Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2213512120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036994

RESUMO

Some tropical sea cucumbers of the family Holothuriidae can efficiently repel or even fatally ensnare predators by sacrificially ejecting a bioadhesive matrix termed the Cuvierian organ (CO), so named by the French zoologist Georges Cuvier who first described it in 1831. Still, the precise mechanisms for how adhesiveness genetically arose in CO and how sea cucumbers perceive and transduce danger signals for CO expulsion during defense have remained unclear. Here, we report the first high-quality, chromosome-level genome assembly of Holothuria leucospilota, an ecologically significant sea cucumber with prototypical CO. The H. leucospilota genome reveals characteristic long-repeat signatures in CO-specific outer-layer proteins, analogous to fibrous proteins of disparate species origins, including spider spidroin and silkworm fibroin. Intriguingly, several CO-specific proteins occur with amyloid-like patterns featuring extensive intramolecular cross-ß structures readily stainable by amyloid indicator dyes. Distinct proteins within the CO connective tissue and outer surface cooperate to give the expelled matrix its apparent tenacity and adhesiveness, respectively. Genomic evidence offers further hints that H. leucospilota directly transduces predator-induced mechanical pressure onto the CO surface through mediation by transient receptor potential channels, which culminates in acetylcholine-triggered CO expulsion in part or in entirety. Evolutionarily, innovative events in two distinct regions of the H. leucospilota genome have apparently spurred CO's differentiation from the respiratory tree to a lethal defensive organ against predators.


Assuntos
Holothuria , Pepinos-do-Mar , Animais , Holothuria/genética , Holothuria/química , Holothuria/metabolismo , Proteínas Amiloidogênicas/metabolismo , Adesividade
2.
Dev Biol ; 505: 99-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925124

RESUMO

Sea cucumbers have an extraordinary regenerative capability. Under stressful conditions, Holothuria glaberrima can eviscerate their internal organs, including the digestive tract. From the mesentery, a rudiment grows and gives rise to a new intestine within a few weeks. In the last decades, the cellular events that occur during intestinal regeneration have been characterized, including apoptosis, cell proliferation, and muscle cell dedifferentiation. Nevertheless, their contribution to the formation and early growth of the rudiment is still unknown. Furthermore, these cellular events' relationship and potential interdependence remain a mystery. Using modulators to inhibit apoptosis and cell proliferation, we tested whether rudiment growth or other regenerative cellular events like muscle cell dedifferentiation were affected. We found that inhibition of apoptosis by zVAD and cell proliferation by aphidicolin and mitomycin did not affect the overall size of the rudiment seven days post-evisceration (7-dpe). Interestingly, animals treated with aphidicolin showed higher levels of muscle cell dedifferentiation in the distal mesentery, which could act as a compensatory mechanism. On the other hand, inhibition of apoptosis led to a decrease in cell proliferation in the rudiment and a delay in the spatiotemporal progression of muscle cell dedifferentiation throughout the rudiment-mesentery structure. Our findings suggest that neither apoptosis nor cell proliferation significantly contributes to early rudiment growth during intestinal regeneration in the sea cucumber. Nevertheless, apoptosis may play an essential role in modulating cell proliferation in the rudiment (a process known as apoptosis-induced proliferation) and the timing for the progression of muscle cell dedifferentiation. These findings provide new insights into the role and relationship of cellular events during intestinal regeneration in an emerging regeneration model.


Assuntos
Pepinos-do-Mar , Animais , Pepinos-do-Mar/fisiologia , Afidicolina , Intestinos , Proliferação de Células , Apoptose , Desdiferenciação Celular
3.
BMC Genomics ; 25(1): 689, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003448

RESUMO

BACKGROUND: The holothurians, commonly known as sea cucumbers, are marine organisms that possess significant dietary, nutritional, and medicinal value. However, the National Center for Biotechnology Information (NCBI) currently possesses only approximately 70 complete mitochondrial genome datasets of Holothurioidea, which poses limitations on conducting comprehensive research on their genetic resources and evolutionary patterns. In this study, a novel species of sea cucumber belonging to the genus Benthodytes, was discovered in the western Pacific Ocean. The genomic DNA of the novel sea cucumber was extracted, sequenced, assembled and subjected to thorough analysis. RESULTS: The mtDNA of Benthodytes sp. Gxx-2023 (GenBank No. OR992091) exhibits a circular structure spanning 17,386 bp, comprising of 13 protein-coding genes (PCGs), 24 non-coding RNAs (2 rRNA genes and 22 tRNA genes), along with two putative control regions measuring 882 bp and 1153 bp, respectively. It exhibits a high AT% content and negative AT-skew, which distinguishing it from the majority of sea cucumbers in terms of environmental adaptability evolution. The mitochondrial gene homology between Gxx-2023 and other sea cucumbers is significantly low, with less than 91% similarity to Benthodytes marianensis, which exhibits the highest level of homology. Additionally, its homology with other sea cucumbers is below 80%. The mitogenome of this species exhibits a unique pattern in terms of start and stop codons, featuring only two types of start codons (ATG and ATT) and three types of stop codons including the incomplete T. Notably, the abundance of AT in the Second position of the codons surpasses that of the First and Third position. The gene arrangement of PCGs exhibits a relatively conserved pattern, while there exists substantial variability in tRNA. Evolutionary analysis revealed that it formed a distinct cluster with B. marianensis and exhibited relatively distant phylogenetic relationships with other sea cucumbers. CONCLUSIONS: These findings contribute to the taxonomic diversity of sea cucumbers in the Elasipodida order, thereby holding significant implications for the conservation of biological genetic resources, evolutionary advancements, and the exploration of novel sea cucumber resources.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Pepinos-do-Mar , Animais , Pepinos-do-Mar/genética , RNA de Transferência/genética , Composição de Bases
4.
Proc Biol Sci ; 291(2031): 20241038, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39288805

RESUMO

Climate change is causing increased coastal freshening in Antarctica, leading to reduced salinity. For Antarctica's endemic echinoderms, adapted to the stable polar environment, the impact of rapid reductions in coastal salinity on physiology and behaviour is currently unknown. Six common Antarctic echinoderms (the sea urchin Sterechinus neumayeri; the sea star Odontaster validus; the brittle star Ophionotus victoriae; and three sea cucumbers Cucumaria georgiana, Echinopsolus charcoti and Heterocucumis steineni), were directly transferred from ambient salinity (34.5‰) to a range of salinity dilutions (29-9‰) for 24 h. All species showed reduced activity and the establishment of a temporary osmotic gradient between coelomic fluid and external seawater. Most species exhibited a depression in oxygen consumption across tolerated salinities; however, at very low salinities that later resulted in mortality, oxygen consumption increased to levels comparable to those at ambient. Low salinity tolerance varied substantially between species, with O. victoriae being the least tolerant (24 h LC50 (lethal for 50% of animals) = 19.9‰) while E. charcoti and C. georgiana demonstrated the greatest tolerance (24 h LC50 = 11.5‰). These findings demonstrate the species-specific response of Antarctica's endemic echinoderms to short-term hypoosmotic salinity events, providing valuable insight into this phylum's ability to respond to an underreported impact of climate change.


Assuntos
Mudança Climática , Equinodermos , Salinidade , Animais , Regiões Antárticas , Equinodermos/fisiologia , Estresse Salino , Consumo de Oxigênio , Estrelas-do-Mar/fisiologia , Água do Mar/química
5.
Int Microbiol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316254

RESUMO

Antimicrobial peptides (AMPs) are a family of short defense proteins that are naturally produced by all organisms and have great potential as effective substitutes for small-molecule antibiotics. The present study aims to excavate AMPs from sea cucumbers and achieve their heterologous expression in prokaryotic Escherichia coli. Using MytC as a probe, a cysteine-stabilized peptide SCAK33 with broad-spectrum antimicrobial activity was discovered from the proteome of Apostichopus japonicas. The SCAK33 showed inhibitory effects on both gram positive and gram negative bacteria with MICs of 3-28 µM, and without significant hemolysis activity in rat blood erythrocyte. Especially, it exhibited good antimicrobial activity against Bacillus megaterium, B. subtilis, and Vibrio parahaemolyticus with the MIC of 3, 7, and 7 µM, respectively. After observation by scanning electronic microscopy (SEM) and confocal laser scanning microscope (CLSM), it was found that the cell membrane of bacteria was severely damaged. Furthermore, the recombinant SCAK33 (reSCAK33) was heterologously expressed by fusion with SUMO tag in E. coli BL21(DE3), and the protein yield reached 70 mg/L. The research will supplement the existing quantity of sea cucumber AMPs and provide data support for rapid mining and biological preparation of sea cucumber AMPs.

6.
Fish Shellfish Immunol ; 151: 109745, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960105

RESUMO

Iron homeostasis is vital for the host's defense against pathogenic invasion and the ferritinophagy is a crucial mechanism in maintaining intracellular iron homeostasis by facilitating the degradation and recycling of stored iron. The nuclear receptor coactivator 4 (NCOA4) serves as a ferritinophagy receptor, facilitating the binding and delivery of ferritin to the autophagosome and lysosome. However, NCOA4 of the sea cucumber Apostichopus japonicus (AjNCOA4) has not been reported until now. In this study, we identified and characterized AjNCOA4 in A. japonicus. This gene encodes a polypeptide containing 597 amino acids with an open reading frame of 1794 bp. The inferred amino acid sequence of AjNCOA4 comprises an ARA70 domain. Furthermore, a multiple sequence alignment demonstrated varying degrees of sequence homology between AjNCOA4 from A. japonicus and other NCOA4 orthologs. The phylogenetic tree of NCOA4 correlates with the established timeline of metazoan evolution. Expression analysis revealed that AjNCOA4 is expressed in all tested tissues, including the body wall, muscle, intestine, respiratory tree, and coelomocytes. Following challenge with Vibrio splendidus, the coelomocytes exhibited a significant increase in AjNCOA4 mRNA levels, peaking at 24 h. We successfully obtained recombinant AjNCOA4 protein through prokaryotic expression and prepared a specific polyclonal antibody. Immunofluorescence and co-immunoprecipitation experiments demonstrated an interaction between AjNCOA4 and AjFerritin in coelomocytes. RNA interference-mediated knockdown of AjNCOA4 expression resulted in elevated iron ion levels in coelomocytes. Bacterial stimulation enhanced ferritinophagy in coelomocytes, while knockdown of AjNCOA4 reduced the occurrence of ferritinophagy. These findings suggest that AjNCOA4 modulates ferritinophagy induced by V. splendidus in coelomocytes of A. japonicus.


Assuntos
Sequência de Aminoácidos , Ferritinas , Coativadores de Receptor Nuclear , Filogenia , Alinhamento de Sequência , Stichopus , Vibrio , Animais , Vibrio/fisiologia , Stichopus/imunologia , Stichopus/genética , Stichopus/microbiologia , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/imunologia , Ferritinas/genética , Ferritinas/imunologia , Ferritinas/metabolismo , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Autofagia , Sequência de Bases
7.
Fish Shellfish Immunol ; 144: 109263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040134

RESUMO

Pattern recognition receptors (PRRs) are the first line of immune defense in invertebrates against pathogen infection; they recognize pathogens and transmit signals to downstream immune pathways. Among these, peptidoglycan recognition proteins (PGRPs) are an important family in invertebrates that generally comprise of complicated isoforms. A comprehensive understanding of PGRPs in evolutionarily and economically important marine invertebrates, such as the sea cucumber, Apostichopus japonicus, is crucial. Previous studies have identified two PGRPs in sea cucumber, AjPGRP-S and AjPGRP-S1, and another novel short-type PGRP, AjPGRP-S3, was additionally identified here. The full-length cDNA sequence of AjPGRP-S3 was obtained here by PCR-RACE, followed by which showed its gene expression analyses by in situ hybridization that showed it to be relatively highly expressed in coelomocytes and tube feet. Based on an analysis of the recombinant protein, rAjPGRP-S3, a board-spectrum pathogen recognition ability was noted that covered diverse Gram-negative and -positive bacteria, and fungi. Moreover, according to the results of yeast two-hybridization, it was suggested that rAJPGRP-S3 interacted with multiple immune-related factors, including proteins involved in the complement system, extracellular matrix, vesicle trafficking, and antioxidant system. These findings prove the important functions of AjPGRP-S3 in the transduction of pathogen signals to downstream immune effectors and help explore the functional differences in the AjPGRP isoforms.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Imunidade Inata/genética , Polissacarídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Mar Drugs ; 22(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057402

RESUMO

Eight sulfated triterpene glycosides, peronioside A (1) and psolusosides A (2), B (3), G (4), I (5), L (6), N (7) and P (8), were isolated from the sea cucumber Psolus peronii. Peronioside A (1) is a new glycoside, while compounds 2-8 were found previously in Psolus fabricii, indicating the phylogenetic and systematic closeness of these species of sea cucumbers. The activity of 1-8 against human erythrocytes and their cytotoxicity against the breast cancer cell lines MCF-7, T-47D and triple-negative MDA-MB-231 were tested. The most active against cancer cell compounds, psolusosides A (2) and L (6), which were not cytotoxic to the non-transformed cells of the mammary gland, were chosen to study the inhibition of the migration, formation and growth of colonies of the cancer cell lines. Glycoside 2 effectively inhibited the growth of colonies and the migration of the MDA-MB-231 cell line. Compound 6 blocked the growth of colonies of T-47D cells and showed a pronounced antimigration effect on MDA-MB-231 cells. The quantitative structure-activity relationships (QSAR) indicated the strong impact on the activity of the form and size of the molecules, which is connected to the length and architecture of the carbohydrate chain, the distribution of charge on the molecules' surface and various aspects of hydrogen bond formation, depending on the quantity and positions of the sulfate groups. The QSAR calculations were in good accordance with the observed SAR tendencies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Glicosídeos , Relação Quantitativa Estrutura-Atividade , Pepinos-do-Mar , Triterpenos , Humanos , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Animais , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Pepinos-do-Mar/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Células MCF-7 , Movimento Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos
9.
Mar Drugs ; 22(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39057434

RESUMO

Sea cucumber viscera contain various naturally occurring active substances, but they are often underutilized during sea cucumber processing. Polydeoxyribonucleotide (PDRN) is an adenosine A2A receptor agonist that activates the A2A receptor to produce various biological effects. Currently, most studies on the activity of PDRN have focused on its anti-inflammatory, anti-apoptotic, and tissue repair properties, yet relatively few studies have investigated its antioxidant activity. In this study, we reported for the first time that PDRN was extracted from the sperm of Apostichopus japonicus (AJS-PDRN), and we evaluated its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and hydroxyl radical scavenging assays. An in vitro injury model was established using H2O2-induced oxidative damage in RAW264.7 cells, and we investigated the protective effect of AJS-PDRN on these cells. Additionally, we explored the potential mechanism by which AJS-PDRN protects RAW264.7 cells from damage using iTRAQ proteomics analysis. The results showed that AJS-PDRN possessed excellent antioxidant activity and could significantly scavenge DPPH, ABTS, and hydroxyl radicals. In vitro antioxidant assays demonstrated that AJS-PDRN was cytoprotective and significantly enhanced the antioxidant capacity of RAW264.7 cells. The results of GO enrichment and KEGG pathway analysis indicate that the protective effects of AJS-PDRN pretreatment on RAW264.7 cells are primarily achieved through the regulation of immune and inflammatory responses, modulation of the extracellular matrix and signal transduction pathways, promotion of membrane repair, and enhancement of cellular antioxidant capacity. The results of a protein-protein interaction (PPI) network analysis indicate that AJS-PDRN reduces cellular oxidative damage by upregulating the expression of intracellular selenoprotein family members. In summary, our findings reveal that AJS-PDRN mitigates H2O2-induced oxidative damage through multiple pathways, underscoring its significant potential in the prevention and treatment of diseases caused by oxidative stress.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Estresse Oxidativo , Polidesoxirribonucleotídeos , Proteômica , Espermatozoides , Animais , Camundongos , Peróxido de Hidrogênio/toxicidade , Proteômica/métodos , Masculino , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Células RAW 264.7 , Polidesoxirribonucleotídeos/farmacologia , Stichopus/química , Pepinos-do-Mar/química , Substâncias Protetoras/farmacologia
10.
Mar Drugs ; 22(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39195482

RESUMO

This study explores the potential of Cucumaria frondosa (C. frondosa) viscera as a natural source of omega-3 FAs using supercritical carbon dioxide (scCO2) extraction. The extraction conditions were optimized using a response surface design, and the optimal parameters were identified as 75 °C and 45 MPa, with a 20 min static and a 30 min dynamic extraction, and a 2:1 ethanol to feedstock mass ratio. Under these conditions, the scCO2 extraction yielded higher FAs than the solvent-based Bligh and Dyer method. The comparative analysis demonstrated that scCO2 extraction (16.30 g of FAs/100 g of dried samples) yielded more fatty acids than the conventional Bligh and Dyer method (9.02 g, or 13.59 g of FAs/100 g of dried samples with ultrasonic assistance), indicating that scCO2 extraction is a viable, green alternative to traditional solvent-based techniques for recovering fatty acids. The pre-treatment effects, including drying methods and ethanol-soaking, were investigated. Freeze-drying significantly enhanced FA yields to almost 100% recovery, while ethanol-soaked viscera tripled the FA yields compared to fresh samples, achieving similar EPA and DHA levels to hot-air-dried samples. These findings highlight the potential of sea cucumber viscera as an efficient source of omega-3 FA extraction and offer an alternative to traditional extraction procedures.


Assuntos
Dióxido de Carbono , Ácidos Graxos Ômega-3 , Vísceras , Animais , Dióxido de Carbono/química , Ácidos Graxos Ômega-3/isolamento & purificação , Ácidos Graxos Ômega-3/química , Vísceras/química , Cromatografia com Fluido Supercrítico/métodos , Cucumaria/química , Pepinos-do-Mar/química , Liofilização
11.
Ecotoxicol Environ Saf ; 273: 116099, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422788

RESUMO

Sulfamethoxazole (SMZ) is a frequently detected antibiotic in the environment, and there is a growing concern about its potential toxic effects on aquatic organisms. sea cucumber (Apostichopus japonicas) is a benthic invertebrate whose gut acts as a primary immune defense and serves critical protective barrier. In this study, growth performance, histology, gut microbiota, and metabolomics analyses were performed to investigate the toxic response in the intestine of sea cucumber effects caused by SMZ stress for 56 d by evaluating with different concentrations of SMZ (0, 1.2×10-3, and 1.2 mg/L). The weight gain rate of sea cucumbers under SMZ stress showed significant decrease, indicating that the growth of sea cucumbers was hindered. Analysis of the intestinal morphological features indicated that SMZ stimulation resulted in atrophy of the sea cucumber gut. In the 1.2×10-3 mg/L concentration, the thickness of muscle and mucosal layers was reduced by 12.40% and 21.39%, while in the 1.2 mg/L concentration, the reductions were 35.08% and 26.98%. The abundance and diversity of sea cucumber intestinal bacteria decreased significantly (P < 0.05) under the influence of SMZ. Notably, the intestinal bacteria of sea cucumber became homogenized with the increase in SMZ concentration, and the relative abundance of Ralstonia reached 81.64% under the stress of 1.2 mg/L concentration. The SMZ stress significantly impacted host metabolism and disrupted balance, particularly in L-threonine, L-tyrosine, neuronic acid, piperine, and docosapentaenoic acid. SMZ leads to dysregulation of metabolites, resulting in growth inhibition and potential inflammatory responses that could adversely affect the normal activities of aquatic organisms. Further metabolic pathway enrichment analyses demonstrated that impaired biosynthesis of unsaturated fatty acids and aminoacyl-tRNA biosynthesis metabolic pathway were major reasons for SMZ stress-induced intestinal bacteria dysbiosis. This research aims to provide some theoretical evidence for the ecological hazard assessment of antibiotics in water.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Sulfametoxazol/toxicidade , Sulfametoxazol/metabolismo , Metabolômica , Bactérias/genética
12.
Arch Pharm (Weinheim) ; 357(1): e2300427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853667

RESUMO

Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.


Assuntos
Saponinas , Pepinos-do-Mar , Stichopus , Animais , Stichopus/química , Stichopus/fisiologia , Relação Estrutura-Atividade , Alimentos
13.
J Asian Nat Prod Res ; 26(6): 681-689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38329449

RESUMO

Sea cucumber-derived fungi have attracted much attention due to their capacity to produce an incredible variety of secondary metabolites. Genome-wide information on Aspergillus micronesiensis H39 obtained using third-generation sequencing technology (PacBio-SMRT) showed that the strain contains nonribosomal peptide synthetase (NRPS)-like gene clusters, which aroused our interest in mining its secondary metabolites. 11 known compounds (1-11), including two γ-aromatic butenolides (γ-AB) and five cytochalasans, were isolated from A. micronesiensis H39. The structures of the compounds were determined by NMR and ESIMS, and comparison with those reported in the literature. From the perspective of biogenetic origins, the γ-butyrolactone core of compounds 1 and 2 was assembled by NRPS-like enzyme. All of the obtained compounds showed no inhibitory activity against drug-resistant bacteria and fungi, as well as compounds 1 and 2 had no anti-angiogenic activity against zebrafish.


Assuntos
4-Butirolactona , 4-Butirolactona/análogos & derivados , Aspergillus , Família Multigênica , Peptídeo Sintases , Peptídeo Sintases/genética , Estrutura Molecular , 4-Butirolactona/farmacologia , 4-Butirolactona/química , Aspergillus/enzimologia , Aspergillus/química , Aspergillus/genética , Animais , Peixe-Zebra
14.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674158

RESUMO

With the continuous rise of the sea cucumber aquaculture industry in China, the tropical sea cucumber aquaculture industry is also improving. However, research on the gut microorganisms of tropical sea cucumbers in captivity is scarce. In this study, high-throughput sequencing methods were used to analyze the gut microbial composition of Stichopus monotuberculatus and Holothuria scabra in the dry season and wet season of artificial environments. The results showed that 66 phyla were obtained in all samples, of which 59 phyla were obtained in the dry season, and 45 phyla were obtained in the wet season. The Tax4Fun analysis showed that certain gut bacterial communities affect the daily metabolism of two sea cucumber species and are involved in maintaining gut microecological balance in the gut of two sea cucumber species. In addition, compared with differences between species, PCoA and UPGMA clustering analysis showed the gut prokaryotes of the same sea cucumber species varied more in different seasons, indicating that the influence of environment was higher than the feeding choices of sea cucumbers under relatively closed conditions. These results revealed the gut bacterial community composition of S. monotuberculatus and H. scabra and the differences in gut bacterial structure between two sea cucumber species in different seasons were compared, which would provide the foundation for tropical sea cucumber aquaculture in the future.


Assuntos
Bactérias , Microbioma Gastrointestinal , Pepinos-do-Mar , Estações do Ano , Animais , Microbioma Gastrointestinal/genética , Bactérias/classificação , Bactérias/genética , Pepinos-do-Mar/microbiologia , Pepinos-do-Mar/genética , Aquicultura , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Holothuria/microbiologia , Holothuria/genética , Stichopus/microbiologia , Stichopus/genética , RNA Ribossômico 16S/genética
15.
J Sci Food Agric ; 104(5): 2876-2887, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38018265

RESUMO

BACKGROUND: Pulmonary fibrosis (PF) is the terminal manifestation of a type of pulmonary disease, which seriously affects the respiratory function of the body, and with no effective cure for treatment. This study evaluated the effect of sea cucumber peptides (SCP) on bleomycin-induced SD rat PF. RESULTS: SCP can inhibit the PF induced by bleomycin. PF and SCP did not affect the food intake of rats, but PF reduced the body weight of rats, and SCP could improve the weight loss. SCP reduced lung index in PF rats in a dose-dependent manner. SCP significantly reduced IL-1ß, IL-6, TNF-α, α-SMA and VIM expression levels in lung tissue (P < 0.05), significantly decreased TGF-ß1 expression level in serum (P < 0.01) and the LSCP group and MSCP group had better inhibitory effects on PF than the HSCP group. Histomorphological results showed that SCP could ameliorate the structural damage of lung tissue, alveolar wall rupture, inflammatory cell infiltration, fibroblast proliferation and deposition of intercellular matrix and collagen fibers caused by PF. The improvement effect of the MSCP group was the most noteworthy in histomorphology. Metabolomics results showed that SCP significantly downregulated catechol, N-acetyl-l-histidine, acetylcarnitine, stearoylcarnitine, d-mannose, l-threonine, l-alanine, glycine, 3-guanidinopropionic acid, prostaglandin D2 and embelic acid d-(-)-ß-hydroxybutyric acid expression levels in lung tissue. CONCLUSION: SCP ameliorate bleomycin-induced SD rat PF. KEGG pathway analysis proved that SCP intervened in PF mainly via the lysosome pathway, with d-mannose as the key factor. © 2023 Society of Chemical Industry.


Assuntos
Fibrose Pulmonar , Animais , Ratos , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Pulmão , Manose/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Treonina/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo
16.
Dev Biol ; 492: 71-78, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167149

RESUMO

Despite being one of the bilaterians, the body plan of echinoderms shifts from bilateral symmetry to five-fold radial, or pentaradial symmetry during embryogenesis or their metamorphosis. While the clarification of the developmental mechanism behind this transition will be a basis for understanding their unique body plan evolution, it is still poorly understood. With this regard, the hydrocoel, a mesodermal coelom formed on the left side of bilateral larva, would be a clue for understanding the mechanism as it is the first pentaradial structure that appears before metamorphosis and develops into the water vascular system of adults. By analyzing the development of a sea cucumber, Apostichopus japonicus, we found that the hydrocoel expresses genes related in muscle and neural formation such as myosin heavy chain, tropomyosin, soxC, and elav, implying that cells of the hydrocoel contributes to muscle and neural structures in the adult. Furthermore, ablation of one of the hydrocoel lobes led to incomplete development of adult pentameral structures. The ablation of primary hydrocoel lobes resulted in the reduction in tentacles and the ablation of secondary hydrocoel lobes resulted in the reduction in water vascular canals and nerve cords. Our findings suggest that the hydrocoel lobes may serve as a potential organizing center for establishing the pentaradial body plan in echinoderms.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Metamorfose Biológica/fisiologia , Equinodermos , Água
17.
BMC Genomics ; 24(1): 766, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087211

RESUMO

BACKGROUND: Sea cucumbers exhibit a remarkable ability to regenerate damaged or lost tissues and organs, making them an outstanding model system for investigating processes and mechanisms of regeneration. They can also reproduce asexually by transverse fission, whereby the anterior and posterior bodies can regenerate independently. Despite the recent focus on intestinal regeneration, the molecular mechanisms underlying body wall regeneration in sea cucumbers still remain unclear. RESULTS: In this study, transverse fission was induced in the tropical sea cucumber, Holothuria leucospilota, through constrainment using rubber bands. Histological examination revealed the degradation and loosening of collagen fibers on day-3, followed by increased density but disorganization of the connective tissue on day-7 of regeneration. An Illumina transcriptome analysis was performed on the H. leucospilota at 0-, 3- and 7-days after artificially induced fission. The differential expression genes were classified and enriched by GO terms and KEGG database, respectively. An upregulation of genes associated with extracellular matrix remodeling was observed, while a downregulation of pluripotency factors Myc, Klf2 and Oct1 was detected, although Sox2 showed an upregulation in expression. In addition, this study also identified progressively declining expression of transcription factors in the Wnt, Hippo, TGF-ß, and MAPK signaling pathways. Moreover, changes in genes related to development, stress response, apoptosis, and cytoskeleton formation were observed. The localization of the related genes was further confirmed through in situ hybridization. CONCLUSION: The early regeneration of H. leucospilota body wall is associated with the degradation and subsequent reconstruction of the extracellular matrix. Pluripotency factors participate in the regenerative process. Multiple transcription factors involved in regulating cell proliferation were found to be gradually downregulated, indicating reduced cell proliferation. Moreover, genes related to development, stress response, apoptosis, and cell cytoskeleton formation were also involved in this process. Overall, this study provides new insights into the mechanisms of whole-body regeneration and uncover potential cross-species regenerative-related genes.


Assuntos
Holothuria , Pepinos-do-Mar , Animais , Pepinos-do-Mar/genética , Holothuria/genética , Regeneração/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/genética
18.
Cell Tissue Res ; 391(3): 457-483, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36697719

RESUMO

In the sea cucumber, Holothuria scabra, the competent larvae require main settlement organs (SOs), including the ciliary bands (CiBs), tentacles (Ts), podia (PDs), and cues from neurotransmitters, including gamma-aminobutyric acid (GABA) and dopamine (DA), for successful settlement. In the present study, we investigated the spatial distribution of GABA and DA in the developmental stages of H. scabra, with special emphasis on SOs by detecting immunoreactivity (-ir) against these two neurotransmitters. Strong GABA-ir and DA-ir cells and fibers were specifically detected in several SO structures, including CiBs, CiB cells (CiBCs), and long cilia (LCi), of H. scabra larvae. Additionally, we found intense GABA-ir and DA-ir cells in the epithelial lining of bud-papillae (BP) and mesothelium (Me) in the stem (S) region of Ts in larvae and juveniles. Intense GABA-ir and DA-ir were observed in the epineural nerve plexus (ENP) and hyponeural nerve plexus (HNP) of Ts in H. scabra pentactula and juvenile stages. Staining for these two neurotransmitters was particularly intense in the PDs and their nerve fibers. We also found significant changes in the numbers of GABA-ir and DA-ir-positive cells and intensities in the CiBs, Ts, and PDs during the developmental stages. Taken together, we are the first to report on the existence and distribution of GABAergic and dopaminergic systems in structures associated with the settlement. Our findings provide new and important insights into the possible functions of these two neurotransmitters in regulating the settlement of this sea cucumber species.


Assuntos
Holothuria , Pepinos-do-Mar , Animais , Holothuria/química , Dopamina , Fibras Nervosas , Ácido gama-Aminobutírico
19.
Fish Shellfish Immunol ; 135: 108662, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871631

RESUMO

The present study aims to explore the effects of dietary fulvic acid (FA) supplementation on the growth performance, digestive enzyme activity and immune response of sea cucumber (Apostichopus japonicas). FA was used to replace 0 (control), 0.1, 0.5 and 1 g cellulose in the basic diet of sea cucumber to formulate four experimental feeds with equivalent nitrogen and energy denoted as F0, F0.1, F0.3 and F1, respectively. No significant differences were observed in the survival rate among all groups (P > 0.05). Results show that the body weight gain rate, specific growth rate, intestinal trypsin, amylase and lipase activities, serum superoxide dismutase, catalase, lysozyme, alkaline and acid phosphatase activities and disease resistance ability against the pathogen, Vibrio splendidus of the sea cucumbers fed with FA-containing diets were significantly higher than those of the control group (P < 0.05). The optimum dose of dietary FA supplementation required for the maximum growth of sea cucumber was 0.54 g/kg. Therefore, dietary FA supplementation to the feed of sea cucumber can significantly improve its growth performance immune response.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Suplementos Nutricionais , Imunidade Inata , Ração Animal/análise , Dieta/veterinária , Resistência à Doença
20.
Mol Biol Rep ; 50(2): 1953-1960, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36454431

RESUMO

BACKGROUND: Holothuria (Halodeima) atra Jaeger, 1833 is a tropical sea cucumber usually harvested for the "bêche-de-mer" trade market. It has been reported to reproduce both sexually, through gamete spawning, or asexually, through fission. To date, no study has ever investigated clonality, nor genetic connectivity, among its populations, using microsatellite markers. METHODS AND RESULTS: We isolated the first 21 microsatellite loci specific for H. atra, which were then used to investigate clonal diversity, genetic structure and diversity among 44 H. atra individuals sampled in Reunion Island (southwestern Indian Ocean), over two seasons. All 21 loci were polymorphic, with number of alleles per locus ranging from 2 to 10. No repetitive multi-locus genotype (MLG) and few clonal lineages (MLL) were found. Observed heterozygosities per locus and season ranged from 0.000 to 0.909, while expected heterozygosities ranged from 0.290 to 0.882. Four loci were at Hardy-Weinberg equilibrium for both seasons, all others presenting a deficit of heterozygotes in one or both seasons. Meanwhile, no genetic differentiation was detected between seasons, according to assignment tests and global FST. CONCLUSIONS: These results suggest low asexual propagation in this population. These loci represent useful tools to better understand reproductive strategies and population connectivity of H. atra, and thus provide relevant knowledge for efficient management.


Assuntos
Holothuria , Pepinos-do-Mar , Animais , Humanos , Equinodermos/genética , Holothuria/genética , Oceano Índico , Repetições de Microssatélites/genética , Polimorfismo Genético , Reunião , Pepinos-do-Mar/genética , Reprodução Assexuada/genética , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA