs in IPF, potentially revealing systemic biomarkers or pathways that could be targeted for therapy.
Assuntos
Fibrose Pulmonar Idiopática , Inibidor 1 de Ativador de Plasminogênio , Humanos , Leucócitos Mononucleares , Transcriptoma , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Ácidos GraxosRESUMO
Among breast cancer patients, metastases are the leading cause of death. Despite decades of effort, little progress has been made to improve the treatment of breast cancer metastases, especially triple-negative breast cancer (TNBC). The extracellular matrix plays an important role in tumour growth and metastasis by causing its deposition, remodelling, and signalling. As we know, the process of fibrosis results in excessive amounts of extracellular matrix being deposited within the cells. So, it will be interesting to study if the use of anti-fibrotic drugs in combination with conventional chemotherapy drugs can produce synergistic antitumor effects. In this study, we assessed the efficacy of Pirfenidone (PFD), an FDA-approved medication for the treatment of idiopathic pulmonary fibrosis, on TNBC cells as well as its anti-tumour effects in xenograft tumour model. PFD inhibited in a dose-dependent manner breast cancer cell proliferation, migration, and invasion, while promoted their apoptosis in vitro. PFD also suppressed TGF-ß-induced activation of Smad signalling pathway and expression level of EMT-inducing transcription factors (e.g. SNAI2, TWIST1, ZEB1) as well as the mesenchymal genes such as VIMENTIN and N-Cadherin. On the contrary, the expression level of epithelial marker gene E-Cadherin was up-regulated in the presence of PFD. In vivo, PFD alone exerted a milder but significant anti-tumour effect than the chemotherapy drug nanoparticle albumin-bound paclitaxel (nab-PTX) did in the breast cancer xenograft mouse model. Interestingly, PFD synergistically boosted the cancer-killing effect of nab-PTX. Furthermore, Our data suggest that PFD suppressed breast cancer metastasis by inhibiting the activity of the TGFß/SMAD pathway.