Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.183
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(4): 835-849.e21, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31327527

RESUMO

Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.


Assuntos
Neoplasias Encefálicas/genética , Plasticidade Celular/genética , Glioblastoma/genética , Adolescente , Idoso , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Linhagem da Célula/genética , Criança , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Heterogeneidade Genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mutação , RNA-Seq , Análise de Célula Única/métodos , Microambiente Tumoral/genética
2.
Cell ; 174(5): 1247-1263.e15, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078710

RESUMO

Type I spiral ganglion neurons (SGNs) transmit sound information from cochlear hair cells to the CNS. Using transcriptome analysis of thousands of single neurons, we demonstrate that murine type I SGNs consist of subclasses that are defined by the expression of subsets of transcription factors, cell adhesion molecules, ion channels, and neurotransmitter receptors. Subtype specification is initiated prior to the onset of hearing during the time period when auditory circuits mature. Gene mutations linked to deafness that disrupt hair cell mechanotransduction or glutamatergic signaling perturb the firing behavior of SGNs prior to hearing onset and disrupt SGN subtype specification. We thus conclude that an intact hair cell mechanotransduction machinery is critical during the pre-hearing period to regulate the firing behavior of SGNs and their segregation into subtypes. Because deafness is frequently caused by defects in hair cells, our findings have significant ramifications for the etiology of hearing loss and its treatment.


Assuntos
Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Mecanotransdução Celular , Neurônios/fisiologia , Transdução de Sinais , Gânglio Espiral da Cóclea/fisiologia , Animais , Análise por Conglomerados , Marcadores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Mutação , Neuroglia/fisiologia , Análise de Sequência de RNA
3.
Cell ; 174(4): 982-998.e20, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-29909982

RESUMO

The diversity of cell types and regulatory states in the brain, and how these change during aging, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting. Our data show high granularity and identify a wide range of cell types. Gene network analyses using SCENIC revealed regulatory heterogeneity linked to energy consumption. During aging, RNA content declines exponentially without affecting neuronal identity in old brains. This single-cell brain atlas covers nearly all cells in the normal brain and provides the tools to study cellular diversity alongside other Drosophila and mammalian single-cell datasets in our unique single-cell analysis platform: SCope (http://scope.aertslab.org). These results, together with SCope, allow comprehensive exploration of all transcriptional states of an entire aging brain.


Assuntos
Envelhecimento , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Análise de Célula Única/métodos , Transcriptoma , Animais , Drosophila melanogaster/fisiologia , Feminino , Perfilação da Expressão Gênica , Masculino
4.
Cell ; 173(2): 291-304.e6, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625048

RESUMO

We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.


Assuntos
Neoplasias/patologia , Aneuploidia , Cromossomos/genética , Análise por Conglomerados , Ilhas de CpG , Metilação de DNA , Bases de Dados Factuais , Humanos , MicroRNAs/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , RNA Mensageiro/metabolismo
5.
Cell ; 174(5): 1229-1246.e17, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078709

RESUMO

In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.


Assuntos
Orelha Interna/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Células Receptoras Sensoriais/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Calbindina 2/genética , Cóclea/fisiologia , Surdez/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Gânglio Espiral da Cóclea/fisiologia , Transmissão Sináptica , Transgenes
6.
Immunity ; 54(2): 367-386.e8, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567262

RESUMO

Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in ∼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-ß-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.


Assuntos
Mutação em Linhagem Germinativa/genética , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Genes BRCA1 , Estudo de Associação Genômica Ampla , Humanos , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Característica Quantitativa Herdável , Proteína p107 Retinoblastoma-Like/genética , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
CA Cancer J Clin ; 73(6): 620-652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37329269

RESUMO

Small cell lung cancer (SCLC) is characterized by rapid growth and high metastatic capacity. It has strong epidemiologic and biologic links to tobacco carcinogens. Although the majority of SCLCs exhibit neuroendocrine features, an important subset of tumors lacks these properties. Genomic profiling of SCLC reveals genetic instability, almost universal inactivation of the tumor suppressor genes TP53 and RB1, and a high mutation burden. Because of early metastasis, only a small fraction of patients are amenable to curative-intent lung resection, and these individuals require adjuvant platinum-etoposide chemotherapy. Therefore, the vast majority of patients are currently being treated with chemoradiation with or without immunotherapy. In patients with disease confined to the chest, standard therapy includes thoracic radiotherapy and concurrent platinum-etoposide chemotherapy. Patients with metastatic (extensive-stage) disease are treated with a combination of platinum-etoposide chemotherapy plus immunotherapy with an anti-programmed death-ligand 1 monoclonal antibody. Although SCLC is initially very responsive to platinum-based chemotherapy, these responses are transient because of the development of drug resistance. In recent years, the authors have witnessed an accelerating pace of biologic insights into the disease, leading to the redefinition of the SCLC classification scheme. This emerging knowledge of SCLC molecular subtypes has the potential to define unique therapeutic vulnerabilities. Synthesizing these new discoveries with the current knowledge of SCLC biology and clinical management may lead to unprecedented advances in SCLC patient care. Here, the authors present an overview of multimodal clinical approaches in SCLC, with a special focus on illuminating how recent advancements in SCLC research could accelerate clinical development.


Assuntos
Produtos Biológicos , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/terapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Etoposídeo/uso terapêutico , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Produtos Biológicos/uso terapêutico
8.
Mol Cell ; 82(23): 4548-4563.e4, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309015

RESUMO

Neurotransmission mediated by diverse subtypes of N-methyl-D-aspartate receptors (NMDARs) is fundamental for basic brain functions and development as well as neuropsychiatric diseases and disorders. NMDARs are glycine- and glutamate-gated ion channels that exist as heterotetramers composed of obligatory GluN1 and GluN2(A-D) and/or GluN3(A-B). The GluN2C and GluN2D subunits form ion channels with distinct properties and spatio-temporal expression patterns. Here, we provide the structures of the agonist-bound human GluN1-2C NMDAR in the presence and absence of the GluN2C-selective positive allosteric potentiator (PAM), PYD-106, the agonist-bound GluN1-2A-2C tri-heteromeric NMDAR, and agonist-bound GluN1-2D NMDARs by single-particle electron cryomicroscopy. Our analysis shows unique inter-subunit and domain arrangements of the GluN2C NMDARs, which contribute to functional regulation and formation of the PAM binding pocket and is distinct from GluN2D NMDARs. Our findings here provide the fundamental blueprint to study GluN2C- and GluN2D-containing NMDARs, which are uniquely involved in neuropsychiatric disorders.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Transmissão Sináptica , Subunidades Proteicas/metabolismo
9.
CA Cancer J Clin ; 71(3): 264-279, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592120

RESUMO

Gastric cancer is not a top-10 malignancy in the United States but represents one of the most common causes of cancer death worldwide. Biological differences between tumors from Eastern and Western countries add to the complexity of identifying standard-of-care therapy based on international trials. Systemic chemotherapy, radiotherapy, surgery, immunotherapy, and targeted therapy all have proven efficacy in gastric adenocarcinoma; therefore, multidisciplinary treatment is paramount to treatment selection. Triplet chemotherapy for resectable gastric cancer is now accepted and could represent a plateau of standard cytotoxic chemotherapy for localized disease. Classification of gastric cancer based on molecular subtypes is providing an opportunity for personalized therapy. Biomarkers, in particular microsatellite instability (MSI), programmed cell death ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2), tumor mutation burden, and Epstein-Barr virus, are increasingly driving systemic therapy approaches and allowing for the identification of populations most likely to benefit from immunotherapy and targeted therapy. Significant research opportunities remain for the less differentiated histologic subtypes of gastric adenocarcinoma and those without markers of immunotherapy activity.


Assuntos
Adenocarcinoma/diagnóstico , Adenocarcinoma/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Junção Esofagogástrica , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/terapia , Adenocarcinoma/genética , Adenocarcinoma/secundário , Inibidores da Angiogênese/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais , Quimiorradioterapia Adjuvante , Quimioterapia Adjuvante , Reparo de Erro de Pareamento de DNA/genética , Gastrectomia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Instabilidade de Microssatélites , Mutação , Terapia Neoadjuvante , Recidiva Local de Neoplasia/diagnóstico , Estadiamento de Neoplasias , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
10.
Immunity ; 48(4): 812-830.e14, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29628290

RESUMO

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.


Assuntos
Genômica/métodos , Neoplasias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Equilíbrio Th1-Th2/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Cicatrização/genética , Cicatrização/imunologia , Adulto Jovem
11.
Mol Cell Proteomics ; 23(1): 100686, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008179

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, ranking fourth in frequency. The relationship between metabolic reprogramming and immune infiltration has been identified as having a crucial impact on HCC progression. However, a deeper understanding of the interplay between the immune system and metabolism in the HCC microenvironment is required. In this study, we used a proteomic dataset to identify three immune subtypes (IM1-IM3) in HCC, each of which has distinctive clinical, immune, and metabolic characteristics. Among these subtypes, IM3 was found to have the poorest prognosis, with the highest levels of immune infiltration and T-cell exhaustion. Furthermore, IM3 showed elevated glycolysis and reduced bile acid metabolism, which was strongly correlated with CD8 T cell exhaustion and regulatory T cell accumulation. Our study presents the proteomic immune stratification of HCC, revealing the possible link between immune cells and reprogramming of HCC glycolysis and bile acid metabolism, which may be a viable therapeutic strategy to improve HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteoma , Proteômica , Microambiente Tumoral , Ácidos e Sais Biliares
12.
Proc Natl Acad Sci U S A ; 120(31): e2301536120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487069

RESUMO

Colorectal cancers (CRCs) form a heterogenous group classified into epigenetic and transcriptional subtypes. The basis for the epigenetic subtypes, exemplified by varying degrees of promoter DNA hypermethylation, and its relation to the transcriptional subtypes is not well understood. We link cancer-specific transcription factor (TF) expression alterations to methylation alterations near TF-binding sites at promoter and enhancer regions in CRCs and their premalignant precursor lesions to provide mechanistic insights into the origins and evolution of the CRC molecular subtypes. A gradient of TF expression changes forms a basis for the subtypes of abnormal DNA methylation, termed CpG-island promoter DNA methylation phenotypes (CIMPs), in CRCs and other cancers. CIMP is tightly correlated with cancer-specific hypermethylation at enhancers, which we term CpG-enhancer methylation phenotype (CEMP). Coordinated promoter and enhancer methylation appears to be driven by downregulation of TFs with common binding sites at the hypermethylated enhancers and promoters. The altered expression of TFs related to hypermethylator subtypes occurs early during CRC development, detectable in premalignant adenomas. TF-based profiling further identifies patients with worse overall survival. Importantly, altered expression of these TFs discriminates the transcriptome-based consensus molecular subtypes (CMS), thus providing a common basis for CIMP and CMS subtypes.


Assuntos
Neoplasias Colorretais , Lesões Pré-Cancerosas , Humanos , Fatores de Transcrição , Regulação da Expressão Gênica , Metilação de DNA , Epigênese Genética
13.
Proc Natl Acad Sci U S A ; 120(52): e2315282120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109525

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) serve as primary photoceptors by expressing the photopigment, melanopsin, and also as retinal relay neurons for rod and cone signals en route to the brain, in both cases for the purpose of non-image vision as well as aspects of image vision. So far, six subtypes of ipRGCs (M1 through M6) have been characterized. Regarding their phototransduction mechanisms, we have previously found that, unconventionally, rhabdomeric (microvillous) and ciliary signaling motifs co-exist within a given M1-, M2-, and M4-ipRGC, with the first mechanism involving PLCß4 and TRPC6,7 channels and the second involving cAMP and HCN channels. We have now examined M3-, M5-, and M6-cells and found that each cell likewise uses both signaling pathways for phototransduction, despite differences in the percentage representation by each pathway in a given ipRGC subtype for bright-flash responses (and saturated except for M6-cells). Generally, M3- and M5-cells show responses quite similar in kinetics to M2-responses, and M6-cell responses resemble broadly those of M1-cells although much lower in absolute sensitivity and amplitude. Therefore, similar to rod and cone subtypes in image vision, ipRGC subtypes possess the same phototransduction mechanism(s) even though they do not show microvilli or cilia morphologically.


Assuntos
Neurônios Retinianos , Visão Ocular , Transdução de Sinal Luminoso/fisiologia , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Neurônios Retinianos/metabolismo , Opsinas de Bastonetes/metabolismo
14.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604778

RESUMO

The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (EInh) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe EInh in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in EInh dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting EInh differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific EInh dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.


Assuntos
Potenciais da Membrana , Optogenética , Animais , Optogenética/métodos , Camundongos , Masculino , Feminino , Potenciais da Membrana/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Neurônios/fisiologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/genética , Camundongos Transgênicos
15.
Genet Epidemiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940260

RESUMO

Family-based sequencing studies are increasingly used to find rare genetic variants of high risk for disease traits with familial clustering. In some studies, families with multiple disease subtypes are collected and the exomes of affected relatives are sequenced for shared rare variants (RVs). Since different families can harbor different causal variants and each family harbors many RVs, tests to detect causal variants can have low power in this study design. Our goal is rather to prioritize shared variants for further investigation by, for example, pathway analyses or functional studies. The transmission-disequilibrium test prioritizes variants based on departures from Mendelian transmission in parent-child trios. Extending this idea to families, we propose methods to prioritize RVs shared in affected relatives with two disease subtypes, with one subtype more heritable than the other. Global approaches condition on a variant being observed in the study and assume a known probability of carrying a causal variant. In contrast, local approaches condition on a variant being observed in specific families to eliminate the carrier probability. Our simulation results indicate that global approaches are robust to misspecification of the carrier probability and prioritize more effectively than local approaches even when the carrier probability is misspecified.

16.
Gastroenterology ; 166(3): 450-465.e33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995868

RESUMO

BACKGROUND & AIMS: Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract, and it has high metastatic and recurrence rates. We aimed to characterize the proteomic features of GIST to understand biological processes and treatment vulnerabilities. METHODS: Quantitative proteomics and phosphoproteomics analyses were performed on 193 patients with GIST to reveal the biological characteristics of GIST. Data-driven hypotheses were tested by performing functional experiments using both GIST cell lines and xenograft mouse models. RESULTS: Proteomic analysis revealed differences in the molecular features of GISTs from different locations or with different histological grades. MAPK7 was identified and functionally proved to be associated with tumor cell proliferation in GIST. Integrative analysis revealed that increased SQSTM1 expression inhibited the patient response to imatinib mesylate. Proteomics subtyping identified 4 clusters of tumors with different clinical and molecular attributes. Functional experiments confirmed the role of SRSF3 in promoting tumor cell proliferation and leading to poor prognosis. CONCLUSIONS: Our study provides a valuable data resource and highlights potential therapeutic approaches for GIST.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Humanos , Animais , Camundongos , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteômica , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Fatores de Processamento de Serina-Arginina
17.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36445207

RESUMO

Driven by multi-omics data, some multi-view clustering algorithms have been successfully applied to cancer subtypes prediction, aiming to identify subtypes with biometric differences in the same cancer, thereby improving the clinical prognosis of patients and designing personalized treatment plan. Due to the fact that the number of patients in omics data is much smaller than the number of genes, multi-view spectral clustering based on similarity learning has been widely developed. However, these algorithms still suffer some problems, such as over-reliance on the quality of pre-defined similarity matrices for clustering results, inability to reasonably handle noise and redundant information in high-dimensional omics data, ignoring complementary information between omics data, etc. This paper proposes multi-view spectral clustering with latent representation learning (MSCLRL) method to alleviate the above problems. First, MSCLRL generates a corresponding low-dimensional latent representation for each omics data, which can effectively retain the unique information of each omics and improve the robustness and accuracy of the similarity matrix. Second, the obtained latent representations are assigned appropriate weights by MSCLRL, and global similarity learning is performed to generate an integrated similarity matrix. Third, the integrated similarity matrix is used to feed back and update the low-dimensional representation of each omics. Finally, the final integrated similarity matrix is used for clustering. In 10 benchmark multi-omics datasets and 2 separate cancer case studies, the experiments confirmed that the proposed method obtained statistically and biologically meaningful cancer subtypes.


Assuntos
Multiômica , Neoplasias , Humanos , Algoritmos , Neoplasias/genética , Análise por Conglomerados
18.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36572651

RESUMO

Immune checkpoint inhibitors (ICI) show high efficiency in a small fraction of advanced gastric cancer (GC). However, personalized immune subtypes have not been developed for the prediction of ICI efficiency in GC. Herein, we identified Pan-Immune Activation Module (PIAM), a curated gene expression profile (GEP) representing the co-infiltration of multiple immune cell types in tumor microenvironment of GC, which was associated with high expression of immunosuppressive molecules such as PD-1 and CTLA-4. We also identified Pan-Immune Dysfunction Genes (PIDG), a conservative PIAM-derivated GEP indicating the dysfunction of immune cell cooperation, which was associated with upregulation of metastatic programs (extracellular matrix receptor interaction, TGF-ß signaling, epithelial-mesenchymal transition and calcium signaling) but downregulation of proliferative signalings (MYC targets, E2F targets, mTORC1 signaling, and DNA replication and repair). Moreover, we developed 'GSClassifier', an ensemble toolkit based on top scoring pairs and extreme gradient boosting, for population-based modeling and personalized identification of GEP subtypes. With PIAM and PIDG, we developed four Pan-immune Activation and Dysfunction (PAD) subtypes and a GSClassifier model 'PAD for individual' with high accuracy in predicting response to pembrolizumab (anti-PD-1) in advance GC (AUC = 0.833). Intriguingly, PAD-II (PIAMhighPIDGlow) displayed the highest objective response rate (60.0%) compared with other subtypes (PAD-I, PIAMhighPIDGhigh, 0%; PAD-III, PIAMlowPIDGhigh, 0%; PAD-IV, PIAMlowPIDGlow, 17.6%; P = 0.003), which was further validated in the metastatic urothelial cancer cohort treated with atezolizumab (anti-PD-L1) (P = 0.018). In all, we provided 'GSClassifier' as a refined computational framework for GEP-based stratification and PAD subtypes as a promising strategy for exploring ICI responders in GC. Metastatic pathways could be potential targets for GC patients with high immune infiltration but resistance to ICI therapy.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Aprendizado de Máquina , Microambiente Tumoral
19.
Hum Genomics ; 18(1): 70, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909264

RESUMO

INTRODUCTION: We previously identified a genetic subtype (C4) of type 2 diabetes (T2D), benefitting from intensive glycemia treatment in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Here, we characterized the population of patients that met the C4 criteria in the UKBiobank cohort. RESEARCH DESIGN AND METHODS: Using our polygenic score (PS), we identified C4 individuals in the UKBiobank and tested C4 status with risk of developing T2D, cardiovascular disease (CVD) outcomes, and differences in T2D medications. RESULTS: C4 individuals were less likely to develop T2D, were slightly older at T2D diagnosis, had lower HbA1c values, and were less likely to be prescribed T2D medications (P < .05). Genetic variants in MAS1 and IGF2R, major components of the C4 PS, were associated with fewer overall T2D prescriptions. CONCLUSION: We have confirmed C4 individuals are a lower risk subpopulation of patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Herança Multifatorial , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Herança Multifatorial/genética , Idoso , Fenótipo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/epidemiologia , Predisposição Genética para Doença , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/genética , Bancos de Espécimes Biológicos , Polimorfismo de Nucleotídeo Único/genética
20.
J Pathol ; 263(4-5): 397-399, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38828491

RESUMO

Pancreatic cancer is a highly aggressive disease. Developing new strategies and using powerful methodologies for its early detection, coupled with in-depth comprehension of the mechanisms governing subtype evolution, will not only help to stratify PDAC patients' prognosis but also prevent unfavourable subtype plasticity upon treatment with chemotherapy. Michiels et al have developed a new approach to better capture PDAC heterogeneity at the single tumour duct spatial resolution level, leveraging detection of transcripts for mutant KRAS and multiple subtype markers. Their study sheds light on the association of mutant KRAS and PDAC phenotypic heterogeneity. The findings support functional cooperation of plastic tumour cells and opens new challenges towards PDAC patient stratification and therapeutic intervention. Pathology-based tools will be of prime importance to address these issues in a clinically meaningful manner. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Análise de Célula Única , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Análise de Célula Única/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Heterogeneidade Genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA