RESUMO
Tibroviruses are novel rhabdoviruses detected in humans, cattle, and arthropods. Four tibroviruses are known to infect humans: Bas-Congo virus (BASV), Ekpoma virus 1 (EKV-1), Ekpoma virus 2, and Mundri virus. However, since none of them has been isolated, their biological properties are largely unknown. We aimed to characterize the human tibrovirus glycoprotein (G), which likely plays a pivotal role in viral tropism and pathogenicity. Human tibrovirus Gs were found to share some primary structures and display 14 conserved cysteine residues, although their overall amino acid homology was low (29%-48%). Multiple potential glycosylation sites were found on the G molecules, and endoglycosidase H- and peptide-N-glycosidase F-sensitive glycosylation was confirmed. AlphaFold-predicted three-dimensional (3D) structures of human tibrovirus Gs were overall similar. Membrane fusion mediated by these tibrovirus Gs was induced by acidic pH. The low pH-induced conformational change that triggers fusion was reversible. Virus-like particles (VLPs) were produced by transient expression of Gs in cultured cells and used to produce mouse antisera. Using vesicular stomatitis Indiana virus pseudotyped with Gs, we found that the antisera to the respective tibrovirus VLPs showed limited cross-neutralizing activity. It was also found that human C-type lectins and T-cell immunoglobulin mucin 1 acted as attachment factors for G-mediated entry into cells. Interestingly, BASV-G showed the highest ability to utilize these molecules. The viruses infected a wide range of cell lines with preferential tropism for human-derived cells whereas the preference of EKV-1 was unique compared with the other human tibroviruses. These findings provide fundamental information to understand the biological properties of the human tibroviruses. IMPORTANCE: Human tibroviruses are poorly characterized emerging rhabdoviruses associated with either asymptomatic infection or severe disease with a case fatality rate as high as 60% in humans. However, the extent and burden of human infection as well as factors behind differences in infection outcomes are largely unknown. In this study, we characterized human tibrovirus glycoproteins, which play a key role in virus-host interactions, mainly focusing on their structural and antigenic differences and cellular tropism. Our results provide critical information for understanding the biological properties of these novel viruses and for developing appropriate preparedness interventions such as diagnostic tools, vaccines, and effective therapies.
Assuntos
Proteínas do Envelope Viral , Humanos , Animais , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Camundongos , Glicosilação , Internalização do Vírus , Tropismo Viral , Linhagem Celular , Mucina-1/metabolismo , Células HEK293 , Anticorpos Antivirais/imunologia , Sequência de AminoácidosRESUMO
Rhabdoviruses are a large and ecologically diverse family of negative-sense RNA viruses (Mononegavirales: Rhabdoviridae). These viruses are capable of infecting an unexpectedly wide variety of plants, vertebrates, and invertebrates distributed over all human-inhabited continents. However, only a few rhabdoviruses are known to infect humans: a ledantevirus (Le Dantec virus), several lyssaviruses (in particular, rabies virus), and several vesiculoviruses (e.g., Chandipura virus, vesicular stomatitis Indiana virus). Recently, several novel rhabdoviruses have been discovered in the blood of both healthy and severely ill individuals living in Central and Western Africa. These viruses-Bas-Congo virus, Ekpoma virus 1, and Ekpoma virus 2-are members of the little-understood rhabdoviral genus Tibrovirus. Other than the basic genomic architecture, tibroviruses bear little resemblance to well-studied rhabdoviruses such as rabies virus and vesicular stomatitis Indiana virus. These three human tibroviruses are quite divergent from each other, and each of them clusters closely with tibroviruses currently known only from biting midges or healthy cattle. Seroprevalence studies suggest that human tibrovirus infections may be common but are almost entirely unrecognized. The pathogenic potential of this diverse group of viruses remains unknown. Although certain tibroviruses may be benign and well-adapted to humans, others could be newly emerging and produce serious disease. Here, we review the current knowledge of tibroviruses and argue that assessing their impact on human health should be an urgent priority.
Assuntos
Interações Hospedeiro-Patógeno , Infecções por Rhabdoviridae/etiologia , Rhabdoviridae/fisiologia , Simbiose , África/epidemiologia , Animais , Produtos Biológicos , Efeito Citopatogênico Viral , Exposição Ambiental , Variação Genética , Genoma Viral , Genômica/métodos , Humanos , Vigilância em Saúde Pública , Rhabdoviridae/classificação , Rhabdoviridae/patogenicidade , Rhabdoviridae/ultraestrutura , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/transmissão , Tropismo Viral , Internalização do Vírus , Replicação ViralRESUMO
In 2012, the genome of a novel rhabdovirus, Bas-Congo virus (BASV), was discovered in the acute-phase serum of a Congolese patient with presumed viral hemorrhagic fever. In the absence of a replicating virus isolate, fulfilling Koch's postulates to determine whether BASV is indeed a human virus and/or pathogen has been impossible. However, experiments with vesiculoviral particles pseudotyped with Bas-Congo glycoprotein suggested that BASV particles can enter cells from multiple animals, including humans. In 2015, genomes of two related viruses, Ekpoma virus 1 (EKV-1) and Ekpoma virus 2 (EKV-2), were detected in human sera in Nigeria. Isolates could not be obtained. Phylogenetic analyses led to the classification of BASV, EKV-1, and EKV-2 in the same genus, Tibrovirus, together with five biting midge-borne rhabdoviruses [i.e., Beatrice Hill virus (BHV), Bivens Arm virus (BAV), Coastal Plains virus (CPV), Sweetwater Branch virus (SWBV), and Tibrogargan virus (TIBV)] not known to infect humans. Using individual recombinant vesiculoviruses expressing the glycoproteins of all eight known tibroviruses and more than 75 cell lines representing different animal species, we demonstrate that the glycoproteins of all tibroviruses can mediate vesiculovirus particle entry into human, bat, nonhuman primate, cotton rat, boa constrictor, and Asian tiger mosquito cells. Using four of five isolated authentic tibroviruses (i.e., BAV, CPV, SWBV, and TIBV), our experiments indicate that many cell types may be partially resistant to tibrovirus replication after virion cell entry. Consequently, experimental data solely obtained from experiments using tibrovirus surrogate systems (e.g., vesiculoviral pseudotypes, recombinant vesiculoviruses) cannot be used to predict whether BASV, or any other tibrovirus, infects humans.