Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 44(18): 6364-6374, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37846762

RESUMO

Alzheimer's disease (AD) is one of the most prevalent forms of dementia in older individuals. Convergent evidence suggests structural connectome abnormalities in specific brain regions are linked to AD progression. The biological basis underpinnings of these connectome changes, however, have remained elusive. We utilized an individual regional mean connectivity strength (RMCS) derived from a regional radiomics similarity network to capture altered morphological connectivity in 1654 participants (605 normal controls, 766 mild cognitive impairment [MCI], and 283 AD). Then, we also explored the biological basis behind these morphological changes through gene enrichment analysis and cell-specific analysis. We found that RMCS probes of the hippocampus and medial temporal lobe were significantly altered in AD and MCI, with these differences being spatially related to the expression of AD-risk genes. In addition, gene enrichment analysis revealed that the modulation of chemical synaptic transmission is the most relevant biological process associated with the altered RMCS in AD. Notably, neuronal cells were found to be the most pertinent cells in the altered RMCS. Our findings shed light on understanding the biological basis of structural connectome changes in AD, which may ultimately lead to more effective diagnostic and therapeutic strategies for this devastating disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Conectoma , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Transcrição Gênica
2.
Hum Brain Mapp ; 44(5): 1913-1933, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541441

RESUMO

There is an increasing expectation that advanced, computationally expensive machine learning (ML) techniques, when applied to large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease. We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age, general cognitive function and general psychopathology, testing different ML algorithms from deep learning (DL) model (BrainNetCNN) to classical ML methods. We modelled N = 8183 structural connectomes from UK Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided the highest prediction accuracies in all prediction tasks. DL did not improve on prediction accuracies from simpler linear models. Further, high correlations between gradient attribution coefficients from DL and model coefficients from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the similarity in models' strategies for making predictive decision to some extent. This highlights that model complexity is unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current sample size.


Assuntos
Conectoma , Humanos , Conectoma/métodos , Saúde Mental , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cognição , Aprendizado de Máquina
3.
Epilepsia ; 64(9): 2484-2498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376741

RESUMO

OBJECTIVE: Social determinants of health, including the effects of neighborhood disadvantage, impact epilepsy prevalence, treatment, and outcomes. This study characterized the association between aberrant white matter connectivity in temporal lobe epilepsy (TLE) and disadvantage using a US census-based neighborhood disadvantage metric, the Area Deprivation Index (ADI), derived from measures of income, education, employment, and housing quality. METHODS: Participants including 74 TLE patients (47 male, mean age = 39.2 years) and 45 healthy controls (27 male, mean age = 31.9 years) from the Epilepsy Connectome Project were classified into ADI-defined low and high disadvantage groups. Graph theoretic metrics were applied to multishell connectome diffusion-weighted imaging (DWI) measurements to derive 162 × 162 structural connectivity matrices (SCMs). The SCMs were harmonized using neuroCombat to account for interscanner differences. Threshold-free network-based statistics were used for analysis, and findings were correlated with ADI quintile metrics. A decrease in cross-sectional area (CSA) indicates reduced white matter integrity. RESULTS: Sex- and age-adjusted CSA in TLE groups was significantly reduced compared to controls regardless of disadvantage status, revealing discrete aberrant white matter tract connectivity abnormalities in addition to apparent differences in graph measures of connectivity and network-based statistics. When comparing broadly defined disadvantaged TLE groups, differences were at trend level. Sensitivity analyses of ADI quintile extremes revealed significantly lower CSA in the most compared to least disadvantaged TLE group. SIGNIFICANCE: Our findings demonstrate (1) the general impact of TLE on DWI connectome status is larger than the association with neighborhood disadvantage; however, (2) neighborhood disadvantage, indexed by ADI, revealed modest relationships with white matter structure and integrity on sensitivity analysis in TLE. Further studies are needed to explore this relationship and determine whether the white matter relationship with ADI is driven by social drift or environmental influences on brain development. Understanding the etiology and course of the disadvantage-brain integrity relationship may serve to inform care, management, and policy for patients.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Substância Branca , Humanos , Masculino , Adulto , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/epidemiologia , Conectoma/métodos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem
4.
Artigo em Inglês | MEDLINE | ID: mdl-35506128

RESUMO

Changes in brain structure and connectivity in aging can be probed through diffusion weighted MRI and summarized with structural connectome matrices. Complex network analysis based on graph theory has been applied to provide measures that are correlated with neurobiological variations and can help guide quantitative study of brain function. However, the understanding of how connectomes change longitudinally is limited. In this work, we evaluate modern pipelines to obtain the connectomics data from diffusion weighted MRI scans across different sessions from control subjects (55-99 years old) in the Baltimore Longitudinal Study of Aging and Cambridge Centre for Ageing and Neuroscience. From the connectivity matrices, we compute graph theory measures to understand their brain networks and apply a linear mixed-effects model to study their longitudinal changes with respect to age. With this approach, we computed 14 graph theory measures of 1469 healthy subjects (2476 scans) and found statistically significant correlations between all 14 measures and age. In this analysis: 1) the brain becomes more segregated but less integrated in aging; 2) the overall network cost increases for older subjects; 3) the small-world organizations remain stable; and 4) due to high intra-subject variance, there is not clear trend for longitudinal changes of graph theory measures of individual subjects. Therefore, while useful to investigate brain evolution in aging at the population level, improvements in the connectome reconstruction are needed to decrease single subject variability for individual inference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA