Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nano Lett ; 24(5): 1761-1768, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38261791

RESUMO

Colloidal quantum dots (QDs) are excellent luminescent nanomaterials for many optoelectronic applications. However, photoluminescence blinking has limited their practical use. Coupling QDs to plasmonic nanostructures shows potential in suppressing blinking. However, the underlying mechanism remains unclear and debated, hampering the development of bright nonblinking dots. Here, by deterministically coupling a QD to a plasmonic nanocavity, we clarify the mechanism and demonstrate unprecedented single-QD brightness. In particular, we report for the first time that a blinking QD could obtain nonblinking photoluminescence with a blinking lifetime through coupling to the nanocavity. We show that the plasmon-enhanced radiative decay outcompetes the nonradiative Auger process, enabling similar quantum yields for charged and neutral excitons in the same dot. Meanwhile, we demonstrate a record photon detection rate of 17 MHz from a colloidal QD, indicating an experimental photon generation rate of more than 500 MHz. These findings pave the way for ultrabright nonblinking QDs, benefiting diverse QD-based applications.

2.
Nano Lett ; 24(19): 5879-5885, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38652056

RESUMO

Monolayer transition metal dichalcogenides (TMDs) are considered promising building blocks for next-generation photonic and optoelectronic devices, owing to their fascinating optical properties. However, their inherent weak light absorption and low quantum yield severely hinder their practical applications. Here, we report up to 18000-fold photoluminescence (PL) enhancement in a monolayer WSe2-coupled plasmonic nanocavity. A spectroscopy-assisted nanomanipulation technique enables the assembly of a nanocavity with customizable resonances to simultaneously enhance the excitation and emission processes. In particular, precise control over the magnetic cavity mode facilitates spectral and spatial overlap with the exciton, resulting in plasmon-exciton intermediate coupling that approaches the maximum emission rate in the hybrid system. Meanwhile, the cavity mode exhibits high radiation directivity, which overwhelmingly directs surface-normal PL emission and leads to a 17-fold increase in the collection efficiency. Our approach opens up a new avenue to enhance the PL intensity of monolayer TMDs, facilitating their implementation in highly efficient optoelectronic devices.

3.
Nano Lett ; 23(8): 3231-3238, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039831

RESUMO

The energetic positions of molecular electronic states at molecule/electrode interfaces are crucial factors for determining the transport and optoelectronic properties of molecular junctions. Strong light-matter coupling offers a potential for manipulating these factors, enabling a boost in the efficiency and versatility of these junctions. Here, we investigate electroluminescence from single-molecule junctions in which the molecule is strongly coupled with the vacuum electromagnetic field in a plasmonic nanocavity. We demonstrate an improvement in the electroluminescence efficiency by employing the strong light-matter coupling in conjunction with the characteristic feature of single-molecule junctions to selectively control the formation of the lowest-energy excited state. The mechanism of efficiency improvement is discussed based on the energetic position and composition of the formed polaritonic states. Our findings indicate the possibility to manipulate optoelectronic conversion in molecular junctions by strong light-matter coupling and contribute to providing design principles for developing efficient molecular optoelectronic devices.

4.
Nano Lett ; 23(9): 3716-3723, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125916

RESUMO

Out-of-plane (OP) exciton-based emitters in two-dimensional semiconductor materials are attractive candidates for novel photonic applications, such as radially polarized sources, integrated photonic chips, and quantum communications. However, their low quantum efficiency resulting from forbidden transitions limits their practicality. In this work, we achieve a giant enhancement of up to 34000 for OP exciton emission in indium selenide (InSe) via a designed Ag nanocube-over-Au film plasmonic nanocavity. The large photoluminescence enhancement factor (PLEF) is attributed to the induced OP local electric field (Ez) within the nanocavity, which facilitates effective OP exciton-plasmon interaction and subsequent tremendous enhancement. Moreover, the nanoantenna effect resulting from the effective interaction improves the directivity of spontaneous radiation. Our results not only reveal an effective photoluminescence enhancement approach for OP excitons but also present an avenue for designing on-chip photonic devices with an OP dipole orientation.

5.
Nano Lett ; 23(13): 5959-5966, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364270

RESUMO

Developing highly enhanced plasmonic nanocavities allows direct observation of light-matter interactions at the nanoscale. With DNA origami, the ability to precisely nanoposition single-quantum emitters in ultranarrow plasmonic gaps enables detailed study of their modified light emission. By developing protocols for creating nanoparticle-on-mirror constructs in which DNA nanostructures act as reliable and customizable spacers for nanoparticle binding, we reveal that the simple picture of Purcell-enhanced molecular dye emission is misleading. Instead, we show that the enhanced dipolar dye polarizability greatly amplifies optical forces acting on the facet Au atoms, leading to their rapid destabilization. Using different dyes, we find that emission spectra are dominated by inelastic (Raman) scattering from molecules and metals, instead of fluorescence, with molecular bleaching also not evident despite the large structural rearrangements. This implies that the competition between recombination pathways demands a rethink of routes to quantum optics using plasmonics.

6.
Nano Lett ; 23(12): 5746-5754, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37289011

RESUMO

While nitrogen-vacancy (NV) centers in diamonds have emerged as promising solid-state quantum emitters for sensing applications, the tantalizing possibility of coupling them with photonic or broadband plasmonic nanostructures to create ultrasensitive biolabels has not been fully realized. Indeed, it remains technologically challenging to create free-standing hybrid diamond-based imaging nanoprobes with enhanced brightness and high temporal resolution. Herein, we leverage the bottom-up DNA self-assembly to develop hybrid free-standing plasmonic nanodiamonds, which feature a closed plasmonic nanocavity completely encapsulating a single nanodiamond. Correlated single nanoparticle spectroscopical characterizations suggest that the plasmonic nanodiamond displays dramatically and simultaneously enhanced brightness and emission rate. We believe that they hold huge potential to serve as a stable solid-state single-photon source and could serve as a versatile platform to study nontrivial quantum effects in biological systems with enhanced spatial and temporal resolution.

7.
Nano Lett ; 22(6): 2170-2176, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35188400

RESUMO

Charge-transfer enhancement of Raman scattering plays a crucial role in current-carrying molecular junctions. However, the microscopic mechanism of light scattering in such nonequilibrium systems is still imperfectly understood. Here, using low-temperature tip-enhanced Raman spectroscopy (TERS), we investigate how Raman scattering evolves as a function of the gap distance in the single C60-molecule junction consisting of an Ag tip and various metal surfaces. Precise gap-distance control allows the examination of two distinct transport regimes, namely tunneling regime and molecular point contact (MPC). Simultaneous measurement of TERS and the electric current in scanning tunneling microscopy shows that the MPC formation results in dramatic Raman enhancement that enables one to observe the vibrations undetectable in the tunneling regime. This enhancement is found to commonly occur not only for coinage but also transition metal substrates. We suggest that the characteristic enhancement upon the MPC formation is rationalized by charge-transfer excitation.

8.
Nano Lett ; 22(4): 1649-1655, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107290

RESUMO

Integrating two-dimensional (2D) transition-metal dichalcogenides (TMDCs) into dielectric plasmonic nanostructures enables the miniaturization of on-chip nanophotonic devices. Here we report on a high-quality light emitter based on the newly designed 2D h-BN/WS2 heterostructure integrated with an array of TiO2 nanostripes. Different from a traditional strongly coupled system such as the TMDCs/metallic plasmonic nanostructure, we first employ dielectric nanocavities and achieve a Purcell enhancement on the nanoscale at room temperature. Furthermore, we demonstrate that the light emission strength can be effectively controlled by tuning the polarization configuration. Such a polarization dependence meanwhile could be proof of the resonant energy transfer theory of dipole-dipole coupling between TMDCs and a dielectric nanostructure. This work gains experimental and simulated insights into modified spontaneous emission with dielectric nanoplasmonic platforms, presenting a promising route toward practical applications of 2D semiconducting photonic emitters on a silica-based chip.

9.
Nano Lett ; 21(1): 522-528, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33301334

RESUMO

Transition-metal dichalcogenide heterostructures are an emergent platform for novel many-body states from exciton condensates to nanolasers. However, their exciton dynamics are difficult to disentangle due to multiple competing processes with time scales varying over many orders of magnitude. Using a configurable nano-optical cavity based on a plasmonic scanning probe tip, the radiative (rad) and nonradiative (nrad) relaxation of intra- and interlayer excitons is controlled. Tuning their relative rates in a WSe2/MoSe2 heterobilayer over 6 orders of magnitude in tip-enhanced photoluminescence spectroscopy reveals a cavity-induced crossover from nonradiative quenching to Purcell-enhanced radiation. Rate equation modeling with the interlayer charge transfer time as a reference clock allows for a comprehensive determination from the long interlayer exciton (IX) radiative lifetime τIXrad = (94 ± 27) ns to the 5 orders of magnitude faster competing nonradiative lifetime τIXnrad = (0.6 ± 0.2) ps. This approach of nanocavity clock spectroscopy is generally applicable to a wide range of excitonic systems with competing decay pathways.

10.
Nano Lett ; 20(4): 2695-2702, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32134275

RESUMO

Plasmonic resonators enable deep subwavelength manipulation of light matter interactions and have been intensively studied both in fundamental physics as well as for potential technological applications. While various metallic nanostructures have been proposed as plasmonic resonators, their performances are rather limited at mid- and far-infrared wavelengths. Recently, highly confined and low-loss Luttinger liquid plasmons in metallic single-walled carbon nanotubes (SWNTs) have been observed at infrared wavelengths. Here, we tailor metallic SWNTs into ultraclean nanocavities by advanced scanning probe lithography and investigate plasmon modes in these individual nanocavities by infrared nanoimaging. The dependence of mode evolutions on cavity length and excitation wavelength can be captured by a Fabry-Perot resonator model of a plasmon nanowaveguide terminated by highly reflective ends. Plasmonic resonators based on SWNT nanocavities approach the ultimate plasmon confinement limit and open the door to the strong light-matter coupling regime, which may enable various nanophotonic applications.

11.
Nano Lett ; 20(7): 4953-4959, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578993

RESUMO

Transition metal dichalcogenides, whose valley degrees of freedom are characterized by the degree of circular polarization (DCP) of the photoluminescence, draw broad interests due to their potential applications in information storage and processing. However, this DCP is usually low at room temperature due to the phonon-assisted intervalley scattering, severely degrading the fidelity of the valley-stored signals. Therefore, achieving high DCP at room temperature is vital for valley-encoded nanophotonic devices. In this work, we demonstrate a high DCP of 48.7% at room temperature by embedding monolayer MoS2 into a compact plasmonic nanocavity. Such a high DCP is proven to originate from the prominent chiral Purcell effect owing to the degeneracy-lifted circularly polarized local density of states in the nanocavity. In addition, the DCP can be further manipulated by an in situ plasmon-scanned technique. This highly compact system provides possibilities for developing versatile valley-encoded light-emitting devices at room temperature.

12.
Nano Lett ; 19(6): 3597-3602, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31070928

RESUMO

Near-field manipulation in plasmonic nanocavities can provide various applications in nanoscale science and technology. In particular, a gap plasmon in a scanning tunneling microscope (STM) junction is of key interest to nanoscale imaging and spectroscopy. Here we show that spectral features of a plasmonic STM junction can be manipulated by nanofabrication of Au tips using focused ion beam. An exemplary Fabry-Pérot type resonator of surface plasmons is demonstrated by producing the tip with a single groove on its shaft. Scanning tunneling luminescence spectra of the Fabry-Pérot tips exhibit spectral modulation resulting from interference between localized and propagating surface plasmon modes. In addition, the quality factor of the plasmonic Fabry-Pérot interference can be improved by optimizing the overall tip shape. Our approach paves the way for near-field imaging and spectroscopy with a high degree of accuracy.

13.
Nano Lett ; 19(10): 7309-7316, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31518135

RESUMO

The plasmonic properties of tip-substrate composite systems are of vital importance to near-field optical spectroscopy, in particular tip-enhanced Raman spectroscopy (TERS), which enables operando studies of nanoscale chemistry at a single molecule level. The nanocavities formed in the tip-substrate junction also offer a highly tunable platform for studying field-matter interactions at the nanoscale. While the coupled nanoparticle dimer model offers a correct qualitative description of gap-mode plasmon effects, it ignores the full spectrum of multipolar tip plasmon modes and their interaction with surface plasmon polariton (SPP) excitation in the substrate. Herein, we perform the first tip-enhanced Raman excitation spectroscopy (TERES) experiment and use the results, both in ambient and aqueous media, in combination with electrodynamics simulations, to explore the plasmonic response of a Au tip-Au substrate composite system. The gap-mode plasmon features a wide spectral window corresponding to a host of tip plasmon modes interacting with the plasmonic substrate. Simulations of the electric field confinement demonstrate that optimal spatial resolution is achieved when a hybrid plasmon mode that combines a multipolar tip plasmon and a substrate SPP is excited. Nevertheless, a wide spectral window over 1000 nm is available for exciting the tip plasmon with high spatial resolution, which enables the simultaneous resonant detection of different molecular species. This window is robust as a function of tip-substrate distance and tip radius of curvature, indicating that many choices of tips will work, but it is restricted to wavelengths longer than ∼600 nm for the Au tip-Au substrate combination. Other combinations, such as Ag tip-Ag substrate, can access wavelengths as low as 350 nm.

14.
Nano Lett ; 19(9): 6284-6291, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430168

RESUMO

The fact that metallic nanostructures are an excellent light receiver and transmitter connects the underlying principles of two widely applied optical processes: surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). A comparative study of SERS and SEF can eliminate the typical unknown quantities of the system and reveal important parameters that cannot be accessed by conventional techniques. Here, we use this simultaneous SERS and SEF technique in a monolayer MoSe2 coupled plasmonic nanocavity. After optimizing the spatial and the spectral overlaps between excitonic and plasmonic resonances, the SERS and SEF enhancement factors can exceed 107 and 6000, respectively, at the same time on the same nanocube. The comparison of the SERS and SEF enhancements allows the estimation of the ultrafast total decay rate of the bright exciton in monolayer MoSe2 in the nanocavity down to tens of femtoseconds, which is otherwise hard to realize using time-resolved techniques.

15.
Angew Chem Int Ed Engl ; 58(26): 8698-8702, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-30969014

RESUMO

The potential of strong interactions between light and matter remains to be further explored within a chemical context. Towards this end herein we study the electromagnetic interaction between molecules and plasmonic nanocavities. By means of electronic structure calculations, we show that self-induced catalysis emerges without any external stimuli through the interaction of the molecular permanent and fluctuating dipole moments with the plasmonic cavity modes. We also exploit this scheme to modify the transition temperature T1/2 of spin-crossover complexes as an example of how strong light-matter interactions can ultimately be used to control a materials responses.

16.
Nano Lett ; 17(4): 2634-2639, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28318263

RESUMO

Quantum emitters in two-dimensional materials are promising candidates for studies of light-matter interaction and next generation, integrated on-chip quantum nanophotonics. However, the realization of integrated nanophotonic systems requires the coupling of emitters to optical cavities and resonators. In this work, we demonstrate hybrid systems in which quantum emitters in 2D hexagonal boron nitride (hBN) are deterministically coupled to high-quality plasmonic nanocavity arrays. The plasmonic nanoparticle arrays offer a high-quality, low-loss cavity in the same spectral range as the quantum emitters in hBN. The coupled emitters exhibit enhanced emission rates and reduced fluorescence lifetimes, consistent with Purcell enhancement in the weak coupling regime. Our results provide the foundation for a versatile approach for achieving scalable, integrated hybrid systems based on low-loss plasmonic nanoparticle arrays and 2D materials.

17.
Nanophotonics ; 13(14): 2679-2686, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836101

RESUMO

Lasers are ubiquitous for information storage, processing, communications, sensing, biological research and medical applications. To decrease their energy and materials usage, a key quest is to miniaturise lasers down to nanocavities. Obtaining the smallest mode volumes demands plasmonic nanocavities, but for these, gain comes from only a single or few emitters. Until now, lasing in such devices was unobtainable due to low gain and high cavity losses. Here, we demonstrate a form of 'few emitter lasing' in a plasmonic nanocavity approaching the single-molecule emitter regime. The few-emitter lasing transition significantly broadens, and depends on the number of molecules and their individual locations. We show this non-standard few-emitter lasing can be understood by developing a theoretical approach extending previous weak-coupling theories. Our work paves the way for developing nanolaser applications as well as fundamental studies at the limit of few emitters.

18.
Biosens Bioelectron ; 264: 116639, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39121617

RESUMO

Tumor-derived extracellular vesicles detection has emerged as an important clinical liquid biopsy approach for cancer diagnosis. In this work, we developed a novel hybrid plasmonic nanocavity consisting of hexagonal Au nanoplates nanoarray, SnS2/Au nanosheet layer and biomimetic lipid bilayer. Firstly, the hybrid plasmonic nanocavity combined the optical confinement for the ECL regulation and the biological recognition for the detection of extracellular vesicles. Secondly, MXene-derived Ti2N QDs have been prepared as ECL nanoprobe to label extracellular vesicles. Moreover, biomimetic lipid bilayer with specific aptamer was used to identify extracellular vesicles and integrate Ti2N QDs into the nanocavity with membrane fusion strategy. Due to the significant electromagnetic field enhancement at the cavity region, the hybrid plasmonic nanocavity provided strong field confinement to concentrate and redistribute the ECL emission of QDs with a 9.3-fold enhancement. The hybrid plasmonic nanocavity-based ECL sensing system improved the spatial controllability of EVs analysis and the accurate resolution of specific protein. It achieved the sensitive detection of extracellular vesicles in ascites and successfully distinguished the peritoneal metastasis of gastric cancer.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Ouro , Vesículas Extracelulares/química , Humanos , Técnicas Biossensoriais/métodos , Ouro/química , Materiais Biomiméticos/química , Pontos Quânticos/química , Biomimética/métodos , Neoplasias Gástricas/patologia , Bicamadas Lipídicas/química
19.
Anal Chim Acta ; 1314: 342792, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38876514

RESUMO

Thyroid cancer is the most prevalent endocrine malignancy. The development of sensitive and reliable methods to detect the thyroid cancer is the currently urgent requirement. Herein, we developed an electrochemiluminescence (ECL) biosensor based on MBene derivative quantum dots (MoB QDs) and Ag NP-on-mirror (NPoM) nanocavity structure. On the one hand, MBene QDs as a novel luminescent material in the ECL process was reported for the first time, which can react with H2O2 as co-reactant. On the other hand, the NPoM nanostructure was successfully constructed with the Ag mirror and Ag NPs to provide highly localized hot spots. The NPoM structure had high degree of light field confinement and electromagnetic field enhancement, which can amplify the ECL signal as the signal modulator. Therefore, the synergistic effect of the nanocavity and localized surface plasmon resonance (LSPR) mode in the NPoM facilitated the enhancement of the ECL signal of MoB QDs over 21.7 times. Subsequently, the proposed ECL biosensing system was employed to analyze the expression level of miRNA-222-3p in the thyroid cancer exosome. The results indicated the relative association between miRNA-222-3p and BRAFV600E mutation. The MoB QDs/NPoM biosensor displayed the ideal potential in assessing thyroid cancer progression for advancing clinical diagnosis applications.


Assuntos
Exossomos , MicroRNAs , Pontos Quânticos , Neoplasias da Glândula Tireoide , MicroRNAs/análise , Pontos Quânticos/química , Humanos , Exossomos/química , Neoplasias da Glândula Tireoide/diagnóstico , Medições Luminescentes , Técnicas Eletroquímicas , Técnicas Biossensoriais , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção
20.
ACS Appl Mater Interfaces ; 16(14): 18124-18133, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531041

RESUMO

Surface-enhanced Raman scattering (SERS) presents a promising avenue for trace matter detection by using plasmonic nanostructures. To tackle the challenges of quantitatively analyzing trace substances in SERS, such as poor enrichment efficiency and signal reproducibility, this study proposes a novel approach using Au@internal standard@Au nanospheres (Au@IS@Au NSs) for realizing the high sensitivity and stability in SERS substrates. To verify the feasibility and stability of the SERS performances, the SERS substrates have exhibited exceptional sensitivity for detecting methyl blue molecules in aqueous solutions within the concentration range from 10-4 M to 10-13 M. Additionally, this strategy also provides a feasible way of quantitative detection of antibiotic in the range of 10-4 M to 10-10 M. Trace antibiotic residue on the surface of shrimp in aquaculture waters was successfully conducted, achieving a remarkably low detection limit of 10-9 M. The innovative approach has great potential for the rapid and quantitative detection of trace substances, which marks a noteworthy step forward in environmental detection and analytical methods by SERS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA