RESUMO
Two novel phases, potassium copper aluminium bis(phosphate), KCuAl[PO4]2 (I), and potassium zinc aluminium bis(phosphate-silicate), K(Al,Zn)2[(P,Si)O4]2 (II), were obtained in one hydrothermal synthesis experiment at 553â K. Their crystal structures have been studied using single-crystal X-ray diffraction. (I) is a new member of the A+M2+M3+[PO4]2 family. Its open 3D framework built by AlO5 and PO4 polyhedra includes small channels populated by columns of CuO6 octahedra sharing edges, and large channels where K+ ions are deposited. It is assumed that the stability of this structure type is due to the pair substitution of Cu/Al with Ni/Fe, Co/Fe or Mg/Fe in different representatives of the series. From the KCuAl[PO4]2 structural features, one may suppose it is a potentially electrochemically active material and/or possible low-temperature antiferromagnet. In accordance with results obtained from X-ray diffraction data, using scanning electron microscopy, microprobe analysis and detailed crystal chemical observation, (II) is considered as a product of epitaxial intergrowth of phosphate KAlZn[PO4]2 and silicate KAlSi[SiO4]2 components having closely similar crystal structures. The assembly of `coherent intergrowth' is described in the framework of a single diffraction pattern.