Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.053
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(14): e2122789119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349337

RESUMO

SignificanceThe sense of hearing in all known animals relies on possessing auditory organs that are made up of cellular tissues and constrained by body sizes. We show that hearing in the orb-weaving spider is functionally outsourced to its extended phenotype, the proteinaceous self-manufactured web, and hence processes behavioral controllability. This finding opens new perspectives on animal extended cognition and hearing-the outsourcing and supersizing of auditory function in spiders. This study calls for reinvestigation of the remarkable evolutionary ecology and sensory ecology in spiders-one of the oldest land animals. The sensory modality of outsourced hearing provides a unique model for studying extended and regenerative sensing and presents new design features for inspiring novel acoustic flow detectors.


Assuntos
Percepção Auditiva , Evolução Biológica , Aranhas , Animais , Audição , Comportamento Predatório , Seda/genética , Aranhas/genética
2.
Proc Natl Acad Sci U S A ; 119(12): e2115103119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35254873

RESUMO

Synchronized oscillations are found in all living systems, from cellsto ecosystems and on varying time scales. A generic principlebehind the production of oscillations involves a delay in theresponse of one entity to stimulations from the others in the sys-tem. Communication among entities is required for the emergenceof synchronization, but its efficacy can be impaired by surroundingnoise. In the social spiderAnelosimus eximius, individuals coordi-nate their activity to catch large prey that are otherwise inaccessi-ble to solitary hunters. When hunting in groups, dozens of spidersmove rhythmically toward their prey by synchronizing movingand stopping phases. We proposed a mechanistic model imple-menting individual behavioral rules, all derived fromfield experi-ments, to elucidate the underlying principles of synchronization.We showed that the emergence of oscillations in spiders involvesa refractory state, the duration of which depends on the relativeintensity of prey versus conspecific signals. Thisflexible behaviorallows individuals to rapidly adapt to variations in their vibrationallandscapes. Exploring the model reveals that the benefits of syn-chronization resulting from improved accuracy in prey detectionand reduced latency to capture prey more than offset the cost ofthe delay associated with immobility phases. Overall, our studyshows that a refractory period whose duration is variable anddependent on information accessible to all entities in the systemcontributes to the emergence of self-organized oscillations innoisy environments. Ourfindings may inspire the design of artifi-cial systems requiring fast andflexible synchronization betweentheir components.


Assuntos
Comportamento Predatório , Aranhas , Animais , Fenômenos Fisiológicos Celulares , Tomada de Decisões , Vibração
3.
Dev Biol ; 494: 35-45, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470448

RESUMO

Cell migration is a fundamental component during the development of most multicellular organisms. In the early spider embryo, the collective migration of signalling cells, known as the cumulus, is required to set the dorsoventral body axis. Here, we show that FGF signalling plays an important role during cumulus migration in the spider Parasteatoda tepidariorum. Spider embryos with reduced FGF signalling show reduced or absent cumulus migration and display dorsoventral patterning defects. Our study reveals that the transcription factor Ets4 regulates the expression of several FGF signalling components in the cumulus. In conjunction with a previous study, we show that the expression of fgf8 in the germ-disc is regulated via the Hedgehog signalling pathway. We also demonstrate that FGF signalling influences the BMP signalling pathway activity in the region around cumulus cells. Finally, we show that FGFR signalling might also influence cumulus migration in basally branching spiders and we propose that fgf8 might act as a chemo-attractant to guide cumulus cells towards the future dorsal pole of the spider embryo.


Assuntos
Aranhas , Animais , Padronização Corporal/fisiologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Aranhas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Crescimento de Fibroblastos
4.
J Biol Chem ; 299(7): 104903, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302551

RESUMO

The spider venom protein, double-knot toxin (DkTx), partitions into the cellular membrane and binds bivalently to the pain-sensing ion channel, TRPV1, triggering long-lasting channel activation. In contrast, its monovalent single knots membrane partition poorly and invoke rapidly reversible TRPV1 activation. To discern the contributions of the bivalency and membrane affinity of DkTx to its sustained mode of action, here, we developed diverse toxin variants including those containing truncated linkers between individual knots, precluding bivalent binding. Additionally, by appending the single-knot domains to the Kv2.1 channel-targeting toxin, SGTx, we created monovalent double-knot proteins that demonstrated higher membrane affinity and more sustained TRPV1 activation than the single-knots. We also produced hyper-membrane affinity-possessing tetra-knot proteins, (DkTx)2 and DkTx-(SGTx)2, that demonstrated longer-lasting TRPV1 activation than DkTx, establishing the central role of the membrane affinity of DkTx in endowing it with its sustained TRPV1 activation properties. These results suggest that high membrane affinity-possessing TRPV1 agonists can potentially serve as long-acting analgesics.


Assuntos
Membrana Celular , Venenos de Aranha , Canais de Cátion TRPV , Membrana Celular/metabolismo , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Animais , Canais de Cátion TRPV/metabolismo , Dor/metabolismo , Ligação Proteica , Analgésicos , Transporte de Íons
5.
BMC Genomics ; 25(1): 150, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326752

RESUMO

BACKGROUND: The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS: Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS: Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.


Assuntos
Aranhas , Animais , Aranhas/genética , Aranhas/metabolismo , Evolução Biológica , Mesoderma , Células Germinativas , Análise de Sequência de RNA
6.
Ecol Lett ; 27(3): e14394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511320

RESUMO

Functional responses describe foraging rates across prey densities and underlie many fundamental ecological processes. Most functional response knowledge comes from simplified lab experiments, but we do not know whether these experiments accurately represent foraging in nature. In addition, the difficulty of conducting multispecies functional response experiments means that it is unclear whether interaction strengths are weakened in the presence of multiple prey types. We developed a novel method to estimate wild predators' foraging rates from metabarcoding data and use this method to present functional responses for wild wolf spiders foraging on 27 prey families. These field functional responses were considerably reduced compared to lab functional responses. We further find that foraging is sometimes increased in the presence of other prey types, contrary to expectations. Our novel method for estimating field foraging rates will allow researchers to determine functional responses for wild predators and address long-standing questions about foraging in nature.


Assuntos
Animais Peçonhentos , Comportamento Predatório , Aranhas , Animais , Humanos , Comportamento Predatório/fisiologia , Aranhas/fisiologia
7.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935059

RESUMO

Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.


Assuntos
Aracnídeos , Aranhas , Animais , Aranhas/genética , Duplicação Gênica , Genes Homeobox , Aracnídeos/genética , Genoma , Evolução Molecular , Filogenia
8.
Eur J Neurosci ; 60(7): 5785-5811, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39230060

RESUMO

Acetylcholine esterases (AChEs) are essential enzymes in cholinergic synapses, terminating neurotransmission by hydrolysing acetylcholine. While membrane bound AChEs at synaptic clefts efficiently perform this task, soluble AChEs are less stable and effective, but function over broader areas. In vertebrates, a single gene produces alternatively spliced forms of AChE, whereas invertebrates often have multiple genes, producing both enzyme types. Despite their significance as pesticide targets, the physiological roles of invertebrate AChEs remain unclear. Here, we characterized seven putative AChEs in the wandering spider, Cupiennius salei, a model species for neurophysiological studies. Sequence analyses and homology modeling predicted CsAChE7 as the sole stable, membrane-bound enzyme functioning at synaptic clefts, while the others are likely soluble enzymes. In situ hybridization of sections from the spider's nervous system revealed CsAChE7 transcripts co-localizing with choline acetyltransferase in cells that also exhibited AChE activity. CsAChE7 transcripts were also found in rapidly adapting mechanosensory neurons, suggesting a role in precise and transient activation of postsynaptic cells, contrasting with slowly adapting, also cholinergic, neurons expressing only soluble AChEs, which allow prolonged activation of postsynaptic cells. These findings suggest that cholinergic transmission is influenced not only by postsynaptic receptors but also by the enzymatic properties regulating acetylcholine clearance. We also show that acetylcholine is a crucial neurotransmitter in the spider's visual system and sensory and motor pathways, but absent in excitatory motor neurons at neuromuscular junctions, consistent with other arthropods. Our findings on sequence structures may have implications for the development of neurological drugs and pesticides.


Assuntos
Acetilcolinesterase , Aranhas , Animais , Acetilcolinesterase/metabolismo , Acetilcolinesterase/genética , Aranhas/genética , Filogenia , Sequência de Aminoácidos
9.
Mol Ecol ; : e17521, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206937

RESUMO

The diet breadth of generalist herbivores when compared to specialists tends to be associated with greater transcriptional plasticity. Here, we consider whether it may also contribute to variation in host range among two generalists with different levels of polyphagy. We examined two related polyphagous spider mites with different host ranges, Tetranychus urticae (1200 plants) and Tetranychus truncatus (90 plants). Data from multiple populations of both species domesticated on common beans and transferred to new plant hosts (cotton, cucumber, eggplant) were used to investigate transcriptional plasticity relative to population-based variation in gene expression. Compared to T. truncatus, T. urticae exhibited much higher transcriptional plasticity. Populations of this species also showed much more variable expression regulation in response to a plant host, particularly for genes related to detoxification, transport, and transcriptional factors. In response to the different plant hosts, both polyphagous species showed enriched processes of drug/xenobiotics metabolism, with T. urticae orchestrating a relatively broader array of biological pathways. Through co-expression network analysis, we identified gene modules associated with host plant response, revealing shared hub genes primarily involved in detoxification metabolism when both mites fed on the same plants. After silencing a shared hub CYP gene related to eggplant exposure, the performance of both species on the original bean host improved, but the fecundity of T. truncatus decreased when feeding on eggplant. The extensive transcriptomic variation shown by T. urticae might serve as a potential compensatory mechanism for a deficiency of hub genes in this species. This research points to nuanced differences in transcriptomic variability between generalist herbivores.

10.
Plant Cell Environ ; 47(11): 4398-4415, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38995178

RESUMO

Phloretin has different glycosylation modes in plants. Phlorizin (phloretin 2'-O-glucoside) is one of the glycosylation products of phloretin, and accumulates abundantly in apple plants. However, it is still unclear whether phlorizin is more beneficial for apple plants compared with other glycosylation products of phloretin. We created transgenic apple plants with different glycosylation modes of phloretin. In transgenic plants, the accumulation of phlorizin was partly replaced by that of trilobatin (phloretin 4'-O-glucoside) or phloretin 3',5'-di-C-glycoside. Compared with wild type, transgenic plants with less phlorizin showed dwarf phenotype, larger stomatal size, higher stomatal density and less tolerance to drought stress. Transcriptome and phytohormones assay indicate that phlorizin might regulate stomatal development and behaviour via controlling auxin and abscisic acid signalling pathways as well as carbonic anhydrase expressions. Transgenic apple plants with less phlorizin also showed less resistance to spider mites. Apple plants may hydrolyse phlorizin to produce phloretin, but cannot hydrolyse trilobatin or phloretin 3',5'-di-C-glycoside. Compared with its glycosylation products, phloretin is more toxic to spider mites. These results suggest that the glycosylation of phloretin to produce phlorizin is the optimal glycosylation mode in apple plants, and plays an important role in apple resistance to stresses.


Assuntos
Malus , Floretina , Plantas Geneticamente Modificadas , Estresse Fisiológico , Malus/genética , Malus/metabolismo , Malus/efeitos dos fármacos , Malus/fisiologia , Floretina/farmacologia , Floretina/metabolismo , Glicosilação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Secas , Reguladores de Crescimento de Plantas/metabolismo , Animais , Florizina/farmacologia , Ácidos Indolacéticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA