Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Syst Biol ; 73(2): 343-354, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38289860

RESUMO

How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colors may enable more precise and/or easier species recognition and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of coloration on diversification is well-studied, the influence of the mechanisms that produce those colors (e.g., pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined color data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel color mechanisms increases diversification in sunbirds, one of the most colorful bird clades. Results suggest that: (1) the evolution of novel color mechanisms expands the visual sensory niche, increasing the number of achievable colors, (2) structural coloration diverges more readily across the body than pigment-based coloration, enabling an increase in color complexity, (3) novel color mechanisms might minimize trade-offs between natural and sexual selection such that color can function both as camouflage and conspicuous signal, and (4) despite structural colors being more colorful and mobile, only melanin-based coloration is positively correlated with net diversification. Together, these findings explain why color distances increase with an increasing number of sympatric species, even though packing of color space predicts otherwise.


Assuntos
Evolução Biológica , Filogenia , Pigmentação , Animais , Pigmentação/genética , Pigmentação/fisiologia , Passeriformes/classificação , Passeriformes/genética , Passeriformes/fisiologia , Cor
2.
Stud Mycol ; 107: 251-388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38600961

RESUMO

During 25 surveys of global Phytophthora diversity, conducted between 1998 and 2020, 43 new species were detected in natural ecosystems and, occasionally, in nurseries and outplantings in Europe, Southeast and East Asia and the Americas. Based on a multigene phylogeny of nine nuclear and four mitochondrial gene regions they were assigned to five of the six known subclades, 2a-c, e and f, of Phytophthora major Clade 2 and the new subclade 2g. The evolutionary history of the Clade appears to have involved the pre-Gondwanan divergence of three extant subclades, 2c, 2e and 2f, all having disjunct natural distributions on separate continents and comprising species with a soilborne and aquatic lifestyle and, in addition, a few partially aerial species in Clade 2c; and the post-Gondwanan evolution of subclades 2a and 2g in Southeast/East Asia and 2b in South America, respectively, from their common ancestor. Species in Clade 2g are soilborne whereas Clade 2b comprises both soil-inhabiting and aerial species. Clade 2a has evolved further towards an aerial lifestyle comprising only species which are predominantly or partially airborne. Based on high nuclear heterozygosity levels ca. 38 % of the taxa in Clades 2a and 2b could be some form of hybrid, and the hybridity may be favoured by an A1/A2 breeding system and an aerial life style. Circumstantial evidence suggests the now 93 described species and informally designated taxa in Clade 2 result from both allopatric non-adaptive and sympatric adaptive radiations. They represent most morphological and physiological characters, breeding systems, lifestyles and forms of host specialism found across the Phytophthora clades as a whole, demonstrating the strong biological cohesiveness of the genus. The finding of 43 previously unknown species from a single Phytophthora clade highlight a critical lack of information on the scale of the unknown pathogen threats to forests and natural ecosystems, underlining the risk of basing plant biosecurity protocols mainly on lists of named organisms. More surveys in natural ecosystems of yet unsurveyed regions in Africa, Asia, Central and South America are needed to unveil the full diversity of the clade and the factors driving diversity, speciation and adaptation in Phytophthora. Taxonomic novelties: New species: Phytophthora amamensis T. Jung, K. Kageyama, H. Masuya & S. Uematsu, Phytophthora angustata T. Jung, L. Garcia, B. Mendieta-Araica, & Y. Balci, Phytophthora balkanensis I. Milenkovic, Z. Tomic, T. Jung & M. Horta Jung, Phytophthora borneensis T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora calidophila T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora catenulata T. Jung, T.-T. Chang, N.M. Chi & M. Horta Jung, Phytophthora celeris T. Jung, L. Oliveira, M. Tarigan & I. Milenkovic, Phytophthora curvata T. Jung, A. Hieno, H. Masuya & M. Horta Jung, Phytophthora distorta T. Jung, A. Durán, E. Sanfuentes von Stowasser & M. Horta Jung, Phytophthora excentrica T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora falcata T. Jung, K. Kageyama, S. Uematsu & M. Horta Jung, Phytophthora fansipanensis T. Jung, N.M. Chi, T. Corcobado & C.M. Brasier, Phytophthora frigidophila T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora furcata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora inclinata N.M. Chi, T. Jung, M. Horta Jung & I. Milenkovic, Phytophthora indonesiensis T. Jung, M. Tarigan, L. Oliveira & I. Milenkovic, Phytophthora japonensis T. Jung, A. Hieno, H. Masuya & J.F. Webber, Phytophthora limosa T. Corcobado, T. Majek, M. Ferreira & T. Jung, Phytophthora macroglobulosa H.-C. Zeng, H.-H. Ho, F.-C. Zheng & T. Jung, Phytophthora montana T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora multipapillata T. Jung, M. Tarigan, I. Milenkovic & M. Horta Jung, Phytophthora multiplex T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora nimia T. Jung, H. Masuya, A. Hieno & C.M. Brasier, Phytophthora oblonga T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora obovoidea T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora obturata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora penetrans T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora platani T. Jung, A. Pérez-Sierra, S.O. Cacciola & M. Horta Jung, Phytophthora proliferata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora pseudocapensis T. Jung, T.-T. Chang, I. Milenkovic & M. Horta Jung, Phytophthora pseudocitrophthora T. Jung, S.O. Cacciola, J. Bakonyi & M. Horta Jung, Phytophthora pseudofrigida T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora pseudoccultans T. Jung, T.-T. Chang, I. Milenkovic & M. Horta Jung, Phytophthora pyriformis T. Jung, Y. Balci, K.D. Boders & M. Horta Jung, Phytophthora sumatera T. Jung, M. Tarigan, M. Junaid & A. Durán, Phytophthora transposita T. Jung, K. Kageyama, C.M. Brasier & H. Masuya, Phytophthora vacuola T. Jung, H. Masuya, K. Kageyama & J.F. Webber, Phytophthora valdiviana T. Jung, E. Sanfuentes von Stowasser, A. Durán & M. Horta Jung, Phytophthora variepedicellata T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora vietnamensis T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora ×australasiatica T. Jung, N.M. Chi, M. Tarigan & M. Horta Jung, Phytophthora ×lusitanica T. Jung, M. Horta Jung, C. Maia & I. Milenkovic, Phytophthora ×taiwanensis T. Jung, T.-T. Chang, H.-S. Fu & M. Horta Jung. Citation: Jung T, Milenkovic I, Balci Y, Janousek J, Kudlácek T, Nagy ZÁ, Baharuddin B, Bakonyi J, Broders KD, Cacciola SO, Chang T-T, Chi NM, Corcobado T, Cravador A, Dordevic B, Durán A, Ferreira M, Fu C-H, Garcia L, Hieno A, Ho H-H, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira LSS, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivukovic Z, Tarigan M, Thu PQ, Tomic Z, Tomsovský M, Uematsu S, Webber JF, Zeng H-C, Zheng F-C, Brasier CM, Horta Jung M (2024). Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Studies in Mycology 107: 251-388. doi: 10.3114/sim.2024.107.04.

3.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34108239

RESUMO

Global cooling and glacial-interglacial cycles since Antarctica's isolation have been responsible for the diversification of the region's marine fauna. By contrast, these same Earth system processes are thought to have played little role terrestrially, other than driving widespread extinctions. Here, we show that on islands along the Antarctic Polar Front, paleoclimatic processes have been key to diversification of one of the world's most geographically isolated and unique groups of herbivorous beetles-Ectemnorhinini weevils. Combining phylogenomic, phylogenetic, and phylogeographic approaches, we demonstrate that these weevils colonized the sub-Antarctic islands from Africa at least 50 Ma ago and repeatedly dispersed among them. As the climate cooled from the mid-Miocene, diversification of the beetles accelerated, resulting in two species-rich clades. One of these clades specialized to feed on cryptogams, typical of the polar habitats that came to prevail under Miocene conditions yet remarkable as a food source for any beetle. This clade's most unusual representative is a marine weevil currently undergoing further speciation. The other clade retained the more common weevil habit of feeding on angiosperms, which likely survived glaciation in isolated refugia. Diversification of Ectemnorhinini weevils occurred in synchrony with many other Antarctic radiations, including penguins and notothenioid fishes, and coincided with major environmental changes. Our results thus indicate that geo-climatically driven diversification has progressed similarly for Antarctic marine and terrestrial organisms since the Miocene, potentially constituting a general biodiversity paradigm that should be sought broadly for the region's taxa.


Assuntos
Evolução Biológica , Besouros/fisiologia , Animais , Regiões Antárticas , Núcleo Celular/genética , Besouros/genética , Genes Mitocondriais , Filogenia , Filogeografia , Análise de Componente Principal , Fatores de Tempo
4.
BMC Biol ; 21(1): 63, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032389

RESUMO

BACKGROUND: Phylogenetic analyses of closely related species of mosquitoes are important for better understanding the evolution of traits contributing to transmission of vector-borne diseases. Six out of 41 dominant malaria vectors of the genus Anopheles in the world belong to the Maculipennis Group, which is subdivided into two Nearctic subgroups (Freeborni and Quadrimaculatus) and one Palearctic (Maculipennis) subgroup. Although previous studies considered the Nearctic subgroups as ancestral, details about their relationship with the Palearctic subgroup, and their migration times and routes from North America to Eurasia remain controversial. The Palearctic species An. beklemishevi is currently included in the Nearctic Quadrimaculatus subgroup adding to the uncertainties in mosquito systematics. RESULTS: To reconstruct historic relationships in the Maculipennis Group, we conducted a phylogenomic analysis of 11 Palearctic and 2 Nearctic species based on sequences of 1271 orthologous genes. The analysis indicated that the Palearctic species An. beklemishevi clusters together with other Eurasian species and represents a basal lineage among them. Also, An. beklemishevi is related more closely to An. freeborni, which inhabits the Western United States, rather than to An. quadrimaculatus, a species from the Eastern United States. The time-calibrated tree suggests a migration of mosquitoes in the Maculipennis Group from North America to Eurasia about 20-25 million years ago through the Bering Land Bridge. A Hybridcheck analysis demonstrated highly significant signatures of introgression events between allopatric species An. labranchiae and An. beklemishevi. The analysis also identified ancestral introgression events between An. sacharovi and its Nearctic relative An. freeborni despite their current geographic isolation. The reconstructed phylogeny suggests that vector competence and the ability to enter complete diapause during winter evolved independently in different lineages of the Maculipennis Group. CONCLUSIONS: Our phylogenomic analyses reveal migration routes and adaptive radiation timing of Holarctic malaria vectors and strongly support the inclusion of An. beklemishevi into the Maculipennis Subgroup. Detailed knowledge of the evolutionary history of the Maculipennis Subgroup provides a framework for examining the genomic changes related to ecological adaptation and susceptibility to human pathogens. These genomic variations may inform researchers about similar changes in the future providing insights into the patterns of disease transmission in Eurasia.


Assuntos
Anopheles , Malária , Animais , Humanos , Filogenia , Anopheles/genética , Mosquitos Vetores
5.
Mol Phylogenet Evol ; 186: 107845, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301485

RESUMO

Intercontinental disjunct distributions can arise either from vicariance, from long-distance dispersal, or through extinction of an ancestral population with a broader distribution. Tectariaceae s.l., a clade of ferns in Polypodiales with ca. 300 species mainly distributed in the tropics and subtropics, provide an excellent opportunity to investigate global distribution patterns. Here, we assembled a dataset of eight plastid markers and one nuclear marker of 636 (92% increase of the earlier largest sampling) accessions representing ca. 210 species of all eight genera in Tectariaceae s.l. (Arthropteridaceae, Pteridryaceae, and Tectariaceae s.s.) and 35 species of other families of eupolypods Ⅰ. A new phylogeny is reconstructed to study the biogeography and trait-associated diversification. Our major results include: (1) a distinct lineage of Tectaria sister to the rest of the American Tectaria is identified; (2) Tectariaceae s.l., and the three families: Arthropteridaceae (Arthropteris), Pteridryaceae (Draconopteris, Malaifilix, Polydictyum, Pteridrys), and Tectariaceae s.s. (Hypoderris, Tectaria, and Triplophyllum), might have all originated in late Cretaceous; (3) only five intercontinental dispersals occurred in Pteridryaceae and Tectariaceae s.s. giving rise to their current intercontinental disjunction; (4) we provide the second evidence in ferns that a long-distance dispersal between Malesia and Americas during the Paleocene to Eocene led to the establishment/origin of a new genus (Draconopteris); and (5) diversification rate of each state of leaf dissection is different, and the lowest is in the simple-leaved taxa.


Assuntos
Gleiquênias , Filogenia , Plastídeos , Filogeografia , Teorema de Bayes
6.
Ann Bot ; 126(2): 245-260, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32285123

RESUMO

BACKGROUND AND AIMS: The genus Asarum sect. Heterotropa (Aristolochiaceae) probably experienced rapid diversification into 62 species centred on the Japanese Archipelago and Taiwan, providing an ideal model for studying island adaptive radiation. However, resolving the phylogeny of this plant group using Sanger sequencing-based approaches has been challenging. To uncover the radiation history of Heterotropa, we employed a phylogenomic approach using double-digested RAD-seq (ddRAD-seq) to yield a sufficient number of phylogenetic signals and compared its utility with that of the Sanger sequencing-based approach. METHODS: We first compared the performance of phylogenetic analysis based on the plastid matK and trnL-F regions and nuclear ribosomal internal transcribed spacer (nrITS), and phylogenomic analysis based on ddRAD-seq using a reduced set of the plant materials (83 plant accessions consisting of 50 species, one subspecies and six varieties). We also conducted more thorough phylogenomic analyses including the reconstruction of biogeographic history using comprehensive samples of 135 plant accessions consisting of 54 species, one subspecies, nine varieties of Heterotropa and six outgroup species. KEY RESULTS: Phylogenomic analyses of Heterotropa based on ddRAD-seq were superior to Sanger sequencing-based approaches and resulted in a fully resolved phylogenetic tree with strong support for 72.0-84.8 % (depending on the tree reconstruction methods) of the branches. We clarified the history of Heterotropa radiation and found that A. forbesii, the only deciduous Heterotropa species native to mainland China, is sister to the evergreen species (core Heterotropa) mostly distributed across the Japanese Archipelago and Taiwan. CONCLUSIONS: The core Heterotropa group was divided into nine subclades, each of which had a narrow geographic distribution. Moreover, most estimated dispersal events (22 out of 24) were between adjacent areas, indicating that the range expansion has been geographically restricted throughout the radiation history. The findings enhance our understanding of the remarkable diversification of plant lineages in the Japanese Archipelago and Taiwan.


Assuntos
Aristolochiaceae , Asarum/genética , China , Filogenia , Análise de Sequência de DNA , Taiwan
7.
BMC Evol Biol ; 19(1): 82, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898091

RESUMO

BACKGROUND: Species diversity is determined by both local environmental conditions that control differentiation and extinction and the outcome of large-scale processes that affect migration. The latter primarily comprises climatic change and dynamic landscape alteration. In the past few million years, both Southeast Asia and Eastern Africa experienced drastic climatic and geological oscillations: in Southeast Asia, especially in China, the Tibetan Plateau significantly rose up, and the flow of the Yangtze River was reversed. In East Africa, lakes and rivers experienced frequent range expansions and regressions due to the African mega-droughts. To test how such climatic and geological histories of both regions relate to their respective regional species and genetic diversity, a large scale comparative phylogeographic study is essential. Bellamya, a species rich freshwater snail genus that is widely distributed across China and East Africa, represents a suitable model system to address this question. We sequenced mitochondrial and nuclear DNA for members of the genus from China and used published sequences from Africa and some other locations in Asia to investigate their phylogeny and distribution of genetic diversity. RESULTS: Our phylogenetic analysis revealed two monophyletic groups, one in China and one in East Africa. Within the Chinese group, Bellamya species show little genetic differentiation. In contrast, we observe fairly deep divergence among the East African lakes with almost every lake possessing its unique clade. Our results show that strong divergence does not necessarily depend on intrinsic characteristics of a species, but rather is related to the landscape dynamics of a region. CONCLUSION: Our phylogenetic results suggest that the Bellamya in China and East Africa are independent phylogenetic clades with different evolutionary trajectories. The different climate and geological histories likely contributed to the diverging evolutionary patterns. Repeated range expansions and regressions of lakes likely contributed to the great divergence of Bellamya in East Africa, while reversal of the river courses and intermingling of different lineages had an opposite effect on Bellamya diversification in China.


Assuntos
Biodiversidade , Filogeografia , Caramujos/classificação , África Oriental , Animais , China , DNA Mitocondrial/genética , Haplótipos/genética , Lagos , Filogenia , Polimorfismo Genético , Rios , Caramujos/anatomia & histologia , Caramujos/genética , Caramujos/ultraestrutura , Especificidade da Espécie
8.
Int J Mol Sci ; 20(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736325

RESUMO

By their faculty to transpose, transposable elements are known to play a key role in eukaryote genomes, impacting both their structuration and remodeling. Their integration in targeted sites may lead to recombination mechanisms involved in chromosomal rearrangements. The Antarctic fish family Nototheniidae went through several waves of species radiations. It is a suitable model to study transposable element (TE)-mediated mechanisms associated to genome and chromosomal diversifications. After the characterization of Gypsy (GyNoto), Copia (CoNoto), and DIRS1 (YNoto) retrotransposons in the genomes of Nototheniidae (diversity, distribution, conservation), we focused on their chromosome location with an emphasis on the three identified nototheniid radiations (the Trematomus, the plunderfishes, and the icefishes). The strong intrafamily TE conservation and wide distribution across species of the whole family suggest an ancestral acquisition with potential secondary losses in some lineages. GyNoto and CoNoto (including Hydra and GalEa clades) mostly produced interspersed signals along chromosomal arms. On the contrary, insertion hot spots accumulating in localized regions (mainly next to centromeric and pericentromeric regions) highlighted the potential role of YNoto in chromosomal diversifications as facilitator of the fusions which occurred in many nototheniid lineages, but not of the fissions.


Assuntos
Cromossomos , Peixes/genética , Retroelementos , Animais , Regiões Antárticas , Evolução Molecular , Peixes/classificação , Genoma , Hibridização in Situ Fluorescente , Filogenia , Especificidade da Espécie , Translocação Genética
9.
Mol Phylogenet Evol ; 118: 286-305, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017853

RESUMO

The Arracacia clade (Apiaceae, Apioideae) is a heterogeneous assemblage of 12 genera, comprising 111 known species distributed in high montane temperate and sub-alpine habitats of meso- and South America. Previous studies have indicated that the genera Arracacia, Coulterophytum, and Prionosciadium are polyphyletic, but for the most part relationships among the members of the clade are largely unknown. Initially, cladistic analyses of nrDNA ITS sequences were carried out on 212 accessions (122 taxa), representing 92 species of the Arracacia clade and outgroups from the closely-related páramo genera Cotopaxia, Niphogeton, and Perissocoeleum and members of the Perennial Endemic North American clade and its allies. Using the ITS results to inform sampling of a small subset of taxa, a pilot study examining the phylogenetic utility of 20 noncoding chloroplast loci was subsequently performed to identify those regions most useful at resolving relationships. A cost-benefit analysis determined that five loci (trnQ-5'rps16, trnD-trnT, rpl32-trnL, psbD-trnT, ndhA intron) would maximize resolution and branch support in the clade. Cladistic analyses of four of these loci (trnQ-5'rps16, trnD-trnT, rpl32-trnL, ndhA intron) and the ITS region, separately and combined, revealed that Arracacia, Coaxana, Coulterophytum, Prionosciadium, and Rhodosciadium are each polyphyletic and that Donnellsmithia and Myrrhidendron are each monophyletic. Although most relationships in the Arracacia clade and among the closely-related genera Cotopaxia, Niphogeton, and Perissocoeleum are poorly resolved and supported, ten groups are recognized for future revisionary studies. Polyploidy and rapid species radiation have likely confounded generic circumscriptions and interpretation of relationships.


Assuntos
Apiaceae/classificação , Apiaceae/genética , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , DNA de Cloroplastos/química , DNA de Cloroplastos/isolamento & purificação , DNA de Cloroplastos/metabolismo , Loci Gênicos , Íntrons , Filogenia , Plastídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA
10.
Proc Biol Sci ; 282(1809): 20150577, 2015 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-26041343

RESUMO

Extant deep-sea invertebrate fauna represent both ancient and recent invasions from shallow-water habitats. Hydrostatic pressure may present a significant physiological challenge to organisms seeking to colonize deeper waters or migrate ontogenetically. Pressure may be a key factor contributing to bottlenecks in the radiation of taxa and potentially drive speciation. Here, we assess shifts in the tolerance of hydrostatic pressure through early ontogeny of the northern stone crab Lithodes maja, which occupies a depth range of 4-790 m in the North Atlantic. The zoea I, megalopa and crab I stages were exposed to hydrostatic pressures up to 30.0 MPa (equivalent of 3000 m depth), and the relative fold change of genes putatively coding for the N-methyl-D-aspartate receptor-regulated protein 1 (narg gene), two heat-shock protein 70 kDa (HSP70) isoforms and mitochondrial Citrate Synthase (CS gene) were measured. This study finds a significant increase in the relative expression of the CS and hsp70a genes with increased hydrostatic pressure in the zoea I stage, and an increase in the relative expression of all genes with increased hydrostatic pressure in the megalopa and crab I stages. Transcriptional responses are corroborated by patterns in respiratory rates in response to hydrostatic pressure in all stages. These results suggest a decrease in the acute high-pressure tolerance limit as ontogeny advances, as reflected by a shift in the hydrostatic pressure at which significant differences are observed.


Assuntos
Proteínas de Artrópodes/genética , Braquiúros/fisiologia , Pressão Hidrostática , Transcrição Gênica , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Braquiúros/genética , Braquiúros/crescimento & desenvolvimento , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Dados de Sequência Molecular , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Respiração , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA