Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 63(8): 1029-1037, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35594901

RESUMO

Seed dormancy is an important agronomic trait in cereals and leguminous crops as low levels of seed dormancy during harvest season, coupled with high humidity, can cause preharvest sprouting. Seed longevity is another critical trait for commercial crop propagation and production, directly influencing seed germination and early seedling establishment. Both traits are precisely regulated by the integration of genetic and environmental cues. Despite the significance of these two traits in crop production, the relationship between them at the molecular level is still elusive, even with contradictory conclusions being reported. Some studies have proposed a positive correlation between seed dormancy and longevity in association with differences in seed coat permeability or seed reserve accumulation, whereas an increasing number of studies have highlighted a negative relationship, largely with respect to phytohormone-dependent pathways. In this review paper, we try to provide some insights into the interactions between regulatory mechanisms of genetic and environmental cues, which result in positive or negative relationships between seed dormancy and longevity. Finally, we conclude that further dissection of the molecular mechanism responsible for this apparently contradictory relationship between them is needed.


Assuntos
Dormência de Plantas , Sementes , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
2.
Plant J ; 96(6): 1206-1217, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242928

RESUMO

The hydrophobic biopolymer suberin, which is deposited in the root endodermis and seed coats, functions as an extracellular barrier against uncontrolled water, gas, and ion loss. Suberin monomers synthesized in the endoplasmic reticulum (ER) are exported through the plasma membrane to the apoplast. However, limited information is available about the molecular mechanisms underlying suberin monomer export and assembly. In this study, we investigated the in planta role of LTPG15 encoding a glycosylphosphatidylinositol (GPI)-anchored lipid transfer protein. LTPG15 was predominantly expressed in the root endodermis and seed coat. Fluorescent signals from LTPG15:eYFP were detected in the plasma membrane in tobacco epidermis. Disruption of LTPG15 caused a significant decrease in the levels of fatty acids (C20-C24), primary alcohols (C20 and C22), ω-hydroxy fatty acids (C22 and C24), and α,ω-alkanediols (C20 and C22), but an increase in the amounts of primary alcohols and hydroxy fatty acids with C16 and C18 in seed coats. The mutant phenotype was restored to that of the wild type (WT) by the expression of LTPG15 driven by its own promoter. Seed coats of ltpg15 had an increase in permeability to tetrazolium salts compared with WT seed coats. ltpg15 seeds were more sensitive than WT seeds to inhibition of germination and seedling establishment by salt and osmotic stress treatments. Taken together, our results indicate that LTPG15 is involved in suberin monomer export in seed coats, and this highlights the role of Type G non-specific lipid transfer proteins (LTPGs) in very-long-chain fatty acids and their derivatives' export for suberin polyester formation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Ligação a Ácido Graxo/fisiologia , Glicosilfosfatidilinositóis/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Permeabilidade , Filogenia , Plantas Geneticamente Modificadas , Transcriptoma
3.
Physiol Mol Biol Plants ; 14(3): 173-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23572884

RESUMO

Seed coat permeability and electrolyte leaching are the important traits that have been negatively associated with seed longevity in soybean. The objective of this study was to use SSR markers to identify genomic regions significantly associated with QTLs controlling seed coat permeability and electrolyte leaching in a segregating F2 population derived from a cross of Birsa soya-1 x JS 71-05. Parental polymorphism survey using 145 SSR markers identified 21 polymorphic ones, which were used to genotype 153 F2 individuals. Four independent markers (Satt434, Satt538, Satt281 and Satt598) were significantly (P=0.05) associated with seed coat permeability. One of these markers (Satt 281) also showed significant association with electrolyte leaching that partly supported the observed positive correlation (r = 0.425) between the two traits. Markers for seed coat permeability individually explained 3.9% to 4.5% of the total phenotypic variation, while the marker linked with electrolyte leaching explained 5.6% of the total variation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA