Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 181(4): 818-831.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32359423

RESUMO

Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/fisiologia , Expressão Gênica/genética , Genes Essenciais/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
2.
Curr Genomics ; 24(2): 66-71, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37994328

RESUMO

Circular RNAs (circRNAs) are a class of endogenous functional RNA generated by back-splicing. Recently, circRNAs have been found to have certain coding potential. Proteins/peptides translated from circRNAs play essential roles in various diseases. Here, we briefly summarize the basic knowledge and technologies that are usually applied to study circRNA translation. Then, we focus on the research progress of circRNA translation in cardiovascular diseases and discuss the perspective and future direction of translatable circRNA study in cardiovascular diseases.

3.
RNA ; 25(7): 757-767, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010886

RESUMO

Poly(rC)-binding protein 2 (PCBP2, hnRNP E2) is one of the most abundant RNA-binding proteins in mammalian cells. In humans, it exists in seven isoforms, which are assumed to play similar roles in cells. The protein is shown to bind 3'-untranslated regions (3'-UTRs) of many mRNAs and regulate their translation and/or stability, but nothing is known about the functional consequences of PCBP2 binding to 5'-UTRs. Here we show that the PCBP2 isoform f interacts with the 5'-UTRs of mRNAs encoding eIF4G2 (a translation initiation factor with a yet unknown mechanism of action, also known as DAP5) and Cyclin I, and inhibits their translation in vitro and in cultured cells, while the PCBP2 isoform e only affects Cyclin I translation. Furthermore, eIF4G2 participates in a cap-dependent translation of the PCBP2 mRNA. Thus, PCBP2 and eIF4G2 seem to regulate one another's expression via a novel type of feedback loop formed by the translation initiation factor and the RNA-binding protein.


Assuntos
Regiões 5' não Traduzidas/genética , Fator de Iniciação Eucariótico 4G/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Células Cultivadas , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
4.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510048

RESUMO

Several control mechanisms of eukaryotic gene expression target the initiation step of mRNA translation. The canonical translation initiation pathway begins with cap-dependent attachment of the small ribosomal subunit (SSU) to the messenger ribonucleic acid (mRNA) followed by an energy-dependent, sequential 'scanning' of the 5' untranslated regions (UTRs). Scanning through the 5'UTR requires the adenosine triphosphate (ATP)-dependent RNA helicase eukaryotic initiation factor (eIF) 4A and its efficiency contributes to the specific rate of protein synthesis. Thus, understanding the molecular details of the scanning mechanism remains a priority task for the field. Here, we studied the effects of inhibiting ATP-dependent translation and eIF4A in cell-free translation and reconstituted initiation reactions programmed with capped mRNAs featuring different 5'UTRs. An aptamer that blocks eIF4A in an inactive state away from mRNA inhibited translation of capped mRNA with the moderately structured ß-globin sequences in the 5'UTR but not that of an mRNA with a poly(A) sequence as the 5'UTR. By contrast, the nonhydrolysable ATP analogue ß,γ-imidoadenosine 5'-triphosphate (AMP-PNP) inhibited translation irrespective of the 5'UTR sequence, suggesting that complexes that contain ATP-binding proteins in their ATP-bound form can obstruct and/or actively block progression of ribosome recruitment and/or scanning on mRNA. Further, using primer extension inhibition to locate SSUs on mRNA ('toeprinting'), we identify an SSU complex which inhibits primer extension approximately eight nucleotides upstream from the usual toeprinting stop generated by SSUs positioned over the start codon. This '-8 nt toeprint' was seen with mRNA 5'UTRs of different length, sequence and structure potential. Importantly, the '-8 nt toeprint' was strongly stimulated by the presence of the cap on the mRNA, as well as the presence of eIFs 4F, 4A/4B and ATP, implying active scanning. We assembled cell-free translation reactions with capped mRNA featuring an extended 5'UTR and used cycloheximide to arrest elongating ribosomes at the start codon. Impeding scanning through the 5'UTR in this system with elevated magnesium and AMP-PNP (similar to the toeprinting conditions), we visualised assemblies consisting of several SSUs together with one full ribosome by electron microscopy, suggesting direct detection of scanning intermediates. Collectively, our data provide additional biochemical, molecular and physical evidence to underpin the scanning model of translation initiation in eukaryotes.


Assuntos
Regiões 5' não Traduzidas/genética , Biossíntese de Proteínas , Capuzes de RNA/genética , RNA Mensageiro/genética , Subunidades Ribossômicas Menores/genética , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Animais , Linhagem Celular Tumoral , Sistema Livre de Células , Fator de Iniciação 4F em Eucariotos/metabolismo , Camundongos , Modelos Genéticos , RNA Helicases/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
5.
RNA ; 22(12): 1859-1870, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733651

RESUMO

Eukaryotic translation initiation is a complex process involving many components. eIF3 is a scaffold for multiple initiation factors and plays multiple roles in initiation, and DHX29 helicase enhances the formation of the 48S initiation complex on structured mRNAs. Because DHX29 is not a processive helicase, the mechanism underlying its activity is unclear. Here, we show that DHX29 establishes many points of contact with eIF3. In particular, the unique N terminus of DHX29 associates with the RNA recognition motif of eIF3b and the C terminus of the eIF3a subunits of eIF3, and the disruption of either contact impairs DHX29 activity. In turn, DHX29 has weak points of contact with mRNA in the 48S initiation complex, and the pathway taken by mRNA remains unchanged. These results exclude the direct role for this protein in unwinding. Thus, DHX29 and eIF3 cooperate in scanning on structured mRNAs. Our findings support previous genetic data on the role of eIF3 during scanning.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Biossíntese de Proteínas , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Humanos
6.
Biochem Biophys Res Commun ; 452(4): 962-6, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25234600

RESUMO

Transcription factor GATA-6 plays essential roles in developmental processes and tissue specific functions through regulation of gene expression. GATA-6 mRNA utilizes two Met-codons in frame as translational initiation codons. Deletion of the nucleotide sequence encoding the PEST sequence (Glu(31)-Cys(46)) between the two initiation codons unusually reduced the protein molecular size on SDS-polyacrylamide gel-electrophoresis, and re-introduction of this sequence reversed this change. The long-type (L-type) GATA-6 containing this PEST sequence self-associated similarly to the short-type (S-type) GATA-6, as determined on co-immunoprecipitation of Myc-tagged GATA-6 with HA-tagged GATA-6. The L-type and S-type GATA-6 also interacted mutually. The L-type GATA-6 without the PEST sequence also self-associated and interacted with the S-type GATA-6. The transcriptional activation potential of L-type GATA-6 is higher than that of S-type GATA-6. When the PEST sequence (Glu(31)-Cys(46)) was inserted into the L-type GATA-6 without Arg(13)-Gly(101), the resultant recombinant protein showed significantly higher transcriptional activity, while the construct with an unrelated sequence exhibited lower activity. These results suggest that the Glu(31)-Cys(46) segment plays an important role in the transcriptional activation, although it does not participate in the self-association.


Assuntos
Fator de Transcrição GATA6/genética , Transcrição Gênica/genética , Ativação Transcricional/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Fator de Transcrição GATA6/química , Dados de Sequência Molecular , Relação Estrutura-Atividade
7.
FEBS J ; 287(5): 925-940, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31520451

RESUMO

Control of complex intracellular pathways such as protein synthesis is critical to organism survival, but is poorly understood. Translation of a reading frame in eukaryotic mRNA is preceded by a scanning process in which a subset of translation factors helps guide ribosomes to the start codon. Here, we perform comparative analysis of the control status of this scanning step that sits between recruitment of the small ribosomal subunit to the m7 GpppG-capped 5'end of mRNA and of the control exerted by downstream phases of polypeptide initiation, elongation and termination. We have utilized a detailed predictive model as guidance for designing quantitative experimental interrogation of control in the yeast translation initiation pathway. We have built a synthetic orthogonal copper-responsive regulatory promoter (PCuR3 ) that is used here together with the tet07 regulatory system in a novel dual-site in vivo rate control analysis strategy. Combining this two-site strategy with calibrated mass spectrometry to determine translation factor abundance values, we have tested model-based predictions of rate control properties of the in vivo system. We conclude from the results that the components of the translation machinery that promote scanning collectively function as a low-flux-control system with a capacity to transfer ribosomes into the core process of polypeptide production that exceeds the respective capacities of the steps of polypeptide initiation, elongation and termination. In contrast, the step immediately prior to scanning, that is, ribosome recruitment via the mRNA 5' cap-binding complex, is a high-flux-control step.


Assuntos
RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Biologia Computacional , Modelos Teóricos , Iniciação Traducional da Cadeia Peptídica/fisiologia , Biossíntese de Proteínas/fisiologia
8.
Virus Res ; 206: 74-81, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25683508

RESUMO

The Potyviridae family relies on a cap-independent translation mechanism to facilitate protein expression. The genomic architecture of the viral RNAs of the Potyviridae family resembles those of the animal picornaviruses. The viral genomes lack a 5' cap structure. Instead, they have the viral protein VPg covalently linked to the 5' end of the RNA. The viral RNAs code for a single large polyprotein, which is then cleaved into several functional subunits. With their common genome organization with the Picornaviridae, it has been largely assumed that the members of the plant Potyviridae family share similar translation mechanism. We will describe the remarkably diverse translational enhancers identified within the family and their unique mechanisms of translation, from internal recruitment of the ribosomes to ribosomal scanning from the 5' end and the recruitment of the VPg in translation. The divergence among the potyviral translation enhancers is heightened with the recent discovery of Triticum mosaic virus, an atypical member of the Potyviridae family, for which its 5' leader by far exceeds the typical length of plant viral leaders and contains features typically found in animal viruses. Much remains to be learned on how these highly divergent elements enable potyviruses, which include some of the most damaging plant viruses, to take over the host translation apparatus. While no clear consensus sequence, structure or mechanism has been reported yet among the potyviral elements, more thorough studies are needed to fill in the gap of knowledge.


Assuntos
Regiões 5' não Traduzidas , Potyviridae/fisiologia , Biossíntese de Proteínas , RNA Viral/genética , Sítios Internos de Entrada Ribossomal , Plantas/virologia , Potyviridae/genética , Ligação Proteica , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA