RESUMO
BACKGROUND: Nontuberculous mycobacteria (NTM) cause pulmonary and extrapulmonary infections. Although isolation of NTM from clinical specimens has increased nationally, few studies delineated the molecular characteristics of extrapulmonary NTM. METHODS: Extrapulmonary isolates were collected by four Emerging Infections Program sites from October 2019 to March 2020 and underwent laboratory characterization, including matrix-assisted laser desorption ionization-time of flight mass spectrometry, Sanger DNA sequencing, and whole genome sequencing. Bioinformatics analyses were employed to identify species, sequence types (STs), antimicrobial resistance (AR), and virulence genes; isolates were further characterized by phylogenetic analyses. RESULTS: Among 45 isolates, the predominant species were Mycobacterium avium (n=20, 44%), Mycobacterium chelonae (n=7, 16%), and Mycobacterium fortuitum (n=6, 13%). The collection represented 31 STs across 10 species; the most common ST was ST11 (M. avium, n=7). Mycobacterium fortuitum and Mycobacterium abscessus isolates harbored multiple genes conferring resistance to aminoglycosides, beta-lactams, and macrolides. No known AR mutations were detected in rpoB, 16S, or 23S rRNAs. Slow-growing NTM species harbored multiple virulence genes including type-VII secretion components, adhesion factors, and phospholipase C. CONCLUSION: Continued active laboratory- and population-based surveillance will further inform the prevalence of NTM species and STs, monitor emerging clones, and allow AR characterization.
RESUMO
We report a clinical case of a child with an invasive pneumococcal disease caused by two different pneumococcal serotypes that belonged to different sequence types. She was a 15-month-old girl with pneumonia and pleural effusion in which S. pneumoniae colonies with different morphologies grew, one from the blood culture (characteristic greyish appearance) and the other from the pleural fluid (mucoid appearance). The isolate from blood was serotype 22 F (ST698/CC698/GPSC61), while the isolate from the pleural fluid was serotype 3 (ST180/CC180/GPSC12). The patient fully recovered after treatment with intravenous ampicillin followed by oral amoxicillin.
Assuntos
Antibacterianos , Sorogrupo , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Feminino , Lactente , Antibacterianos/uso terapêutico , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/diagnóstico , Derrame Pleural/microbiologia , Amoxicilina/uso terapêutico , Ampicilina/uso terapêutico , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/diagnóstico , Resultado do TratamentoRESUMO
Staphylococcus aureus is a major cause of neonatal infections in various anatomical sites, resulting in high morbidity and mortality in The Gambia. These clinical infections are often preceded by nasal carriage of S. aureus, a known risk factor. To determine whether potential sources of newborn S. aureus infections were from carriage, and to characterize S. aureus present in different anatomical sites (blood, ear, eye, umbilical cord, skin, pus, oropharynx, breast milk and vagina), we performed whole-genome sequencing of 172 isolates from clinical sites as well as from healthy and unhealthy carriage. A random selection of mothers (n = 90) and newborns (n = 42) participating in a clinical trial and testing positive for S. aureus were considered for this study. Sequence data were analyzed to determine S. aureus multilocus sequence types and selected antimicrobial and virulence gene profiles. Our findings revealed that in The Gambia, ST15 is the dominant sequence type associated with both carriage and clinical infection. In addition, S. aureus isolates causing clinical infection among neonates were genetically similar to those colonizing their oropharynx, and the different anatomical sites were not found to be uniquely colonized by S. aureus of a single genomic profile. Furthermore, while S. aureus associated with clinical infection had similar antimicrobial resistance gene profiles to carriage isolates, only hemolysin and adhesive factor virulence genes were significantly higher among clinical isolates. In conclusion, this study confirmed S. aureus oropharyngeal colonization among neonates as a potential source of clinical infection in The Gambia. Hence, interventions aiming to reduce neonatal clinical infections in The Gambia should consider decreasing oropharyngeal S. aureus carriage.Trial registration The trial was registered at ClinicalTrials.gov NCT03199547.
Assuntos
Portador Sadio , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Gâmbia/epidemiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/epidemiologia , Recém-Nascido , Portador Sadio/microbiologia , Portador Sadio/epidemiologia , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/classificação , Feminino , Sequenciamento Completo do Genoma , Tipagem de Sequências Multilocus , Genômica , Fatores de Virulência/genética , Genoma Bacteriano , Masculino , Adulto , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
BACKGROUND: Escherichia. coli is the most frequent host for New Delhi metallo-ß-lactamase (NDM) which hydrolyzes almost all ß-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. OBJECTIVE: This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. METHODS: Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. RESULTS: Until March 2023, 1,774 out of 33,055 isolates collected during 2003-2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. CONCLUSIONS: The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health.
Assuntos
Infecções por Escherichia coli , Escherichia coli , Genoma Bacteriano , Plasmídeos , beta-Lactamases , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , beta-Lactamases/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Plasmídeos/genética , Humanos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Genômica , Fatores de Virulência/genética , Virulência/genética , Saúde GlobalRESUMO
Cystic fibrosis (CF) is an inherited genetic disorder which manifests primarily in airway disease. Recent advances in molecular technologies have unearthed the diverse polymicrobial nature of the CF airway. Numerous studies have characterised the genus-level composition of this airway community using targeted 16S rDNA sequencing. Here, we employed whole-genome shotgun metagenomics to provide a more comprehensive understanding of the early CF airway microbiome. We collected 48 sputum samples from 11 adolescents and children with CF over a 12-month period and performed shotgun metagenomics on the Illumina NextSeq platform. We carried out functional and taxonomic analysis of the lung microbiome at the species and strain levels. Correlations between microbial diversity measures and independent demographic and clinical variables were performed. Shotgun metagenomics detected a greater diversity of bacteria than culture-based methods. A large proportion of the top 25 most-dominant species were anaerobes. Samples dominated by Staphylococcus aureus and Prevotella melaninogenica had significantly higher microbiome diversity, while no CF pathogen was associated with reduced microbial diversity. There was a diverse resistome present in all samples in this study, with 57.8% agreement between shotgun metagenomics and culture-based methods for detection of resistance. Pathogenic sequence types (STs) of S. aureus, Pseudomonas aeruginosa, Haemophilus influenzae and Stenotrophomonas maltophilia were observed to persist in young CF patients, while STs of S. aureus were both persistent and shared between patients. This study provides new insight into the temporal changes in strain level composition of the microbiome and the landscape of the resistome in young people with CF. Shotgun metagenomics could provide a very useful one-stop assay for detecting pathogens, emergence of resistance and conversion to persistent colonisation in early CF disease.
Assuntos
Fibrose Cística , Microbiota , Criança , Humanos , Adolescente , Staphylococcus aureus , Bioensaio , DNA Ribossômico , Microbiota/genéticaRESUMO
Hypervirulent Klebsiella pneumoniae (hvKp) is a variant that has been increasingly linked to severe, life-threatening infections including pyogenic liver abscess and bloodstream infections. HvKps belonging to the capsular serotypes K1 and K2 have been reported worldwide, however, very scarce studies are available on their genomics and virulence. In the current study, we report four hypermucoviscous extended-spectrum ß-lactamase-producing hvKp clinical strains of capsular serotype K1 and K2 isolated from pus and urine of critically ill patients in tertiary care hospitals in Oman. These strains belong to diverse sequence types (STs), namely ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2). To study their virulence, a Galleria mellonella model and resistance to human serum killing were used. The G. mellonella model revealed that the K1/ST-23 isolate was the most virulent, as 50% of the larvae died in the first day, followed by isolate K2/ST-231 and K2/ST-14, for which 75% and 50% of the larvae died in the second day, respectively. Resistance to human serum killing showed there was complete inhibition of bacterial growth of all four isolates by the end of the first hour and up to the third hour. Whole genome sequencing (WGS) revealed that hvKp strains display a unique genetic arrangement of k-loci. Whole-genome single-nucleotide polymorphism-based phylogenetic analysis revealed that these hvKp isolates were phylogenetically distinct, belonging to diverse clades, and belonged to different STs in comparison to global isolates. For ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2), there was a gradual decrease in the number of colonies up to the second to third hour, which indicates neutralization of bacterial cells by the serum components. However, this was followed by a sudden increase of bacterial growth, indicating possible resistance of bacteria against human serum bactericidal activity. This is the first report from Oman detailing the WGS of hvKp clinical isolates and assessing their resistance and virulence genomics, which reinforce our understanding of their epidemiology and dissemination in clinical settings.
Assuntos
Klebsiella pneumoniae , Fatores de Virulência , Humanos , Sorogrupo , Filogenia , Virulência/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
Improved understanding of the genetic basis of Campylobacter spp. colonization of poultry at specific growth stage is the key to developing a farm-based strategy to prevent flock colonization. In this study, 39 Campylobacter spp. strains (chicken isolates, n = 29; environmental isolates, n = 10) were collected from six marked chickens at the growth stage from week 7 to week 13. Then, we use comparative genomics techniques to analyze the temporal genomic characteristics of Campylobacter spp. in individual chickens across a production cycle. Genotype, average nucleotide identity (ANI), and phylogenetic trees all indicated the evolutionary relationships between the strains from different sampling weeks. The clustering of isolates was not dependent on sampling time and sample source, indicating that strains could persist over several weeks in a flock. Notably, 10 antimicrobial resistance (AMR) genes were identified in the genome of Campylobacter coli isolates, and the genomes of isolates sampled at week 11 harbored fewer AMR genes and insertion sequences (IS) than the isolates from other weeks. Consistent with this, pangenome-wide association analysis demonstrated that gene acquisition and loss could happen at week 11 and week 13. These genes were mainly associated with cell membrane biogenesis, ion metabolism, and DNA replication, suggesting that genomic change may be related to Campylobacter adaptive response. This is a novel study focused on the genetic changes occurring in Campylobacter spp. isolates in a particular space and time; it highlights that accessory genes and AMR genes were overall stable at chicken farm, which will help us understand the survival and the transmission route of Campylobacter spp. better, and have the potential to inform the strategy on the safety control of market-ready chickens.
Assuntos
Anti-Infecciosos , Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Animais , Galinhas , Antibacterianos/farmacologia , Infecções por Campylobacter/veterinária , Filogenia , Farmacorresistência Bacteriana/genética , GenômicaRESUMO
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Assuntos
Antibacterianos , Pseudomonas aeruginosa , Animais , Humanos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
Clostridioides difficile is an important human pathogen causing antibiotic-associated diarrhoea worldwide. Besides using antibiotics for treatment, the interest in bacteriophages as an alternative therapeutic option has increased. Prophage abundance and genetic diversity are well-documented in clinical strains, but the carriage of prophages in environmental strains of C. difficile has not yet been explored. Thus, the prevalence and genetic diversity of integrated prophages in the genomes of 166 environmental C. difficile isolates were identified. In addition, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems were determined in the genomes of prophage regions. Predicted prophages and CRISPR-Cas systems were identified by using the PHASTER web server and CRISPRCasFinder, respectively. Phylogenetic relationships among predicated prophages were also constructed based on phage-related genes, terminase large (TerL) subunits and LysM. Among 372 intact prophages, the predominant prophages were phiCDHM1, phiCDHM19, phiMMP01, phiCD506, phiCD27, phiCD211, phiMMP03, and phiC2, followed by phiMMP02, phiCDKM9, phiCD6356, phiCDKM15, and phiCD505. Two newly discovered siphoviruses, phiSM101- and phivB_CpeS-CP51-like Clostridium phages, were identified in two C. difficile genomes. Most prophages were found in sequence types (STs) ST11, ST3, ST8, ST109, and ST2, followed by ST6, ST17, ST4, ST5, ST44, and ST58. An obvious correlation was found between prophage types and STs/ribotypes. Most predicated prophages carry CRISPR arrays. Some prophages carry several gene products, such as accessory gene regulator (Agr), putative spore protease, and abortive infection (Abi) systems. This study shows that prophage carriage, along with genetic diversity and their CRISPR arrays, may play a role in the biology, lifestyle, and fitness of their host strains.
Assuntos
Bacteriófagos , Clostridioides difficile , Humanos , Prófagos/genética , Clostridioides , Clostridioides difficile/genética , Filogenia , Bacteriófagos/genética , Variação GenéticaRESUMO
Staphylococcus argenteus is a newly described species, formerly known as S. aureus clonal complex 75 (CC75). Here, we describe the largest collection of S. argenteus isolates in North America, highlighting identification challenges. We present phenotypic and genomic characteristics and provide recommendations for clinical reporting. Between 2017 and 2019, 22 isolates of S. argenteus were received at 2 large reference laboratories for identification. Identification with routine methods (biochemical, matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS], 16S rRNA gene analysis) proved challenging to confidently distinguish these isolates from S. aureus Whole-genome sequencing analysis was employed to confirm identifications. Using several different sequence-based analyses, all clinical isolates under investigation were confirmed to be S. argenteus with clear differentiation from S. aureus Seven of 22 isolates were recovered from sterile sites, 11 from nonsterile sites, and 4 from surveillance screens. While sequence types ST1223/coa type XV, ST2198/coa type XIV, and ST2793/coa type XId were identified among the Canadian isolates, the majority of isolates (73%) belonged to multilocus sequence types (MLST) ST2250/coa type XId and exhibited a high degree of homology at the genomic level. Despite this similarity, 5 spa types were identified among ST2250 isolates, demonstrating some diversity between strains. Several isolates carried mecA, as well as other resistance and virulence determinants (e.g., PVL, TSST-1) commonly associated with S. aureus Based on our findings, the growing body of literature on S. argenteus, the potential severity of infections, and possible confusion associated with reporting, including use of incorrect breakpoints for susceptibility results, we make recommendations for clinical laboratories regarding this organism.
Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Canadá , Genômica , Humanos , Tipagem de Sequências Multilocus , América do Norte , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Staphylococcus , Staphylococcus aureus/genética , Estados UnidosRESUMO
Mycoplasma mycoides subsp. capri (Mmc) typically causes pneumonia, mastitis, arthritis, keratitis and septicaemia in goats. Mortality associated with Mmc in goat flocks is lower compared to Mycoplasma capricolum subsp. capripneumoniae-associated respiratory infections. Case fatality rates associated with Mmc ranged from 9.8 to 26.8% among several states in India. Molecular epidemiology approaches aimed at genotyping help to identify the diversity of isolates involved in a disease. Ten clinical pathogenic Mmc isolates were analysed by multilocus sequence typing (MLST) for studying genotypic relationships with 50 isolates available from public databases. The MLST analysis indicates high genetic diversity among Mmc isolates. From a total number of 60 isolates, 43 six sequence types (STs) were recognized comprising of six STs from India and 37 STs from other geographical regions. MLST profiles of isolates revealed none of the STs observed in Indian isolates were shared with global isolates. Some of the STs representing Indian isolates (four STs) were clustered into a novel clonal complex 1 (CC1). Maintenance of genetically related STs forming CCs among the goat population in India for longer periods indicates disease causing potentiality of these isolates. Based on various recombination analysis, weak clonal relationship among Mmc isolates were identified. The present study has enlightened further steps in disease investigations and to design future control measures by employing prevalent genotypes as vaccine candidates against Mmc infections.
Assuntos
Doenças das Cabras/microbiologia , Tipagem de Sequências Multilocus , Infecções por Mycoplasma/veterinária , Mycoplasma/classificação , Mycoplasma/genética , Animais , Feminino , Variação Genética , Genótipo , Doenças das Cabras/epidemiologia , Doenças das Cabras/mortalidade , Cabras , Índia/epidemiologia , Epidemiologia Molecular , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/mortalidade , Mycoplasma mycoides/genética , Mycoplasma mycoides/isolamento & purificaçãoRESUMO
The emergence of carbapenem-resistant (CR) Escherichia coli obliges an assessment of such strains' molecular epidemiology. Accordingly, we characterized in detail a globally distributed collection of CR E. coli isolates, then explored for associations between geographical origin and bacterial traits, and between different bacterial traits. We used established PCR-based assays and broth microdilution MIC determinations to characterize 343 global CR (i.e., non-susceptible to ≥ 1 carbapenem) extraintestinal E. coli isolates (2002-2017) for diverse molecular traits-including phylogroups, sequence types (STs), beta-lactamase genes, and 51 virulence genes-and susceptibility to 12 relevant antimicrobial agents. The study population was tremendously diverse according to all assessed variables. Nonetheless, certain geographically aligned, unifying themes emerged. These included an association of an Asia/West Pacific origin with non-B2/D/F phylogroups and STs, lower molecularly inferred virulence, more extensive resistance, and specific resistance genes (notably, metallo-beta-lactamases). Likewise, U.S. isolates from the central region, vs. other regions, were more virulent-appearing and more often from phylogroup B2 and ST131, but less extensively resistant and more often carbapenemase-gene negative. The global CR E. coli population is highly diverse according to multiple characteristics and varies significantly by geographical region. This predictably will pose challenges for prevention and management, and obliges ongoing surveillance.
RESUMO
Cystic fibrosis (CF) is a common genetic disease, manifested by airway obstruction and chronic respiratory infection. The most prevalent infectious agent in airways of CF patients is Pseudomonas aeruginosa. This study aimed to determine sequence-types, antimicrobial resistance phenotypes and genes defining adaptive antibiotic resistance in P. aeruginosa isolates recovered from CF patients in Russia. In total, 84 P. aeruginosa strains from 64 CF patients were analyzed. Susceptibility to antibiotics was determined by disk diffusion test. Whole-genome sequencing (WGS) was performed on MGISEQ-2000 platform. SPAdes software, Galaxy, ResFinder, PubMLST were used for analysis of WGS data. Examined P. aeruginosa isolates belonged to 53 different sequence-types (STs), including 6 new STs. High-risk epidemic clone ST235 (10%) and clonal CF P. aeruginosa strains ST17, ST242, ST274 (7%) were detected. Non-susceptibility to ticarcillin-clavulanate, cefepime, imipenem was observed in 63%, 12% and 25% of isolates, respectively; to tobramycin - in 24%, to amikacin - in 35%; to ciprofloxacin, levofloxacin - in 35% and 57% of strains, respectively. Multidrug-resistant phenotype was detected in 18% of isolates. In examined strains, genes of beta-lactamases VIM-2 (5 ST235 strains), VEB-1 (two ST2592 strains), GES-1 (1 ST235 strain), PER-1 (1 ST235 strain) were found. Ciprofloxacin-modifying enzyme CrpP gene was detected in 67% of isolates, aminoglycoside-modifying enzymes AAD, ANT, AAC genes - in 7%, 4%, 12% of strains, respectively. P. aeruginosa isolates from CF patients in Russia demonstrate a high clonal diversity, which is similar to other P. aeruginosa infections. The isolates of high-risk clone and clonal CF P. aeruginosa strains are detected.
Assuntos
Fibrose Cística , Infecções por Pseudomonas , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética , Federação RussaRESUMO
Traditional serotyping based on the phenotypic variation of O- and H-antigen remains as the gold-standard for the identification and classification of Salmonella isolates for last 70 years. Although this classification is a globally recognized nomenclature, huge diversity of Salmonella serotypes have made the serovar identification to be very complex. Seven gene multilocus sequence typing (MLST) on the other hand can provide serovar prediction as well as the evolutionary origin between the serovars. In this study non typhoidal Salmonella (NTS) strains (n = 45) isolated from clinical samples (blood, faeces and pus) were identified by traditional phenotypic serotyping and biochemical testing. All the tested Salmonella isolates were designated as serovar Typhimurium based on phenotyping. However, by MLST 60% (27/45) of the isolates were S. Typhimurium, 35.5% (16/45) were S. Agona (ST13), 2.2% (1/45) were S. Kentucky (ST198) and 2.2% (1/45) were S. Saintpaul (ST27). MLST analysis assigned S. Typhimurium isolates as ST36 (18/127), ST19 (7/27) and ST313 (2/27). Mismatches in serovar designation between MLST database and phenotypic serotyping can be due to the misinterpretation of phenotypic serotyping as the antigenic structures of S. Typhimurium, S. Agona differs by a surface antigen. MLST based phylogeny of study isolates showed clustering according to sequence types. Concordance between MLST based sequence type and phenotypic serotype is important to provide insights into genetic population structure of Salmonella.
Assuntos
Técnicas de Genotipagem , Tipagem de Sequências Multilocus , Filogenia , Salmonella typhimurium/genética , SorogrupoRESUMO
OBJECTIVE: To determine whether four isolates of Streptococcus canis (S canis) recovered from dogs diagnosed with ulcerative keratitis at the Animal Health Trust (AHT) were genetically related to other ocular isolates that are registered in the online database. ANIMAL STUDIED: Four S canis corneal isolates. PROCEDURES: Clinical and laboratory records between 2016 and 2017 were searched for dogs with ulcerative keratitis for which microbiology analysis was consistent with the growth of S canis. Genomic DNA was extracted for sequencing (Illumina MiSeq), and multilocus sequence types (STs) were determined using MLST 1.8 relative to the 44 sequence types of S canis available. A neighbor-joining tree was constructed in MEGA v4.0. A two-sided Fisher's exact test was used to determine any associations between the isolated strains and ocular infections of dogs. RESULTS: Four strains were isolated from pugs (cases 1-4) with ulcerative keratitis. Genome sequencing identified ST-27 (case 1), ST-9 (case 3), and ST-13 (cases 2 and 4). STs 13 and 27 are members of Clonal Complex (CC)-13. Analysis of the multilocus sequence typing database revealed that CC-13 strains accounted for six of the twelve isolates recovered from the eye exudates of dogs (P = .0078). CONCLUSIONS: There is early evidence that the CC-13 group of S canis is associated with ocular infections in dogs. We provide draft genome sequences toward the future identification of virulence mechanisms associated with streptococcal keratitis in dogs.
Assuntos
Úlcera da Córnea/veterinária , Doenças do Cão/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus/genética , Animais , Técnicas de Tipagem Bacteriana/veterinária , Úlcera da Córnea/microbiologia , Bases de Dados Genéticas , Cães , Feminino , Masculino , Tipagem de Sequências Multilocus/veterinária , Filogenia , Infecções Estreptocócicas/microbiologia , Streptococcus/classificação , Streptococcus/isolamento & purificaçãoRESUMO
BACKGROUND: Invasive group B Streptococcus (GBS) disease in Chinese infants has gradually gained attention in recent years, but the molecular epidemiology of the pathogen is still not well known. METHODS: This multicenter study retrospectively investigated distribution of capsular serotypes, sequence types (STs), and hypervirulent GBS adhesin gene (hvgA) in clinical GBS isolates that caused invasive disease in infants aged < 3 months of age in southern mainland China between January 2013 and June 2016. Genes for antibiotic resistance to tetracycline, erythromycin, and clindamycin were also examined. RESULTS: From a total of 93 GBS isolates taken from 34 early-onset disease (EOD, 0-6 days after birth) and 59 late-onset disease (LOD, 7-89 days after birth) cases, four serotypes were identified: serotypes III (79.6%), Ib (12.9%), Ia (4.3%), and V (3.2%). Serotype III accounted for 73.5% of EOD and 83.1% of LOD and was responsible for 75.5% of cases involving meningitis. Fifteen STs were found, with the majority being ST17 (61.3%), ST12 (7.5%), ST19 (7.5%), and others (23.7%). 96.8% of STs belonged to only five clonal complexes (CCs): CC17 (64.5%), CC10 (12.9%), CC19 (9.7%), CC23 (6.5%), and CC1 (3.2%). The hvgA gene was detected in 66.7% of GBS isolates and 95% of CC17 isolates, all of which were serotype III except one serotype Ib/CC17 isolate. A large proportion of GBS isolates were found to be resistant to tetracycline (93.5%), clindamycin (65.5%), and erythromycin (60.2%). Genes of tetO (74.7%) and tetM (46.0%) were found in tetracycline resistant isolates, linB (24.6%) in clindamycin resistant isolates, and ermB (87.5%) and mefA (3.6%) in erythromycin resistant isolates. CONCLUSION: Our results reveal higher prevalence of serotype III, ST17, CC17, hvgA expressing, and antibiotic resistant GBS isolates than previously reported in southern mainland China. This study provides guidance for appropriate measures of prevention and control to be taken in the future.
Assuntos
Infecções Estreptocócicas/diagnóstico , Streptococcus agalactiae/isolamento & purificação , Adesinas Bacterianas/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , China/epidemiologia , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Lactente , Recém-Nascido , Tipagem de Sequências Multilocus , Prevalência , Estudos Retrospectivos , Sorogrupo , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/genéticaRESUMO
BACKGROUND: Staphylococcal aureus (S. aureus) has become the leading causative pathogen of Prosthetic Joint Infection (PJI), which is the most devastating complication after arthroplasty surgeries. Due to the biofilm formation ability and emergence of multiple-drugs resistance strains of S. aureus, it has become an urgency to find new anti-staphylococcal agents to establish effective prophylaxis and treatment strategy for PJI. Extracted from a traditional Chinese herb, berberine is proved active in inhibiting S. aureus, while whether it exerts the same effect on PJI-related S. aureus remains unknown. This study aims to investigate the antimicrobial activity of berbrine against clinical derived PJI-related S. aureus and whether its inhibiting efficacy is associated with subtypes of S. aureus. METHODS: Eighteen PJI-associated S. aureus were collected and their Multi-locus Sequence Types (MLST) and susceptibility to berberine both in planktonic and biofilm form were investigated. Additionally, one S. aureus strain (ST1792) was selected from the group and its transcriptomic profiling in berberine incubation was performed. The statistical analyses were conducted using Student's t-test with SPSS 24.0(SPSS, IBM, USA). The data were expressed as the means ± standard deviation. Values of p < 0.05 were considered statistically significant. RESULTS: It was found out that the Minimum Inhibitory Concentration values of PJI-related S. aureus varied in a broad range (from 64 to 512 µg/ml) among different MLST subtypes and the bacteria were able to regain growth after 24 h in berberine of MIC value or higher concentrations. In addition, sub-inhibitory concentrations of berberine surprisingly enhanced biofilm formation in some S. aureus strains. CONCLUSION: Traditional medicine is utilised by a large number of individuals, which provides abundant resources for modern medical science. In our study, berberine was found bactericidal against PJI related S. aureus, however, its antibacterial property was impacted by the MLST subtypes of the bacteria, both in planktonic and biofilm growth forms.
Assuntos
Antibacterianos/farmacologia , Berberina/farmacologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genéticaRESUMO
Staphylococcus aureus strain sequence type (ST) 398 has emerged during the last decade, largely among persons who have contact with swine or other livestock. Although colonization with ST398 is common in livestock workers, infections are not frequently documented. We report recurrent ST398-IIa infection in an Iowa farmer in contact with swine and cattle.
Assuntos
Fazendeiros , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Animais , Antibacterianos/uso terapêutico , Portador Sadio , Bovinos , Humanos , Iowa/epidemiologia , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional , Infecções Estafilocócicas/tratamento farmacológico , SuínosRESUMO
An increase in the prevalence of commensal Escherichia coli carrying blaCTX-M genes among dairy cattle was observed between 2008 and 2012 in Washington State. To study the molecular epidemiology of this change, we selected 126 blaCTX-M-positive and 126 blaCTX-M-negative isolates for determinations of the multilocus sequence types (MLSTs) and antibiotic resistance phenotypes from E. coli obtained during a previous study. For 99 isolates, we also determined the blaCTX-M alleles using PCR and sequencing and identified the replicon types of blaCTX-M-carrying plasmids. The blaCTX-M-negative E. coli isolates comprised 76 sequence types (STs) compared with 32 STs in blaCTX-M-positive E. coli isolates. The blaCTX-M-positive E. coli isolates formed three MLST clonal complexes, accounting for 83% of these isolates; 52% of blaCTX-M-negative E. coli isolates clustered into 10 clonal complexes, and the remainder were singletons. Overall, blaCTX-M-negative E. coli isolates had more diverse genotypes that were distinct to farms, whereas blaCTX-M-positive E. coli isolates had a clonal population structure and were widely disseminated on farms in both regions included in the study. Plasmid replicon types included IncI1 which predominated, followed by IncFIB and IncFIA/FIB. blaCTX-M-15 was the predominant CTX-M gene allele, followed by blaCTX-M-27 and blaCTX-M-14 There was no significant association between plasmid replicon types and bacterial STs, and neither clonal complexes nor major plasmid groups were associated with two discrete dairy-farming regions of Washington State.IMPORTANCE Infections caused by extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli occur globally and present treatment challenges because of their resistance to multiple antimicrobial drugs. Cattle are potential reservoirs of ESBL-producing Enterobacteriaceae, and so understanding the causes of successful dissemination of blaCTX-M genes in commensal bacteria will inform future approaches for the prevention of antibiotic-resistant pathogen emergence.
Assuntos
Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , beta-Lactamases/genética , Escherichia coli/enzimologia , Infecções por Escherichia coli/microbiologia , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Plasmídeos/genética , Prevalência , Washington/epidemiologiaRESUMO
Pasteurella multocida is a leading cause of respiratory disease in pigs worldwide. In this study, we determined the genetic characteristics of 115 P. multocida isolates from the lungs of pigs with respiratory disease in China in 2015 using capsular typing, lipopolysaccharide (LPS) genotyping, and virulence genotyping based on the detection of virulence-associated genes. The results showed that the isolates belonged to three capsular types: A (49.6%), D (46.1%), and nontypable (4.3%); and two LPS genotypes: L3 (22.6%) and L6 (77.4%). When combining the capsular types with the LPS genotypes, a genotype group D: L6 (46.1%) was the most prevalent among the strains. Among the 23 virulence-associated genes detected in this study, a small number of them displayed a certain level of "genotype-preference". We found that pfhA, hgbA, and hgbB had a close association with P. multocida LPS genotypes, while tadD was more associated with P. multocida capsular types. In addition, multilocus sequence typing (MLST) on 40 P. multocida isolates identified four sequence types: ST3, ST10, ST11, and ST16, and the distribution of ST11 was significantly higher than the other MLST genotypes. Interestingly, all of the ST11 isolates detected in this study were genotype D: L6 strains and they were 100% positive for hgbB. Our data suggest that a capsule/LPS/MLST genotype D/L6/ST11 is likely to be strongly associated with respiratory clinical manifestation of the disease in pigs.