Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2214729120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716359

RESUMO

Understanding the processes that enable organisms to shift into more arid environments as they emerge is critical for gauging resilience to climate change, yet these forces remain poorly known. In a comprehensive clade-based study, we investigate recent shifts into North American deserts in the rock daisies (tribe Perityleae), a diverse tribe of desert sunflowers (Compositae). We sample rock daisies across two separate contact zones between tropical deciduous forest and desert biomes in western North America and infer a time-calibrated phylogeny based on target capture sequence data. We infer biome shifts using Bayesian inference with paleobiome-informed models and find evidence for seven independent shifts into desert habitats since the onset of aridification in the late Miocene. The earliest shift occurred out of tropical deciduous forests and led to an extensive radiation throughout North American deserts that accounts for the majority of extant desert rock daisies. Estimates of life history and micro-habitat in the rock daisies reveal a correlation between a suffrutescent perennial life history and edaphic endemism onto rocky outcrops, an ecological specialization that evolved prior to establishment and diversification in deserts. That the insular radiation of desert rock daisies stemmed from ancestors preadapted for dry conditions as edaphic endemics in otherwise densely vegetated tropical deciduous forests in northwest Mexico underscores the crucial role of exaptation and dispersal for shifts into arid environments.


Assuntos
Asteraceae , Magnoliopsida , Teorema de Bayes , Clima Desértico , Filogenia , Ecossistema
2.
Mol Genet Genomics ; 299(1): 6, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315248

RESUMO

Despite being previously regarded as extremely unlikely, the idea that entirely novel protein-coding genes can emerge from non-coding sequences has gradually become accepted over the past two decades. Examples of "de novo origination", resulting in lineage-specific "orphan" genes, lacking coding orthologs, are now produced every year. However, many are likely cases of duplicates that are difficult to recognize. Here, I re-examine the claims and show that four very well-known examples of genes alleged to have emerged completely "from scratch"- FLJ33706 in humans, Goddard in fruit flies, BSC4 in baker's yeast and AFGP2 in codfish-may have plausible evolutionary ancestors in pre-existing genes. The first two are likely highly diverged retrogenes coding for regulatory proteins that have been misidentified as orphans. The antifreeze glycoprotein, moreover, may not have evolved from repetitive non-genic sequences but, as in several other related cases, from an apolipoprotein that could have become pseudogenized before later being reactivated. These findings detract from various claims made about de novo gene birth and show there has been a tendency not to invest the necessary effort in searching for homologs outside of a very limited syntenic or phylostratigraphic methodology. A robust approach is used for improving detection that draws upon similarities, not just in terms of statistical sequence analysis, but also relating to biochemistry and function, to obviate notable failures to identify homologs.


Assuntos
Evolução Molecular , Pseudogenes , Animais , Humanos , Evolução Biológica , Saccharomyces cerevisiae/genética , Drosophila/genética
3.
New Phytol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39262233

RESUMO

Darwin's two opposing hypotheses, proposing that non-native species closely or distantly related to native species are more likely to succeed, are known as 'Darwin's Naturalization Conundrum'. Recently, invasion ecologists have sought to unravel these hypotheses. Studies that incorporate rich observational data in disturbed ecosystems that integrate phylogenetic and functional perspectives have potential to shed light on the conundrum. Using 313 invaded plant communities including 46 invasive plant species and 531 native plant species across the Three Gorges Reservoir Area in China, we aim to evaluate the coexistence mechanisms of invasive and native plants by integrating phylogenetic and functional dimensions at spatial and temporal scales. Our findings revealed that invasive plants tended to co-occur more frequently with native plant species that were phylogenetically distant but functionally similar in the reservoir riparian zone. Furthermore, our study demonstrated that the filtering of flood-dry-flood cycles played a significant role in deepening functional similarities of native communities and invasive-native species over time. Our study highlights the contrasting effects of phylogenetic relatedness and functional similarity between invasive and native species in highly flood-disturbed habitats, providing new sights into Darwin's Naturalization Conundrum.

4.
J Fish Biol ; 104(5): 1386-1400, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38343097

RESUMO

Subterranean organisms provide excellent opportunities to investigate morphological evolution, especially of sensory organs and structures and their processing areas in the central nervous system. We describe the gross morphology of the brain and some cephalic sensory organs (olfactory organ, eye, semicircular canals of the inner ear) and the swim bladder (a non-sensory accessory structure) of subterranean species of pencil catfishes of the genus Ituglanis Costa and Bockmann, 1993 (Siluriformes, Trichomycteridae) and compare them with an epigean species of the genus, Ituglanis goya Datovo, Aquino and Langeani, 2016. We compared qualitatively the size of the different brain regions and sense organs of the subterranean species with those of the epigean one, searching for modifications possibly associated with living in the subterranean environment. Our findings suggest that species of Ituglanis exhibit sensory characteristics that are preadaptive for the subterranean life, as only slight modifications were observed in the brains and sense organs of the subterranean species of the genus when compared with the epigean one. Because most subterranean fish species belong to lineages putatively preadapted for subterranean life, our results, discussed in the context of available information on the brain and sense organs of other subterranean species, help identify general trends for the evolution of the brain and sensory organs of subterranean fishes in general.


Assuntos
Evolução Biológica , Encéfalo , Peixes-Gato , Animais , Peixes-Gato/anatomia & histologia , Peixes-Gato/fisiologia , Encéfalo/anatomia & histologia , Órgãos dos Sentidos/anatomia & histologia , Órgãos dos Sentidos/fisiologia , Adaptação Fisiológica , Sacos Aéreos/anatomia & histologia
5.
Plant J ; 111(5): 1411-1424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796621

RESUMO

Adaptation to new environments is a key evolutionary process which presumably involves complex genomic changes. Mangroves, a collection of approximately 80 woody plants that have independently invaded intertidal zones >20 times, are ideal for studying this process. We assembled near-chromosome-scale genomes of three Xylocarpus species as well as an outgroup species using single-molecule real-time sequencing. Phylogenomic analysis reveals two separate lineages, one with the mangrove Xylocarpus granatum and the other comprising a mangrove Xylocarpus moluccensis and a terrestrial Xylocarpus rumphii. In conjunction with previous studies, we identified several genomic features associated with mangroves: (i) signals of positive selection in genes related to salt tolerance and root development; (ii) genome-wide elevated ratios of non-synonymous to synonymous substitution relative to terrestrial relatives; and (iii) active elimination of long terminal repeats. These features are found in the terrestrial X. rumphii in addition to the two mangroves. These genomic features, not being strictly mangrove-specific, are hence considered pre-adaptive. We infer that the coastal but non-intertidal habitat of X. rumphii may have predisposed the common ancestor to invasion of true mangrove habitats. Other features including the preferential retention of duplicated genes and intolerance to pseudogenization are not found in X. rumphii and are likely true adaptive features in mangroves. In conclusion, by studying adaptive shift and partial shifts among closely related species, we set up a framework to study genomic features that are acquired at different stages of the pre-adaptation and adaptation to new environments.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Adaptação Fisiológica/genética , Ecossistema , Genoma , Genômica , Plantas/genética
6.
Appl Environ Microbiol ; 89(6): e0041523, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212708

RESUMO

Opportunistically pathogenic fungi have varying potential to cause disease in animals. Factors contributing to their virulence include specialized metabolites, which in some cases evolved in contexts unrelated to pathogenesis. Specialized metabolites that increase fungal virulence in the model insect Galleria mellonella include the ergot alkaloids fumigaclavine C in Aspergillus fumigatus (syn. Neosartorya fumigata) and lysergic acid α-hydroxyethylamide (LAH) in the entomopathogen Metarhizium brunneum. Three species of Aspergillus recently found to accumulate high concentrations of LAH were investigated for their pathogenic potential in G. mellonella. Aspergillus leporis was most virulent, A. hancockii was intermediate, and A. homomorphus had very little pathogenic potential. Aspergillus leporis and A. hancockii emerged from and sporulated on dead insects, thus completing their asexual life cycles. Inoculation by injection resulted in more lethal infections than did topical inoculation, indicating that A. leporis and A. hancockii were preadapted for insect pathogenesis but lacked an effective means to breach the insect's cuticle. All three species accumulated LAH in infected insects, with A. leporis accumulating the most. Concentrations of LAH in A. leporis were similar to those observed in the entomopathogen M. brunneum. LAH was eliminated from A. leporis through a CRISPR/Cas9-based gene knockout, and the resulting strain had reduced virulence to G. mellonella. The data indicate that A. leporis and A. hancockii have considerable pathogenic potential and that LAH increases the virulence of A. leporis. IMPORTANCE Certain environmental fungi infect animals occasionally or conditionally, whereas others do not. Factors that affect the virulence of these opportunistically pathogenic fungi may have originally evolved to fill some other role for the fungus in its primary environmental niche. Among the factors that may improve the virulence of opportunistic fungi are specialized metabolites--chemicals that are not essential for basic life functions but provide producers with an advantage in particular environments or under specific conditions. Ergot alkaloids are a large family of fungal specialized metabolites that contaminate crops in agriculture and serve as the foundations of numerous pharmaceuticals. Our results show that two ergot alkaloid-producing fungi that were not previously known to be opportunistic pathogens can infect a model insect and that, in at least one of the species, an ergot alkaloid increases the virulence of the fungus.


Assuntos
Alcaloides de Claviceps , Animais , Alcaloides de Claviceps/metabolismo , Aspergillus/metabolismo , Aspergillus fumigatus/genética , Fungos/metabolismo , Insetos
7.
Mol Ecol ; 32(4): 772-785, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36420966

RESUMO

Temperate Pooideae are a large clade of economically important grasses distributed in some of the Earth's coldest and driest terrestrial environments. Previous studies have inferred that Pooideae diversified from their tropical ancestors in a cold montane habitat, suggesting that above-freezing cold (chilling) tolerance evolved early in the subfamily. By contrast, drought tolerance is hypothesized to have evolved multiple times independently in response to global aridification that occurred after the split of Pooideae tribes. To independently test predictions of the chilling-before-drought hypothesis in Pooideae, we assessed conservation of whole plant and gene expression traits in response to chilling vs. drought. We demonstrated that both trait responses are more similar across tribes in cold as compared to drought, suggesting that chilling responses evolved before, and drought responses after, tribe diversification. Moreover, we found significantly more overlap between drought and chilling responsive genes within a species than between drought responsive genes across species, providing evidence that chilling tolerance genes acted as precursors for the novel acquisition of increased drought tolerance multiple times independently, partially through the cooption of chilling responsive genes.


Assuntos
Secas , Poaceae , Poaceae/genética , Filogenia , Resistência à Seca , Temperatura Baixa
8.
Mol Phylogenet Evol ; 186: 107868, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394080

RESUMO

Rapid diversification of a group is often associated with exploiting an ecological opportunity and/or the evolution of a key innovation. However, how the interplay of such abiotic and biotic factors correlates with organismal diversification has been rarely documented in empirical studies, especially for organisms inhabiting drylands. Fumarioideae is the largest subfamily in Papaveraceae and is mainly distributed in temperate regions of the Northern Hemisphere. Here, we used one nuclear (ITS) and six plastid (rbcL, atpB, matK, rps16, trnL-F, and trnG) DNA sequences to investigate the spatio-temporal patterns of diversification and potential related factors of this subfamily. We first present the most comprehensive phylogenetic analysis of Fumarioideae to date. The results of our integrated molecular dating and biogeographic analyses indicate that the most recent common ancestor of Fumarioideae started to diversify in Asia during the Upper Cretaceous, and then dispersed multiple times out of Asia in the Cenozoic. In particular, we discover two independent dispersal events from Eurasia to East Africa in the late Miocene, suggesting that the Arabian Peninsula might be an important exchange corridor between Eurasia and East Africa in the late Miocene. Within the Fumarioideae, increased speciation rates were detected in two groups, Corydalis and Fumariinae. Corydalis first experienced a burst of diversification in its crown group at âˆ¼ 42 Ma, and further accelerated diversification from the mid-Miocene onwards. During these two periods, Corydalis had evolved diverse life history types, which could have facilitated the colonization of diverse habitats originating from extensive orogenesis in the Northern Hemisphere as well as Asian interior desertification. Fumariinae underwent a burst of diversification at âˆ¼ 15 Ma, which temporally coincides with the increasing aridification in central Eurasia, but is markedly posterior to the shifts in habitat (from moist to arid) and in life history (from perennial to annual) and to range expansion from Asia to Europe, suggesting that Fumariinae species may have been pre-adapted to invade European arid habitats by the acquisition of annual life history. Our study provides an empirical case that documents the importance of pre-adaptation on organismal diversification in drylands and highlights the significant roles of the synergy of abiotic and biotic factors in promoting plant diversification.


Assuntos
Papaveraceae , Filogenia , Ásia , Ecossistema , Sequência de Bases , Filogeografia
9.
J Exp Biol ; 226(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261405

RESUMO

In the past century, several authors have investigated the allometry of haematological parameters in mammals. As haematocrit and haemoglobin (Hb) concentration are almost constant within the Mammalia (although with notable exceptions), differences in other haematological parameters are mainly reducible to red blood cell size (mean corpuscular volume, MCV). Past studies testing for correlation between MCV and body mass have given contradictory results. Using phylogenetically informed regressions, here I demonstrate that the correlation between MCV and body mass is indirect, and is in reality due to the correlation between MCV and basal metabolic rate. This could be explained by the fact that small erythrocytes allow a fast release of oxygen in tissues with high metabolic demand. Nonetheless, hypoxia-adapted species show MCV greater than that predicted by their metabolic rate, while Ruminantia show the inverse. Interestingly, these species show the highest and lowest, respectively, Hb affinity for oxygen. In the present paper, I suggest that Hb-oxygen affinity, acting as a biological constraint for oxygen exchange, determines the size of red blood cells. Hb intrinsic affinity for oxygen shows little variation during evolution and modifying the levels of allosteric factors can be viewed as an adaption to adjust Hb-oxygen affinity to metabolic demands (the same also happens during ontogeny). Nonetheless, in some lineages, mutations raising Hb-oxygen affinity allowed some species to colonize hypoxic environments; in Ruminantia, instead, there was a drastic decrease, which cannot be adaptively explained.


Assuntos
Eritrócitos , Hemoglobinas , Animais , Hemoglobinas/genética , Hemoglobinas/metabolismo , Filogenia , Eritrócitos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Hipóxia , Oxigênio
10.
Microb Cell Fact ; 22(1): 245, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042813

RESUMO

BACKGROUND: Removal of trace organic chemicals (TOrCs) in aquatic environments has been intensively studied. Some members of natural microbial communities play a vital role in transforming chemical contaminants, however, complex microbial interactions impede us from gaining adequate understanding of TOrC biotransformation mechanisms. To simplify, in this study, we propose a strategy of establishing reduced-richness model communities capable of removing diverse TOrCs via pre-adaptation and dilution-to-extinction. RESULTS: Microbial communities were adapted from tap water, soil, sand, sediment deep and sediment surface to changing concentrations of 27 TOrCs mixture. After adaptation, the communities were further diluted to reduce diversity into 96 deep well plates for high-throughput cultivation. After characterizing microbial structure and TOrC removal performance, thirty taxonomically non-redundant model communities with different removal abilities were obtained. The pre-adaptation process was found to reduce the microbial richness but to increase the evenness and phylogenetic diversity of resulting model communities. Moreover, phylogenetic diversity showed a positive effect on the number of TOrCs that can be transformed simultaneously. Pre-adaptation also improved the overall TOrC removal rates, which was found to be positively correlated with the growth rates of model communities. CONCLUSIONS: This is the first study that investigated a wide range of TOrC biotransformation based on different model communities derived from varying natural microbial systems. This study provides a standardized workflow of establishing model communities for different metabolic purposes with changeable inoculum and substrates. The obtained model communities can be further used to find the driving agents of TOrC biotransformation at the enzyme/gene level.


Assuntos
Poluentes Químicos da Água , Biodegradação Ambiental , Filogenia , Poluentes Químicos da Água/química , Biotransformação , Compostos Orgânicos/metabolismo
11.
Food Microbiol ; 112: 104239, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906322

RESUMO

Physical injury carried by dried process was an inevitable and hostile problem which could seriously affect the quality and viability of microbial agents. In this study, heat preadaptation was successfully applied as a pretreatment to fight against the physical stresses encountered during freeze-dried and spray-dried process and develop a high activity Tetragenococcus halophilus powder. The results indicated T. halophilus cells maintained a higher viability in dried powder when cells were treated with heat preadaptation before dried process. Flow cytometry analysis illustrated that heat preadaptation contributed to maintain a high membrane integrity during dried process. Besides, glass transition temperatures of dried powder increased when cells were preheated, which further verified that higher stability was obtained in group preadaptation during shelf life. Additionally, dried powder prepared by heat shock presented a better fermentation performance, suggesting heat preadaptation may be a promising strategy to prepare bacterial powder by freeze drying or spray drying.


Assuntos
Lactobacillales , Secagem por Atomização , Pós , Liofilização/métodos , Temperatura
12.
Indian J Microbiol ; 63(4): 483-493, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38031616

RESUMO

During fermentation, yeast cells undergo various stresses that inhibit cell growth and ethanol production. Therefore, the ability to tolerate multiple stresses during fermentation is one of the important characteristics for yeast cells that can be used for commercial ethanol production. In the present study, we evaluated the multi-stress tolerance of parent and ethanol adapted Kluyveromyces marxianus MTCC1389 and their relative gene expression analysis. Multi-stress tolerance was confirmed by determining its cell viability, growth, and spot assay under oxidative, osmotic, thermal, and ethanol stress. During oxidative (0.8% H2O2) and osmotic stress (2 M NaCl), there was significant cell viability of 90% and 50%, respectively, by adapted strain. On the other hand, under 45 °C of thermal stress, the adapted strain was 80% viable while the parent strain was 60%. In gene expression analysis, the ethanol stress responsive gene ETP1 was significantly upregulated by 3.5 folds, the osmotic stress gene SLN1 was expressed by 3 folds, and the thermal stress responsive gene MSN2 was expressed by 7 folds. This study shows adaptive evolution for ethanol stress can develop other stress tolerances by changing relative gene expression of osmotic, oxidative, and thermal stress responsive genes.

13.
Mol Ecol ; 31(9): 2644-2663, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35262986

RESUMO

The salinity barrier that separates marine and freshwater biomes is probably the most important division in biodiversity on Earth. Those organisms that successfully performed this transition had access to new ecosystems while undergoing changes in selective pressure, which often led to major shifts in diversification rates. While these transitions have been extensively investigated in animals, the tempo, mode, and outcome of crossing the salinity barrier have been scarcely studied in other eukaryotes. Here, we reconstructed the evolutionary history of the species complex Cyphoderia ampulla (Euglyphida: Cercozoa: Rhizaria) based on DNA sequences from the nuclear SSU rRNA gene and the mitochondrial cytochrome oxidase subunit I gene, obtained from publicly available environmental DNA data (GeneBank, EukBank) and isolated organisms. A tree calibrated with euglyphid fossils showed that four independent transitions towards freshwater systems occurred from the mid-Miocene onwards, coincident with important fluctuations in sea level. Ancestral trait reconstructions indicated that the whole family Cyphoderiidae had a marine origin and suggest that ancestors of the freshwater forms were euryhaline and lived in environments with fluctuating salinity. Diversification rates did not show any obvious increase concomitant with ecological transitions, but morphometric analyses indicated that species increased in size and homogenized their morphology after colonizing the new environments. This suggests adaptation to changes in selective pressure exerted by life in freshwater sediments.


Assuntos
Militares , Rhizaria , Animais , Ecossistema , Eucariotos , Água Doce , Humanos , Filogenia , Salinidade
14.
Front Zool ; 19(1): 3, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022069

RESUMO

Local mate competition (LMC) favours female biased clutch sex ratios because it reduces competition between brothers and provides extra mating opportunities for sons. Fig wasps seem to fit LMC model assumptions and lay female-biased sex ratios as predicted. These female biased sex ratios increase fitness greatly. In line with predictions, their sex ratios become less female-biased as the number of mothers laying in the same fig increases. However, this variation results in comparatively small fitness benefits compared to just biased ratios and data suggest substantial mismatches with LMC theory. The mismatches are due to several factors. (1) Multiple foundresses typically lay too many daughters. (2) Single foundress sex ratios are explained by sequential oviposition and ladies-last models. (3) Mortality that typically exceeds 10% may decouple the link between primary sex ratios, the focus of model predictions, and secondary sex ratios of adult wasps that are counted by researchers. (4) Model assumptions are frequently violated: (a) clutch sizes are unequal, (b) oviposition may not be simultaneous (c) cryptic/multiple wasp species inhabit the same host, (d) foundress numbers are systematically undercounted, (e) inbreeding coefficient calculations are inaccurate, and (f) male wasps sometimes disperse. These data and calculations suggest that alternative explanations must be considered seriously. Substantial data show that wasps typically lay most of their male eggs first followed by mostly female eggs require a new approach. These "slope" strategies result in more accurate sex ratios that are automatically adjusted to foundress number, own and relative clutch sizes and to sequential clutches. This effect will alter sex ratios in all species once the egg capacity of a fig is crossed or when interference reduces clutch sizes. In addition to this passive response, the females of about half the studied species have a conditional response that reduces female bias under higher foundress numbers by laying more sons. Therefore, wasps seem to use a very simple strategy that increases their fitness. Natural selection could have optimized parameters of the slope strategy and possibly the existence of the slope strategy itself. Variation in the slope strategy that is the result of natural selection is adaptive. Research should therefore focus on quantifying variables of this slope strategy. Currently, it is unclear how much of the variation is adaptive as opposed to being coincidental by-products.

15.
Am J Bot ; 109(5): 689-705, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35435240

RESUMO

PREMISE: Digitized collections can help illuminate the mechanisms behind the establishment and spread of invasive plants. These databases provide a record of traits in space and time that allows for investigation of abiotic and biotic factors that influence invasive species. METHODS: Over 1100 digitized herbarium records were examined to investigate the invasion history and trait variation of Microstegium vimineum. Presence-absence of awns was investigated to quantify geographic patterns of this polymorphic trait, which serves several functions in grasses, including diaspore burial and dispersal to germination sites. Floret traits were further quantified, and genomic analyses of contemporary samples were conducted to investigate the history of M. vimineum's introduction and spread into North America. RESULTS: Herbarium records revealed similar patterns of awn polymorphism in native and invaded ranges of M. vimineum, with awned forms predominating at higher latitudes and awnless forms at lower latitudes. Herbarium records and genomic data suggested initial introduction and spread of the awnless form in the southeastern United States, followed by a putative secondary invasion and spread of the awned form from eastern Pennsylvania. Awned forms have longer florets, and floret size varies significantly with latitude. There is evidence of a transition zone with short-awned specimens at mid-latitudes. Genomic analyses revealed two distinct clusters corresponding to awnless and awned forms, with evidence of admixture. CONCLUSIONS: Our results demonstrate the power of herbarium data to elucidate the invasion history of a problematic weed in North America and, together with genomic data, reveal a possible key trait in introduction success: presence or absence of an awn.


Assuntos
Estruturas Vegetais , Poaceae , Germinação , Espécies Introduzidas , Fenótipo , Poaceae/genética
16.
Mol Biol Evol ; 37(6): 1761-1774, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32101291

RESUMO

De novo protein-coding innovations sometimes emerge from ancestrally noncoding DNA, despite the expectation that translating random sequences is overwhelmingly likely to be deleterious. The "preadapting selection" hypothesis claims that emergence is facilitated by prior, low-level translation of noncoding sequences via molecular errors. It predicts that selection on polypeptides translated only in error is strong enough to matter and is strongest when erroneous expression is high. To test this hypothesis, we examined noncoding sequences located downstream of stop codons (i.e., those potentially translated by readthrough errors) in Saccharomyces cerevisiae genes. We identified a class of "fragile" proteins under strong selection to reduce readthrough, which are unlikely substrates for co-option. Among the remainder, sequences showing evidence of readthrough translation, as assessed by ribosome profiling, encoded C-terminal extensions with higher intrinsic structural disorder, supporting the preadapting selection hypothesis. The cryptic sequences beyond the stop codon, rather than spillover effects from the regular C-termini, are primarily responsible for the higher disorder. Results are robust to controlling for the fact that stronger selection also reduces the length of C-terminal extensions. These findings indicate that selection acts on 3' UTRs in Saccharomyces cerevisiae to purge potentially deleterious variants of cryptic polypeptides, acting more strongly in genes that experience more readthrough errors.


Assuntos
Adaptação Biológica , Evolução Molecular , Seleção Genética , Códon de Terminação , Saccharomyces cerevisiae
17.
Mol Phylogenet Evol ; 157: 107062, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387648

RESUMO

We explore the origins of the extraordinary plant diversity in the Qinghai-Tibetan Plateau (QTP) using Orchidinae (Orchidaceae) as a model. Our results indicate that six major clades in Orchidinae exhibited substantial variation in the temporal and spatial sequence of diversification. Our time-calibrated phylogenetic model suggests that the species-richness of Orchidinae arose through a combination of in situ diversification, colonisation, and local recruitment. There are multiple origins of species-richness of Orchidinae in the QTP, and pre-adaptations in clades from North Temperate and alpine regions were crucial for in situ diversification. The geographic analysis identified 29 dispersals from Asia, Africa and Europe into the QTP and 15 dispersals out. Most endemic species of Orchidinae evolved within the past six million years.


Assuntos
Adaptação Fisiológica , Ecossistema , Orchidaceae/classificação , Filogenia , Aclimatação , África , Ásia , Biodiversidade , Europa (Continente) , Tibet , Fatores de Tempo
18.
Appl Microbiol Biotechnol ; 105(1): 259-270, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33216160

RESUMO

Zygosaccharomyces rouxii plays important roles in the brewing process of fermented foods such as soy sauce, where salt stress is a frequently encountered condition. In this study, effect of heat preadaptation on salt tolerance of Z. rouxii and the protective mechanisms underlying heat preadaptation were investigated based on physiological and transcriptomic analyses. Results showed that cells subjected to heat preadaptation (37 °C, 90 min) prior to salt stress aroused many physiological responses, including maintaining cell surface smooth and intracellular pH level, increasing Na+/K+-ATPase activity. Cells subjected to heat preadaptation increased the amounts of unsaturated fatty acids (palmitoleic C16:1, oleic C18:1, linoleic C18:2) and decreased the amounts of saturated fatty acids (palmitic C16:0, stearic C18:0) which caused the unsaturation degree (unsaturated/saturated = U/S ratio) increased by 2.4 times when compared with cells without preadaptation under salt stress. Besides, salt stress led to increase in contents of 5 amino acids (valine, proline, threonine, glycine, and tyrosine) and decrease of 2 amino acids (serine and lysine). When comparing the cells pre-exposed to heat preadaptation followed by challenged with salt stress and the cells without preadaptation under salt stress, the serine, threonine, and lysine contents increased significantly. RNA sequencing revealed that the metabolic level of glycolysis by Z. rouxii was weakened, while the metabolic levels of the pentose phosphate pathway and the riboflavin were enhanced in cells during heat preadaptation. Results presented in this study may contribute to understand the bases of adaptive responses in Z. rouxii and rationalize its exploitation in industrial processes.Key points• Heat preadaptation can improve high salinity tolerance of Z. rouxii.• Combined physiological and transcriptomic analyses of heat preadaptation mechanisms.• Provide theoretical support for the application of Z. rouxii.


Assuntos
Zygosaccharomyces , Temperatura Alta , Saccharomycetales , Estresse Salino , Transcriptoma , Zygosaccharomyces/genética
19.
J Exp Zool B Mol Dev Evol ; 334(7-8): 511-517, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32436310

RESUMO

The lateral line is the primary modality fish use to create a hydrodynamic image of their environment. These images contribute to a variety of behaviors, from rheotaxis to escape responses. Here we discern the contributions of visual and lateral line modalities in hunting behavior of larvae that have developed under different photic conditions. In particular, cave animals have a hypertrophied sense of mechanosensation, and we studied the common animal model cavefish Astyanax mexicanus and its closest related surface relative. We raised larvae in a diurnal light-dark regimen and in complete darkness. We then examined the distribution of neuromasts in their lateral lines, and their hunting performance in light and dark conditions, with and without the contribution of the lateral line. We report that all larva depend on the lateral line for success in hunting and that surface fish raised in the dark have a greater dependency on the lateral line.


Assuntos
Adaptação Fisiológica/fisiologia , Characidae/anatomia & histologia , Animais , Comportamento Animal/fisiologia , Cavernas , Characidae/fisiologia , Escuridão , Meio Ambiente , Lateralidade Funcional/fisiologia , Larva , Comportamento Predatório/fisiologia
20.
Antonie Van Leeuwenhoek ; 113(10): 1393-1409, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32725571

RESUMO

The pharmaceutical industry shows an emerging interest in formulas that contain live and beneficial microorganisms, also known as probiotics or pharmabiotics, which in many cases, are host-specific. The resistance to higher temperature is an essential feature of these microorganisms when working on the design of products for vaginal formula. In order to obtain a high number of viable cells and a prolonged shelf life in the designed product, it is required to apply technological procedures using high temperatures or abrupt changes of them, which result in conditions that are different from the optimal growth temperature and can affect the metabolic capabilities of the bacteria when administered to the host in order to reestablish the ecological mucosa. The aim of this work was to evaluate the behavior of 30 different species and strains of autochthonous beneficial vaginal lactobacilli (BVL) when exposed to high temperatures, determine their survival capabilities and analyze their pre-adaptation to those temperatures, in order that they still maintain their viability after technological processes and further conservation. BVL were exhibited to temperatures higher than optimal, with the purpose of evaluating their growth kinetics and parameters. Later, they were exposed to higher temperatures, and then, returned to their optimal, to determine if they were able to grow again. The strains that showed higher resistance were selected, and their viability and beneficial properties studied further. The growth kinetics of strains exposed to higher temperatures showed different patterns, which provided evidence that the thermal adaptation is strain-dependent and is not related to any particular species and/or metabolic group in which the strains were taxonomically classified. The pre-adaptive step allowed the growth of some of the strains, preserving their viability and probiotic properties after the high temperatures were applied. The results shows that BVL can be exposed to high temperatures used in different technological processes that are applied for pharmabiotic formulations, such as spray dried or vacuum rotary evaporation, and/or during the conservation period. The results obtained indicate that some specific BVL strains resist high temperatures and grow afterwards at optimal conditions.


Assuntos
Técnicas Bacteriológicas , Temperatura Alta , Lactobacillus/crescimento & desenvolvimento , Vagina/microbiologia , Feminino , Humanos , Cinética , Lactobacillus/isolamento & purificação , Probióticos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA