Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Small ; 20(6): e2305311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798936

RESUMO

Structural engineering and hybridization of heterogeneous 2D materials can be effective for advanced supercapacitor. Furthermore, architectural design of electrodes particularly with vertical construction of structurally anisotropic graphene nanosheets, can significantly enhance the electrochemical performance. Herein, MXene-derived TiO2 nanocomposites hybridized with vertical graphene is synthesized via CO2 laser irradiation on MXene/graphene oxide nanocomposite film. Instantaneous photon energy by laser irradiation enables the formation of vertical graphene structures on nanocomposite films, presenting the controlled anisotropy in free-standing film. This vertical structure enables improved supercapacitor performance by forming an open structure, increasing the electrolyte-electrode interface, and creating efficient electron transport path. In addition, the effective oxidation of MXene nanosheets by instantaneous photon energy leads to the formation of rutile TiO2 . TiO2 nanoparticles directly generated on graphene enables the effective current path, which compensates for the low conductivity of TiO2 and enables the functioning of an effective supercapacitor by utilizing its pseudocapacitive properties. The resulting film exhibits excellent specific areal capacitance of 662.9 mF cm-2 at a current density of 5 mA cm-2 . The film also shows superb cyclic stability during 40 000 repeating cycles, maintaining high capacitance. Also, the pseudocapacitive redox reaction kinetics is evaluated, showing fast redox kinetics with potential for high-performance supercapacitor applications.

2.
Small ; 20(24): e2401395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38497830

RESUMO

Pseudocapacitors bridge the performance gap between batteries and electric double-layer capacitors by storing energy via a combination of fast surface/near-surface Faradaic redox processes and electrical double-layer capacitance. Organic semiconductors are an emerging class of pseudocapacitive materials that benefit from facile synthetic tunability and mixed ionic-electronic conduction. Reported examples are mostly limited to p-type (electron-donating) conjugated polymers, while n-type (electron-accepting) examples remain comparatively underexplored. This work introduces a new cross-linked n-type conjugated polymer, spiro-NDI-N, strategically designed with polar tertiary amine side chains. This molecular design aims to synergistically increase the electroactive surface area and boost ion transport for efficient ionic-electronic coupling. Spiro-NDI-N demonstrates excellent pseudocapacitive energy storage performance in pH-neutral aqueous electrolytes, with specific capacitance values of up to 532 F g-1 at 5 A g-1 and stable cycling over 5000 cycles. Moreover, it maintains a rate capability of 307 F g-1 at 350 A g-1. The superior pseudocapacitive performance of spiro-NDI-N, compared to strategically designed structural analogues lacking either the cross-linked backbone or polar side chains, validates the essential role of its molecular design elements. More broadly, the design and performance of spiro-NDI-N provide a novel strategy for developing high-performance organic pseudocapacitors.

3.
Chemistry ; 30(40): e202400907, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38649319

RESUMO

Hybrid supercapacitors (HSCs) bridge the unique advantages of batteries and capacitors and are considered promising energy storage devices for hybrid vehicles and other electronic gadgets. Lithium-ion capacitors (LICs) have attained particular interest due to their higher energy and power density than traditional supercapacitor devices. The limited voltage window and the deterioration of anode materials upsurged the demand for efficient and stable electrode materials. Two-dimensional (2D) molybdenum sulfide (MoS2) is a promising candidate for developing efficient and durable LICs due to its wide lithiation potential and unique layer structure, enhancing charge storage efficiency. Modifying the extrinsic features, such as the dimensions and shape at the nanoscale, serves as a potential path to overcome the sluggish kinetics observed in the LICs. Herein, the MoS2 nanoflowers have been synthesized through a hydrothermal route. The developed LIC exhibited a specific capacitance of 202.4 F g-1 at 0.25 A g-1 and capacitance retention of >90 % over 5,000 cycles. Using an ether electrolyte improved the voltage window (2.0 V) and enhanced the stability performance. The ex-situ material characterization after the stability test reveals that the storage mechanism in MoS2-LICs is not diffusion-controlled. Instead, the fast surface redox reactions, especially intercalation/deintercalation of ions, are more prominent for charge storage.

4.
Chemistry ; : e202402852, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136936

RESUMO

High-level pseudocapacitive materials require incorporations of significant redox regions into conductive and penetrable skeletons to enable the creation of devices capable of delivering high power for extended periods. Coordination nanosheets (CNs) are appealing materials for their high natural electrical conductivities, huge explicit surface regions, and semi-one-layered adjusted pore clusters. Thus, rational design of ligands and topological networks with desired electronic structure is required for the advancement in this field. Herein, we report three novel conjugated CNs (RV-10-M, M = Zn, Ni, and Co), by utilizing the full conjugation of the terpyridine-attached flexible tetraphenylethylene (TPE) units as the molecular rotors at the center. We prepare binder-free transparent nanosheets supported on Ni-foam with outstanding pseudocapacitive properties via a hydrothermal route followed by facile exfoliation. Among three CNs, the high surface area of RV-10-Co facilitates fast transport of ions and electrons and could achieve a high specific capacity of 670.8 C/g (1677 F/g) at 1 A/g current density. Besides, the corresponding flexible RV-10-Co possesses a maximum energy density of 37.26 Wh kg-1 at a power density of 171 W kg-1 and 70% capacitance retention even after 1000 cycles.

5.
Small ; 19(15): e2205598, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651124

RESUMO

A pseudo-capacitor with transient behavior is applied in implantable, disposable, and bioresorbable devices, incorporating an Na ion-doped bioderived ionic liquid, molybdenum trioxide (MoO3 )-covered molybdenum foil, and silk sheet as the electrolyte, electrode, and separator, respectively. Sodium lactate is dissolved in choline lactate as a source of Na ions. The Experimental results reveal that the Na ions are intercalated into the van der Waals gaps in MoO3 , and the pseudo-capacitor shows an areal capacitance (1.5 mF cm-2 ) that is three times larger than that without the Na ion. The fast ion diffusion of the electrolyte and the low resistance of the MoO3 and Mo interface result in an equivalent series resistance of 96 Ω. A cycle test indicates that the pseudo-capacitor exhibited a high capacitance retention of 82.8% after 10 000 cycles. The transient behavior is confirmed by the dissolution of the pseudo-capacitor into phosphate-buffered saline solution after 101 days. Potential applications of transient pseudo-capacitors include electronics without the need for device retrieval after use, including smart agriculture, implantable, and wearable devices.

6.
Small ; 19(37): e2301153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37154199

RESUMO

Ultra-high energy density battery-type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted α-/γ-MnS@Cox Sy core-shell heterostructure constrained in the sulphur (S), nitrogen (N) co-doped carbon (C) metal-organic frameworks (MOFs) derived nanosheets (α-/γ-MnS@Cox Sy @N, SC) have been developed. The coordination bonding among Cox Sy , and α-/γ-MnS nanoparticles at the interfaces and the π-π stacking interactions developed across α-/γ-MnS@Cox Sy and N, SC restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom-enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core-shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. . The α-/γ-MnS@Cox Sy @N, SC electrode exhibits an excellent specific capacity of 277 mA hg-1 and cycling stability over 23 600 cycles. A quasi-solid-state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer-by-layer deposited multi-walled carbon nanotube/Ti3 C2 TX nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg-1 (1.62 mWh cm-3 ) at a power of 933 W kg-1 and 92% capacitance retention over 5000 cycles.

7.
Small ; 19(5): e2205491, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446611

RESUMO

High-energy-density battery-type materials have sparked considerable interest as supercapacitors electrode; however, their sluggish charge kinetics limits utilization of redox-active sites, resulting in poor electrochemical performance. Here, the unique core-shell architecture of metal organic framework derived N-S codoped carbon@Cox Sy micropetals decorated with Nb-incorporated cobalt molybdate nanosheets (Nb-CMO4 @Cx Sy NC) is demonstrated. Coordination bonding across interfaces and π-π stacking interactions between CMO4 @Cx Sy and N and, S-C can prevent volume expansion during cycling. Density functional theory analysis reveals that the excellent interlayer and the interparticle conductivity imparted by Nb doping in heteroatoms synergistically alter the electronic states and offer more accessible species, leading to increased electrical conductivity with lower band gaps. Consequently, the optimized electrode has a high specific capacity of 276.3 mAh g-1 at 1 A g-1 and retains 98.7% of its capacity after 10 000 charge-discharge cycles. A flexible quasi-solid-state SC with a layer-by-layer deposited reduced graphene oxide /Ti3 C2 TX anode achieves a specific energy of 75.5 Wh kg-1 (volumetric energy of 1.58 mWh cm-3 ) at a specific power of 1.875 kWh kg-1 with 96.2% capacity retention over 10 000 charge-discharge cycles.

8.
Small ; 17(46): e2104178, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636139

RESUMO

High-energy electrodes at high mass loadings (usually >8.0 mg cm-2 ) are desired for aqueous pseudocapacitors. Yet, how to overcome the thickness-dependent resistance increase of ion/electron transport in pseudocapacitive materials is still challenging. Herein, a high-performance electrode (denoted as AMC) adapted to high mass loading is achieved by promoting the Li-ion affinity of 3D MoO2 /carbon fabric. The experimental results and corresponding computational results reveal that the oxygen-activated surface of AMC, combined with the wettability and conductivity superiority of 3D graphite network, significantly facilitates the Li-ion adsorption and diffusion at the electrode/electrolyte interface, even at large thicknesses. Consequently, even at a high mass loading up to 8.1 mg cm-2 , the AMC electrode also displays an impressive specific capacity (567.5 C g-1 at 2.5 A g-1 ), substantially superior to most advanced pseudocapacitive electrodes. The strategy of boosting energy characteristic by enhancing the affinity of charge carriers is applicable to other pseudocapacitive electrodes.


Assuntos
Carbono , Lítio , Molibdênio , Óxidos
9.
Angew Chem Int Ed Engl ; 60(40): 21838-21845, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34369054

RESUMO

Herein, we describe the synthesis of two highly crystalline, robust, hydrophilic covalent organic frameworks (COFs) that display intrinsic proton conduction by the Grotthuss mechanism. The enriched redox-active azo groups in the COFs can undergo a proton-coupled electron transfer reaction for energy storage, making the COFs ideal candidates for pseudocapacitance electrode materials. After in situ hybridization with carbon nanotubes, the composite exhibited a high three-electrode specific capacitance of 440 F g-1 at the current density of 0.5 A g-1 , among the highest for COF-based supercapacitors, and can retain 90 % capacitance even after 10 000 charge-discharge cycles. This is the first example using Grotthuss proton-conductive organic materials to create pseudocapacitors that exhibited both high power density and energy density. The assembled asymmetric two-electrode supercapacitor showed a maximum energy density of 71 Wh kg-1 with a maximum power density of 42 kW kg-1 , surpassing that of all reported COF-based systems.

10.
Molecules ; 25(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679654

RESUMO

Structural design is often investigated to decrease the electron transfer depletion in/on the pseudocapacitive electrode for excellent capacitance performance. However, a simple way to improve the internal and external electron transfer efficiency is still challenging. In this work, we prepared a novel structure composed of cobalt (Co) nanoparticles (NPs) embedded MnO nanowires (NWs) with an N-doped carbon (NC) coating on carbon cloth (CC) by in situ thermal treatment of polydopamine (PDA) coated MnCo2O4.5 NWs in an inert atmosphere. The PDA coating was carbonized into the NC shell and simultaneously reduced the MnCo2O4.5 to Co NPs and MnO NWs, which greatly improve the surface and internal electron transfer ability on/in MnO boding well supercapacitive properties. The hybrid electrode shows a high specific capacitance of 747 F g-1 at 1 A g-1 and good cycling stability with 93% capacitance retention after 5,000 cycles at 10 A g-1. By coupling with vanadium nitride with an N-doped carbon coating (VN@NC) negative electrode, the asymmetric supercapacitor delivers a high energy density of 48.15 Wh kg-1 for a power density of 0.96 kW kg-1 as well as outstanding cycling performance with 82% retention after 2000 cycles at 10 A g-1. The electrode design and synthesis suggests large potential in the production of high-performance energy storage devices.


Assuntos
Carbono/química , Cobalto/química , Capacitância Elétrica , Nanofios/química , Algoritmos , Técnicas de Química Sintética , Condutividade Elétrica , Compostos de Manganês/química , Modelos Teóricos , Nanofios/ultraestrutura , Óxidos/química , Análise Espectral
11.
Small ; 15(3): e1803716, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30488663

RESUMO

The large-scale application of supercapacitors (SCs) for portable electronics is restricted by low energy density and cycling stability. To alleviate the limitations, a unique interface engineering strategy is suggested through atomic layer deposition (ALD) and nitrogen plasma. First, commercial carbon cloth (CC) is treated with nitrogen plasma and later inorganic NiCo2 O4 (NCO)/NiO core-shell nanowire arrays are deposited on nitrogen plasma-treated CC (NCC) to fabricate the ultrahigh stable SC. An ultrathin layer of NiO deposited on the NCO nanowire arrays via conformal ALD plays a vital role in stabilizing the NCO nanowires for thousands of electrochemical cycles. The optimized NCC/NCO/NiO core-shell electrode exhibits a high specific capacitance of 2439 F g-1 with a remarkable cycling stability (94.2% over 20 000 cycles). Benefiting from these integrated merits, the foldable solid-state SCs are fabricated with excellent NCC/NCO/NiO core-shell nanowire array electrodes. The fabricated SC device delivers a high energy density of 72.32 Wh kg-1 at a specific capacitance of 578 F g-1 , with ultrasmall capacitance decline rate of 0.0003% per cycle over 10 000 charge-discharge cycles. Overall, this strategy offers a new avenue for developing a new-generation high-energy, ultrahigh stable supercapacitor for real-life applications.

12.
Small ; 15(1): e1804104, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30609283

RESUMO

Owing to the excellent physical properties of metal nitrides such as metallic conductivity and pseudocapacitance, they have recently attracted much attention as competitive materials for high-performance supercapacitors (SCs). However, the voltage window for metal nitride-based symmetric SCs is limited (0.6-0.8 V) in aqueous electrolyte due to the oxidation at high negative potentials. In this respect, ultra-small tungsten nitride particles onto the phosphorous modified carbon fabric (W2 N@P-CF) are engineered as a promising hybrid electrode for pseudocapacitors. Additionally, the fact that the W2 N@P-CF electrode can operate in the negative potential region is exploited to design asymmetric pseudocapacitors by coupling with a polypyrrole on carbon fabric (PPy@CF) as the positive electrode. Remarkably, the W2 N@P-CF//PPy@CF asymmetric cell can be cycled in a wide voltage window of 1.6 V that is almost two times higher than that of metal nitrides symmetric SCs. The pseudocapacitive behavior with matching different potential regions of W2 N@P-CF and PPy@CF, considerably enhance performance of asymmetric device. The device delivers high volumetric capacity (7.1 F cm-3 ), high energy (2.54 mWh cm-3 ), power densities, and good cycling stability (88%) over 20 000 cycles. Thus, pseudocapacitive metal nitride-based devices hold a great promise to provide high voltage and improved energy density in aqueous electrolyte.

13.
Small ; 15(40): e1902649, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31419018

RESUMO

2D titanium carbide (Ti3 C2 Tx MXene) is recognized as a promising material for pseudocapacitor electrodes in acidic solutions, while the current studies in neutral electrolytes show much poorer performances. By a simple hydrothermal method, vanadium-doped Ti3 C2 Tx 2D nanosheets are prepared to tune the interaction between MXene and alkali metal adsorbates (Li+ , Na+ , and K+ ) in the neutral electrolyte. Maintaining the 2D morphology of MXene, the coexisting V3+ and V4+ are confirmed to form surface V-C and V-O species. At a medium doping level of V:Ti = 0.17:1, the V-doped MXene exhibits the highest capacitance of 365.9 F g-1 in 2 m KCl (10 mV s-1 ) and excellent stability (5% loss after 5000 cycles), compared to only 115.7 F g-1 of pristine MXene. Density functional theory calculations reveal the stronger alkali metal ion-O interaction on V-doped MXene surface than unmodified MXene and a further capacitance boost to 404.9 F g-1 using Li+ -containing neutral electrolyte is reported, which is comparable to the performance under acidic conditions.

14.
Small ; 15(52): e1904740, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31778036

RESUMO

Titanium-based oxides including TiO2 and M-Ti-O compounds (M = Li, Nb, Na, etc.) family, exhibit advantageous structural dynamics (2D ion diffusion path, open and stable structure for ion accommodations) for practical applications in energy storage systems, such as lithium-ion batteries, sodium-ion batteries, and hybrid pseudocapacitors. Further, Ti-based oxides show high operating voltage relative to the deposition of alkali metal, ensuring full safety by avoiding the formation of lithium and sodium dendrites. On the other hand, high working potential prevents the decomposition of electrolyte, delivering excellent rate capability through the unique pseudocapacitive kinetics. Nevertheless, the intrinsic poor electrical conductivity and reaction dynamics limit further applications in energy storage devices. Recently, various work and in-depth understanding on the morphologies control, surface engineering, bulk-phase doping of Ti-based oxides, have been promoted to overcome these issues. Inspired by that, in this review, the authors summarize the fundamental issues, challenges and advances of Ti-based oxides in the applications of advanced electrochemical energy storage. Particularly, the authors focus on the progresses on the working mechanism and device applications from lithium-ion batteries to sodium-ion batteries, and then the hybrid pseudocapacitors. In addition, future perspectives for fundamental research and practical applications are discussed.

15.
Small ; 15(22): e1900379, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31018042

RESUMO

Developing pseudocapacitive cathodes for sodium ion capacitors (SICs) is very significant for enhancing energy density of SICs. Vanadium oxides cathodes with pseudocapacitive behavior are able to offer high capacity. However, the capacity fading caused by the irreversible collapse of layer structure remains a major issue. Herein, based on the Acid-Base Proton theory, a strongly coupled layered pyridine-V2 O5 ·nH2 O nanowires cathode is reported for highly efficient sodium ion storage. By density functional theory calculations, in situ X-ray diffraction, and ex situ Fourier-transform infrared spectroscopy, a strong interaction between protonated pyridine and VO group is confirmed and stable during cycling. The pyridine-V2 O5 ·nH2 O nanowires deliver long-term cyclability (over 3000 cycles), large pseudocapacitive behavior (78% capacitive contribution at 1 mV s-1 ) and outstanding rate capability. The assembled pyridine-V2 O5 ·nH2 O//graphitic mesocarbon microbead SIC delivers high energy density of ≈96 Wh kg-1 (at 59 W kg-1 ) and power density of 14 kW kg-1 (at 37.5 Wh kg-1 ). The present work highlights the strategy of realizing strong interaction in the interlayer of V2 O5 ·nH2 O to enhance the electrochemical performance of vanadium oxides cathodes. The strategy could be extended for improving the electrochemical performance of other layered materials.

16.
Nano Lett ; 15(3): 1911-7, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25654445

RESUMO

Single-layer and few-layer transition metal dichalcogenides have been extensively studied for their electronic properties, but their energy-storage potential has not been well explored. This paper describes the structural and electrochemical properties of few-layer TiS2 nanocrystals. The two-dimensional morphology leads to very different behavior, compared to corresponding bulk materials. Only small structural changes occur during lithiation/delithiation and charge storage characteristics are consistent with intercalation pseudocapacitance, leading to materials that exhibit both high energy and power density.


Assuntos
Calcogênios/química , Capacitância Elétrica , Fontes de Energia Elétrica , Eletrônica/instrumentação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Cristalização/métodos , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
17.
Angew Chem Int Ed Engl ; 55(12): 3958-62, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26890879

RESUMO

Anomalously high pseudocapacitance of a metal oxide was observed when Ni, Co, and Mn were mixed in a solid solution. Analysis by X-ray absorption near-edge spectroscopy (XANES) identified a wider redox swing of Ni as the origin of the enlarged pseudocapacitance. Ab initio DFT calculations revealed that aliovalent species resulting from the copresence of multiple transition metals can generate permanent local distortions of [NiO6] octahedra. As this type of distortion breaks the degenerate eg level of Ni(2+), the Jahn-Teller lattice instability necessary for the Ni(2+/3+) redox flip can be effectively diminished during charge-discharge, thus resulting in the significantly increased capacitance. Our findings highlight the importance of understanding structure-property correlation related to local structural distortions in improving the performance of pseudocapacitors.

18.
Small ; 11(18): 2182-91, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25565035

RESUMO

A template-free, one-step and one-phase synthesis of single-layer MnO2 nanosheets has been developed via a redox reaction between KMnO4 and sodium dodecyl sulfate (SDS). The successful formation of single-layer MnO2 nanosheets has been confirmed by the characteristic absorption around 374 nm and the typical thickness of ~0.95 nm. The slow redox reaction controlled by the gradual hydrolysis of SDS is found to be the key factor for the successful formation of single-layer nanosheets. SDS not only serves as the precursor of dodecanol to reduce KMnO4 , but also aids the formation of single-layer MnO2 nanosheets as a structure-inducing agent. The resultant single-layer MnO2 nanosheets possess superior specific capacitance, which can be attributed to the extended surface and high porosity of MnO2 nanosheets on the electrode. The MnO2 nanosheets also show excellent durability, retaining 91% of the starting capacitance after 10 000 charge/discharge cycles. Moreover, the symmetric pseudocapacitor based on the synthesized single-layer MnO2 nanosheets exhibits a high specific capacitance, indicating great potential for real energy storage. Therefore, it has been demonstrated for the first time that a single readily available reagent, SDS, can play multiple roles in reducing KMnO4 to conveniently yield single-layer MnO2 nanosheets as a high-performance pseudocapacitive material.

19.
Chemphyschem ; 16(2): 377-89, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25371375

RESUMO

A poly(3,4-ethylenedioxypyrrole)-gold nanoparticle (Au)-tungsten oxide (PEDOP-Au@WO3 ) electrochromic supercapacitor electrode capable of optically modulating solar energy while simultaneously storing/releasing energy (in the form of charge) was fabricated for the first time. WO3 fibers, 50 to 200 nm long and 20 to 60 nm wide, were synthesized by a hydrothermal route and were electrophoretically deposited on a conducting substrate. Au nanoparticles and PEDOP were coated over WO3 to yield the PEDOP-Au@WO3 hybrid electrode. The inclusion of Au in the hybrid was confirmed by X-ray diffraction, Raman spectroscopy, and energy-dispersive X-ray analyses. The nanoscale electronic conductivity, coloration efficiency, and transmission contrast of the hybrid were found to be significantly greater than those of pristine WO3 and PEDOP. The hybrid showed a high specific discharge capacitance of 130 F g(-1) during coloration, which was four and ten times greater than the capacitance achieved in WO3 or PEDOP, respectively. We also demonstrate the ability of the PEDOP-Au@WO3 hybrid, relative to pristine PEDOP, to perform as a superior counter electrode in a solar cell, which is attributed to a higher work function. The capacitance and redox switching capability of the hybrid decreases insignificantly with cycling, thus establishing the viability of this multifunction hybrid for next-generation sustainable devices such as electrochromic psuedocapacitors because it can concurrently conserve and store energy.

20.
Chemistry ; 20(31): 9607-12, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24988995

RESUMO

Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2 /G) were constructed. The enlarged d-spacing, a contribution of the graphene matrix, and the unique properties of the MoS2 /G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2 /G exhibits a stable capacity of approximately 350 mAh g(-1) over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g(-1) over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1-2.5 V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA