Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 751
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 44: 425-447, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863253

RESUMO

What changes in neural architecture account for the emergence and expansion of dexterity in primates? Dexterity, or skill in performing motor tasks, depends on the ability to generate highly fractionated patterns of muscle activity. It also involves the spatiotemporal coordination of activity in proximal and distal muscles across multiple joints. Many motor skills require the generation of complex movement sequences that are only acquired and refined through extensive practice. Improvements in dexterity have enabled primates to manufacture and use tools and humans to engage in skilled motor behaviors such as typing, dance, musical performance, and sports. Our analysis leads to the following synthesis: The neural substrate that endows primates with their enhanced motor capabilities is due, in part, to (a) major organizational changes in the primary motor cortex and (b) the proliferation of output pathways from other areas of the cerebral cortex, especially from the motor areas on the medial wall of the hemisphere.


Assuntos
Córtex Motor , Animais , Destreza Motora , Movimento
2.
Traffic ; 24(3): 114-130, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35146839

RESUMO

The cytoskeleton is an essential component of the cell and it is involved in multiple physiological functions, including intracellular organization and transport. It is composed of three main families of proteinaceous filaments; microtubules, actin filaments and intermediate filaments and their accessory proteins. Motor proteins, which comprise the dynein, kinesin and myosin superfamilies, are a remarkable group of accessory proteins that mainly mediate the intracellular transport of cargoes along with the cytoskeleton. Like other cellular structures and pathways, viruses can exploit the cytoskeleton to promote different steps of their life cycle through associations with motor proteins. The complexity of the cytoskeleton and the differences among viruses, however, has led to a wide diversity of interactions, which in most cases remain poorly understood. Unveiling the details of these interactions is necessary not only for a better comprehension of specific infections, but may also reveal new potential drug targets to fight dreadful diseases such as rabies disease and acquired immunodeficiency syndrome (AIDS). In this review, we describe a few examples of the mechanisms that some human viruses, that is, rabies virus, adenovirus, herpes simplex virus, human immunodeficiency virus, influenza A virus and papillomavirus, have developed to hijack dyneins, kinesins and myosins.


Assuntos
Proteínas do Citoesqueleto , Vírus , Humanos , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Vírus/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Cinesinas/metabolismo , Dineínas/metabolismo
3.
J Virol ; 98(7): e0060624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38809020

RESUMO

Rabies virus (RABV) is highly lethal and triggers severe neurological symptoms. The neuropathogenic mechanism remains poorly understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) is a Rho-GTPase that is involved in actin remodeling and has been reported to be closely associated with neuronal dysfunction. In this study, by means of a combination of pharmacological inhibitors, small interfering RNA, and specific dominant-negatives, we characterize the crucial roles of dynamic actin and the regulatory function of Rac1 in RABV infection, dominantly in the viral entry phase. The data show that the RABV phosphoprotein interacts with Rac1. RABV phosphoprotein suppress Rac1 activity and impedes downstream Pak1-Limk1-Cofilin1 signaling, leading to the disruption of F-actin-based structure formation. In early viral infection, the EGFR-Rac1-signaling pathway undergoes a biphasic change, which is first upregulated and subsequently downregulated, corresponding to the RABV entry-induced remodeling pattern of F-actin. Taken together, our findings demonstrate for the first time the role played by the Rac1 signaling pathway in RABV infection and may provide a clue for an explanation for the etiology of rabies neurological pathogenesis.IMPORTANCEThough neuronal dysfunction is predominant in fatal rabies, the detailed mechanism by which rabies virus (RABV) infection causes neurological symptoms remains in question. The actin cytoskeleton is involved in numerous viruses infection and plays a crucial role in maintaining neurological function. The cytoskeletal disruption is closely associated with abnormal nervous symptoms and induces neurogenic diseases. In this study, we show that RABV infection led to the rearrangement of the cytoskeleton as well as the biphasic kinetics of the Rac1 signal transduction. These results help elucidate the mechanism that causes the aberrant neuronal processes by RABV infection and may shed light on therapeutic development aimed at ameliorating neurological disorders.


Assuntos
Citoesqueleto de Actina , Actinas , Vírus da Raiva , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Humanos , Citoesqueleto de Actina/metabolismo , Animais , Vírus da Raiva/fisiologia , Actinas/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Quinases Lim/metabolismo , Quinases Lim/genética , Internalização do Vírus , Raiva/metabolismo , Raiva/virologia , Linhagem Celular , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fatores de Despolimerização de Actina/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(22): e2203677119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609197

RESUMO

Cortical circuit tracing using modified rabies virus can identify input neurons making direct monosynaptic connections onto neurons of interest. However, challenges remain in our ability to establish the cell type identity of rabies-labeled input neurons. While transcriptomics may offer an avenue to characterize inputs, the extent of rabies-induced transcriptional changes in distinct neuronal cell types remains unclear, and whether these changes preclude characterization of rabies-infected neurons according to established transcriptomic cell types is unknown. We used single-nucleus RNA sequencing to survey the gene expression profiles of rabies-infected neurons and assessed their correspondence with established transcriptomic cell types. We demonstrated that when using transcriptome-wide RNA profiles, rabies-infected cortical neurons can be transcriptomically characterized despite global and cell-type-specific rabies-induced transcriptional changes. Notably, we found differential modulation of neuronal marker gene expression, suggesting that caution should be taken when attempting to characterize rabies-infected cells with single genes or small gene sets.


Assuntos
Impressões Digitais de DNA , Neurônios , Vírus da Raiva , Raiva , Humanos , Neurônios/fisiologia , Neurônios/virologia , Raiva/genética , Vírus da Raiva/genética , Análise de Sequência de RNA , Transcrição Gênica , Transcriptoma/genética
5.
Emerg Infect Dis ; 30(8): 1642-1650, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043404

RESUMO

Rabies, a viral disease that causes lethal encephalitis, kills ≈59,000 persons worldwide annually, despite availability of effective countermeasures. Rabies is endemic in Kenya and is mainly transmitted to humans through bites from rabid domestic dogs. We analyzed 164 brain stems collected from rabid animals in western and eastern Kenya and evaluated the phylogenetic relationships of rabies virus (RABV) from the 2 regions. We also analyzed RABV genomes for potential amino acid changes in the vaccine antigenic sites of nucleoprotein and glycoprotein compared with RABV vaccine strains commonly used in Kenya. We found that RABV genomes from eastern Kenya overwhelmingly clustered with the Africa-1b subclade and RABV from western Kenya clustered with Africa-1a. We noted minimal amino acid variances between the wild and vaccine virus strains. These data confirm minimal viral migration between the 2 regions and that rabies endemicity is the result of limited vaccine coverage rather than limited efficacy.


Assuntos
Genoma Viral , Filogenia , Vacina Antirrábica , Vírus da Raiva , Raiva , Vírus da Raiva/genética , Vírus da Raiva/imunologia , Vírus da Raiva/classificação , Animais , Quênia/epidemiologia , Raiva/epidemiologia , Raiva/veterinária , Raiva/virologia , Raiva/prevenção & controle , Vacina Antirrábica/imunologia , Vacina Antirrábica/administração & dosagem , Cães , Alinhamento de Sequência , Humanos , Filogeografia
6.
J Virol ; 97(2): e0161222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779762

RESUMO

Rabies virus (RABV) is a prototypical neurotropic virus that causes rabies in human and animals with an almost 100% mortality rate. Once RABV enters the central nervous system, no treatment is proven to prevent death. RABV glycoprotein (G) interacts with cell surface receptors and then enters cells via clathrin-mediated endocytosis (CME); however, the key host factors involved remain largely unknown. Here, we identified transferrin receptor 1 (TfR1), a classic receptor that undergoes CME, as an entry factor for RABV. TfR1 interacts with RABV G and is involved in the endocytosis of RABV. An antibody against TfR1 or the TfR1 ectodomain soluble protein significantly blocked RABV infection in HEK293 cells, N2a cells, and mouse primary neuronal cells. We further found that the endocytosis of TfR1 is coupled with the endocytosis of RABV and that TfR1 and RABV are transported to early and late endosomes. Our results suggest that RABV hijacks the transport pathway of TfR1 for entry, thereby deepening our understanding of the entry mechanism of RABV. IMPORTANCE For most viruses, cell entry involves engagement with many distinct plasma membrane components, each of which is essential. After binding to its specific receptor(s), rabies virus (RABV) enters host cells through the process of clathrin-mediated endocytosis. However, whether the receptor-dependent clathrin-mediated endocytosis of RABV requires other plasma membrane components remain largely unknown. Here, we demonstrate that transferrin receptor 1 (TfR1) is a functional entry factor for RABV infection. The endocytosis of RABV is coupled with the endocytosis of TfR1. Our results indicate that RABV hijacks the transport pathway of TfR1 for entry, which deepens our understanding of the entry mechanism of RABV.


Assuntos
Vírus da Raiva , Raiva , Receptores da Transferrina , Internalização do Vírus , Animais , Humanos , Camundongos , Clatrina/metabolismo , Células HEK293 , Raiva/metabolismo , Vírus da Raiva/metabolismo , Receptores da Transferrina/metabolismo , Linhagem Celular , Endocitose
7.
J Virol ; 97(5): e0043823, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37042780

RESUMO

Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host endosomal sorting complex required for transport (ESCRT) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection and, specifically, the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a small interfering RNA (siRNA) screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology. IMPORTANCE Enveloped viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT complexes. Some enveloped viruses utilize their late (L-) domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped virions, but the underlying molecular mechanisms involved remain elusive. Here, we showed that TSG101, one of the ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via the L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Vírus da Raiva , Raiva , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Morfogênese , Raiva/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Liberação de Vírus , Linhagem Celular , Animais
8.
J Virol ; 97(2): e0161122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779763

RESUMO

Identification of bona fide functional receptors and elucidation of the mechanism of receptor-mediated virus entry are important to reveal targets for developing therapeutics against rabies virus (RABV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our previous studies suggest that metabotropic glutamate receptor subtype 2 (mGluR2) functions as an entry receptor for RABV in vitro, and is an important internalization factor for SARS-CoV-2 in vitro and in vivo. Here, we demonstrate that mGluR2 facilitates RABV internalization in vitro and infection in vivo. We found that transferrin receptor 1 (TfR1) interacts with mGluR2 and internalizes with mGluR2 and RABV in the same clathrin-coated pit. Knockdown of TfR1 blocks agonist-triggered internalization of mGluR2. Importantly, TfR1 also interacts with the SARS-CoV-2 spike protein and is important for SARS-CoV-2 internalization. Our findings identify a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry, and reveal TfR1 as a potential target for therapeutics against RABV and SARS-CoV-2. IMPORTANCE We previously found that metabotropic glutamate receptor subtype 2 (mGluR2) is an entry receptor for RABV in vitro, and an important internalization factor for SARS-CoV-2 in vitro and in vivo. However, whether mGluR2 is required for RABV infection in vivo was unknown. In addition, how mGluR2 mediates the internalization of RABV and SARS-CoV-2 needed to be resolved. Here, we found that mGluR2 gene knockout mice survived a lethal challenge with RABV. To our knowledge, mGluR2 is the first host factor to be definitively shown to play an important role in RABV street virus infection in vivo. We further found that transferrin receptor protein 1 (TfR1) directly interacts and cooperates with mGluR2 to regulate the endocytosis of RABV and SARS-CoV-2. Our study identifies a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry and opens a new door for the development of therapeutics against RABV and SARS-CoV-2.


Assuntos
COVID-19 , Vírus da Raiva , Receptores de Glutamato Metabotrópico , Receptores da Transferrina , SARS-CoV-2 , Internalização do Vírus , Animais , Humanos , Camundongos , Raiva/metabolismo , Vírus da Raiva/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores da Transferrina/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
BMC Neurosci ; 25(1): 9, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383317

RESUMO

BACKGROUND: A pseudotyped modified rabies virus lacking the rabies glycoprotein (G-protein), which is crucial for transsynaptic spread, can be used for monosynaptic retrograde tracing. By coupling the pseudotyped virus with transgene expression of the G-protein and the avian leukosis and sarcoma virus subgroup A receptor (TVA), which is necessary for cell entry of the virus, researchers can investigate specific neuronal populations. Responder mouse lines, like the RΦGT mouse line, carry the genes encoding the G-protein and TVA under Cre-dependent expression. These mouse lines are valuable tools because they reduce the number of viral injections needed compared to when using helper viruses. Since RΦGT mice do not express Cre themselves, introducing the pseudotyped rabies virus into their brain should not result in viral cell entry or spread. RESULTS: We present a straightforward flowchart for adequate controls in tracing experiments, which we employed to demonstrate Cre-independent expression of TVA in RΦGT mice. CONCLUSIONS: Our observations revealed TVA leakage, indicating that RΦGT mice should be used with caution for transgene expression of TVA. Inaccurate tracing outcomes may occur if TVA is expressed in the absence of Cre since background leakage leads to nonspecific cell entry. Moreover, conducting appropriate control experiments can identify the source of potential caveats in virus-based neuronal tracing experiments.


Assuntos
Proteínas Aviárias , Vírus da Raiva , Camundongos , Animais , Design de Software , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Aviárias/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Proteínas de Ligação ao GTP/metabolismo
10.
J Neurovirol ; 30(3): 274-285, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38943023

RESUMO

The Rabies virus is a neurotropic virus that manipulates the natural cell death processes of its host to ensure its own survival and replication. Studies have shown that the anti-apoptotic effect of the virus is mediated by one of its protein named, rabies glycoprotein (RVG). Alzheimer's disease (AD) is characterized by the loss of neural cells and memory impairment. We aim to examine whether expression of RVG in the hippocampal cells can shield the detrimental effects induced by Aß. Oligomeric form of Aß (oAß) or vehicle was bilaterally microinjected into the dorsal hippocampus of male Wistar rats. One week later, two µl (108 T.U. /ml) of the lentiviral vector carrying RVG gene was injected into their dorsal hippocampus (post-treatment). In another experiment, the lentiviral vector was microinjected one week before Aß injection (pre-treatment). One week later, the rat's brain was sliced into cross-sections, and the presence of RVG-expressing neuronal cells was confirmed using fluorescent microscopy. Rats were subjected to assessments of spatial learning and memory as well as passive avoidance using the Morris water maze (MWM) and the Shuttle box apparatuses, respectively. Protein expression of AMPA receptor subunit (GluA1) was determined using western blotting technique. In MWM, Aß treated rats showed decelerated acquisition of the task and impairment of reference memory. RVG expression in the hippocampus prevented and restored the deficits in both pre- and post- treatment conditions, respectively. It also improved inhibitory memory in the oAß treated rats. RVG increased the expression level of GluA1 level in the hippocampus. Based on our findings, the expression of RVG in the hippocampus has the potential to enhance both inhibitory and spatial learning abilities, ultimately improving memory performance in an AD rat model. This beneficial effect is likely attributed, at least in part, to the increased expression of GluA1-containing AMPA receptors.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Hipocampo , Vírus da Raiva , Ratos Wistar , Animais , Hipocampo/metabolismo , Hipocampo/virologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/virologia , Doença de Alzheimer/fisiopatologia , Ratos , Masculino , Vírus da Raiva/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Lentivirus/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Vetores Genéticos , Memória/fisiologia , Aprendizagem em Labirinto , Neurônios/metabolismo , Neurônios/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Aprendizagem da Esquiva/fisiologia
11.
J Anat ; 244(3): 527-536, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38009263

RESUMO

Corticotropin-releasing hormone (CRH) neurons are densely distributed in the medial prefrontal cortex (mPFC), which plays a crucial role in integrating and processing emotional and cognitive inputs from other brain regions. Therefore, it is important to know the neural afferent patterns of mPFCCRH neurons, which are still unclear. Here, we utilized a rabies virus-based monosynaptic retrograde tracing system to map the presynaptic afferents of the mPFCCRH neurons throughout the entire brain. The results show that the mPFCCRH neurons receive inputs from three main groups of brain regions: (1) the cortex, primarily the orbital cortex, somatomotor areas, and anterior cingulate cortex; (2) the thalamus, primarily the anteromedial nucleus, mediodorsal thalamic nucleus, and central medial thalamic nucleus; and (3) other brain regions, primarily the basolateral amygdala, hippocampus, and dorsal raphe nucleus. Taken together, our results are valuable for further investigations into the roles of the mPFCCRH neurons in normal and neurological disease states. These investigations can shed light on various aspects such as cognitive processing, emotional modulation, motivation, sociability, and pain.


Assuntos
Encéfalo , Hormônio Liberador da Corticotropina , Camundongos , Animais , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico , Vias Neurais/fisiologia
12.
Virol J ; 21(1): 154, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978059

RESUMO

BACKGROUND: Rabies is a fatal zoonotic disease whose pathogenesis has not been fully elucidated, and vaccination is the only effective method for protecting against rabies virus infection. Most inactivated vaccines are produced using Vero cells, which are African green monkey kidney cells, to achieve large-scale production. However, there is a potential carcinogenic risk due to nonhuman DNA contamination. Thus, replacing Vero cells with human diploid cells may be a safer strategy. In this study, we developed a novel 2BS cell-adapted rabies virus strain and analysed its sequence, virulence and immunogenicity to determine its application potential as a human diploid cell inactivated vaccine. METHODS AND RESULTS: The 2BS cell-adapted rabies virus strain 2aG4-B40 was established by passage for 40 generations and selection of plaques in 2BS cells. RNA sequence analysis revealed that mutations in 2BS cell-adapted strains were not located at key sites that regulate the production of neutralizing antibodies or virulence in the aG strain (GQ412744.1). The gradual increase in virulence (remaining above 7.0 logLD50/ml from the 40th to 55th generation) and antigen further indicated that these mutations may increase the affinity of the adapted strains for human diploid cells. Identification tests revealed that the 2BS cell-adapted virus strain was neutralized by anti-rabies serum, with a neutralization index of 19,952. PrEP and PEP vaccination and the NIH test further indicated that the vaccine prepared with the 2aG4-B40 strain had high neutralizing antibody levels (2.24 to 46.67 IU/ml), immunogenicity (protection index 270) and potency (average 11.6 IU/ml). CONCLUSIONS: In this study, a 2BS cell-adapted strain of the 2aG4 rabies virus was obtained by passage for 40 generations. The results of sequencing analysis and titre determination of the adapted strain showed that the mutations in the adaptive process are not located at key sequence regions of the virus, and these mutations may enhance the affinity of the adapted strain for human diploid cells. Moreover, vaccines made from the adapted strain 2aG4-B40 had high potency and immunogenicity and could be an ideal candidate rabies virus strain for inactivated vaccine preparation.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina Antirrábica , Vírus da Raiva , Raiva , Vírus da Raiva/imunologia , Vírus da Raiva/genética , Vírus da Raiva/patogenicidade , Animais , Vacina Antirrábica/imunologia , Vacina Antirrábica/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Raiva/prevenção & controle , Raiva/imunologia , Raiva/virologia , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Virulência , Vacinas de Produtos Inativados/imunologia , Células Vero , China , Camundongos , Linhagem Celular , Mutação , Feminino , Imunogenicidade da Vacina
13.
Cereb Cortex ; 33(3): 895-915, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35323915

RESUMO

A subcortical pathway through the superior colliculus and pulvinar has been proposed to provide the amygdala with rapid but coarse visual information about emotional faces. However, evidence for short-latency, facial expression-discriminating responses from individual amygdala neurons is lacking; even if such a response exists, how it might contribute to stimulus detection is unclear. Also, no definitive anatomical evidence is available for the assumed pathway. Here we showed that ensemble responses of amygdala neurons in monkeys carried robust information about open-mouthed, presumably threatening, faces within 50 ms after stimulus onset. This short-latency signal was not found in the visual cortex, suggesting a subcortical origin. Temporal analysis revealed that the early response contained excitatory and suppressive components. The excitatory component may be useful for sending rapid signals downstream, while the sharpening of the rising phase of later-arriving inputs (presumably from the cortex) by the suppressive component might improve the processing of facial expressions over time. Injection of a retrograde trans-synaptic tracer into the amygdala revealed presumed monosynaptic labeling in the pulvinar and disynaptic labeling in the superior colliculus, including the retinorecipient layers. We suggest that the early amygdala responses originating from the colliculo-pulvino-amygdalar pathway play dual roles in threat detection.


Assuntos
Pulvinar , Córtex Visual , Animais , Colículos Superiores/fisiologia , Emoções , Pulvinar/fisiologia , Primatas
14.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891803

RESUMO

Rabies virus (RABV) is a neurotropic virus that causes fatal neurological disease, raising serious public health issues and attracting extensive attention in society. To elucidate the molecular mechanism of RABV-induced neuronal damage, we used hematoxylin-eosin staining, transmission electron microscopy, transcriptomics analysis, and immune response factor testing to investigate RABV-infected neurons. We successfully isolated the neurons from murine brains. The specificity of the isolated neurons was identified by a monoclonal antibody, and the viability of the neurons was 83.53-95.0%. We confirmed that RABV infection induced serious damage to the neurons according to histochemistry and transmission electron microscope (TEM) scanning. In addition, the transcriptomics analysis suggested that multiple genes related to the pyroptosis pathway were significantly upregulated, including gasdermin D (Gsdmd), Nlrp3, caspase-1, and IL-1ß, as well as the chemokine genes Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl12, and Cxcl10. We next verified this finding in the brains of mice infected with the rRC-HL, GX074, and challenge virus standard strain-24 (CVS-24) strains of RABV. Importantly, we found that the expression level of the Gsdmd protein was significantly upregulated in the neurons infected with different RABV strains and ranged from 691.1 to 5764.96 pg/mL, while the basal level of mock-infected neurons was less than 100 pg/mL. Taken together, our findings suggest that Gsdmd-induced pyroptosis is involved in the neuron damage caused by RABV infection.


Assuntos
Neurônios , Proteínas de Ligação a Fosfato , Piroptose , Vírus da Raiva , Raiva , Animais , Neurônios/virologia , Neurônios/metabolismo , Neurônios/patologia , Vírus da Raiva/patogenicidade , Vírus da Raiva/fisiologia , Raiva/virologia , Raiva/patologia , Raiva/metabolismo , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Encéfalo/virologia , Encéfalo/patologia , Encéfalo/metabolismo , Gasderminas
15.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731834

RESUMO

Tripartite motif (TRIM) proteins are a multifunctional E3 ubiquitin ligase family that participates in various cellular processes. Recent studies have shown that TRIM proteins play important roles in regulating host-virus interactions through specific pathways, but their involvement in response to rabies virus (RABV) infection remains poorly understood. Here, we identified that several TRIM proteins are upregulated in mouse neuroblastoma cells (NA) after infection with the rabies virus using RNA-seq sequencing. Among them, TRIM44 was found to regulate RABV replication. This is supported by the observations that downregulation of TRIM44 inhibits RABV replication, while overexpression of TRIM44 promotes RABV replication. Mechanistically, TRIM44-induced RABV replication is brought about by activating autophagy, as inhibition of autophagy with 3-MA attenuates TRIM44-induced RABV replication. Additionally, we found that inhibition of autophagy with rapamycin reverses the TRIM44-knockdown-induced decrease in LC3B expression and autophagosome formation as well as RABV replication. The results suggest that TRIM44 promotes RABV replication by an autophagy-dependent mechanism. Our work identifies TRIM44 as a key host factor for RABV replication, and targeting TRIM44 expression may represent an effective therapeutic strategy.


Assuntos
Autofagia , Vírus da Raiva , Proteínas com Motivo Tripartido , Replicação Viral , Animais , Humanos , Camundongos , Autofagia/genética , Linhagem Celular Tumoral , Interações Hospedeiro-Patógeno , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Raiva/virologia , Raiva/metabolismo , Vírus da Raiva/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética
16.
Traffic ; 22(12): 482-489, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34622522

RESUMO

Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.


Assuntos
Vírus da Raiva , Núcleo Celular/metabolismo , Sinais de Exportação Nuclear , Vírus da Raiva/metabolismo , Proteínas Virais/metabolismo , Virulência
17.
J Neurophysiol ; 130(2): 278-290, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377198

RESUMO

The anterior lateral motor cortex (ALM) is critical to subsequent correct movements and plays a vital role in predicting specific future movements. Different descending pathways of the ALM are preferentially involved in different roles in movements. However, the circuit function mechanisms of these different pathways may be concealed in the anatomy circuit. Clarifying the anatomy inputs of these pathways should provide some helpful information for elucidating these function mechanisms. Here, we used a retrograde trans-synaptic rabies virus to systematically generate, analyze, and compare whole brain maps of inputs to the thalamus (TH)-, medulla oblongata (Med)-, superior colliculus (SC)-, and pontine nucleus (Pons)-projecting ALM neurons in C57BL/6J mice. Fifty-nine separate regions from nine major brain areas projecting to the descending pathways of the ALM were identified. Brain-wide quantitative analyses revealed identical whole brain input patterns between these descending pathways. Most inputs to the pathways originated from the ipsilateral side of the brain, with most innervations provided by the cortex and TH. The contralateral side of the brain also sent sparse projections, but these were rare, emanating only from the cortex and cerebellum. Nevertheless, the inputs received by TH-, Med-, SC-, and Pons-projecting ALM neurons had different weights, potentially laying an anatomical foundation for understanding the diverse functions of well-defined descending pathways of the ALM. Our findings provide anatomical information to help elucidate the precise connections and diverse functions of the ALM.NEW & NOTEWORTHY Distinct descending pathways of anterior lateral motor cortex (ALM) share common inputs. These inputs are with varied weights. Most inputs were from the ipsilateral side of brain. Preferential inputs were provided by cortex and thalamus (TH).


Assuntos
Córtex Motor , Camundongos , Animais , Córtex Motor/fisiologia , Camundongos Endogâmicos C57BL , Ponte/fisiologia , Tálamo/fisiologia , Neurônios Motores/fisiologia , Vias Neurais/fisiologia
18.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38063294

RESUMO

The zoonotic rabies virus (RABV) is a non-segmented negative-sense RNA virus classified within the family Rhabdoviridae, and is the most common aetiological agent responsible for fatal rabies disease. The RABV glycoprotein (G) forms trimeric spikes that protrude from RABV virions and mediate virus attachment, entry and spread, and is a major determinant of RABV pathogenesis. A range of RABV strains exist that are highly pathogenic in part due to their ability to evade host immune detection. However, some strains are disease-attenuated and can be cleared by host defences. A detailed molecular understanding of how strain variation relates to pathogenesis is currently lacking. Here, we reveal key differences in the trafficking profiles of RABV-G proteins from the challenge virus standard strain (CVS-11) and a highly attenuated vaccine strain SAD-B19 (SAD). We show that CVS-G traffics to the cell surface and undergoes rapid internalization through both clathrin- and cholesterol-dependent endocytic pathways. In contrast, SAD-G remains resident at the plasma membrane and internalizes at a significantly slower rate. Through engineering hybrids of CVS-G and SAD-G, we show that the cytoplasmic tail of CVS-G is the key determinant of these different internalization profiles. Alanine scanning further revealed that mutation of Y497 in CVS-G (H497 in SAD-G) could reduce the rate of internalization to SAD-G levels. Together, these data reveal new phenotypic differences between CVS-G and SAD-G proteins that may contribute to altered in vivo pathogenicity.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Humanos , Internalização do Vírus , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Ligação ao GTP/metabolismo
19.
Small ; 19(45): e2303542, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431212

RESUMO

Rabies is a zoonotic neurological disease caused by the rabies virus (RABV) that is fatal to humans and animals. While several post-infection treatment have been suggested, developing more efficient and innovative antiviral methods are necessary due to the limitations of current therapeutic approaches. To address this challenge, a strategy combining photodynamic therapy and immunotherapy, using a photosensitizer (TPA-Py-PhMe) with high type I and type II reactive oxygen species (ROS) generation ability is proposed. This approach can inactivate the RABV by killing the virus directly and activating the immune response. At the cellular level, TPA-Py-PhMe can reduce the virus titer under preinfection prophylaxis and postinfection treatment, with its antiviral effect mainly dependent on ROS and pro-inflammatory factors. Intriguingly, when mice are injected with TPA-Py-PhMe and exposed to white light irradiation at three days post-infection, the onset of disease is delayed, and survival rates improved to some extent. Overall, this study shows that photodynamic therapy and immunotherapy open new avenues for future antiviral research.


Assuntos
Fotoquimioterapia , Vírus da Raiva , Raiva , Humanos , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Raiva/prevenção & controle , Raiva/tratamento farmacológico , Antivirais
20.
J Virol ; 96(4): e0194221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878915

RESUMO

Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infections and suggests that OAA treatment is a strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to energy requirements after RABV infection. Our study also indicates the role OAA could play in neuronal protection by suppressing excessive neuroinflammation.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Vírus da Raiva/patogenicidade , Raiva/metabolismo , Acetilação , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/virologia , Metabolismo Energético , Inflamação , Camundongos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ácido Oxaloacético/metabolismo , Ácido Oxaloacético/uso terapêutico , Proteoma/metabolismo , Raiva/tratamento farmacológico , Raiva/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA