Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39275791

RESUMO

Wound healing of partially incised Arabidopsis inflorescence stems constitutes cell proliferation that initiates mainly in pith tissues about three days after incision, and that the healing process completes in about seven days. Although the initiation mechanisms of cell proliferation have been well documented, the suppression mechanisms remain elusive. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases well-known as proteolytic enzymes in animal systems functioning in extracellular matrix remodeling during physiological and pathological processes, including tissue differentiation, growth, defense, wound healing, and control of cancer growth. In this study, we report At2-MMP might contribute to the suppression mechanism of cell proliferation during tissue-repair process of incised inflorescence stems. At2-MMP transcript was gradually upregulated from day 0 to 5 after incision, and slightly decreased on day 7. Morphological analysis of incised stem of defected mutant at2-mmp revealed significantly enhanced cell proliferation around the incision site. Consistent with this, semi-quantitative analysis of dividing cells displayed a significant increment in the number of dividing cells in at2-mmp as compared to WT. These results showed that the upregulation of At2-MMP at the later stage of wound-healing process is likely to be involved in the completion of the process by attenuating the cell proliferation.

2.
J Plant Res ; 136(6): 865-877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707645

RESUMO

Plants are exposed to a variety of biotic and abiotic stresses, including wounding at the stem. The healing process (tissue reunion) begins immediately after stem wounding. The plant hormone auxin plays an important role during tissue reunion. In decapitated stems, auxin transport from the shoot apex is reduced and tissue reunion does not occur but is restored by application of indole-3-acetic acid (IAA). In this study, we found that plasmodesmata callose binding protein 2 (PDCB2) affects the expansion of the cambium/phloem region via changes in auxin response during the process of tissue reunion. PDCB2 was expressed in the cortex and endodermis on the incised side of stems 1-3 days after incision. PDCB2-knockout plants showed reduced callose deposition at plasmodesmata and DR5::GUS activity in the endodermis/cortex in the upper region of the incision accompanied by an increase in size of the cambium/phloem region during tissue reunion. In addition, PIN(PIN-FORMED)3, which is involved in lateral auxin transport, was induced by auxin in the cambium/phloem and endodermis/cortex in the upper part of the incision in wild type, but its expression of PIN3 was decreased in pdcb2 mutant. Our results suggest that PDCB2 contributes to the regulation of cambium/phloem development via auxin response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Floema , Câmbio , Proteínas de Arabidopsis/genética , Proteínas de Transporte/metabolismo , Plasmodesmos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Physiol ; 57(12): 2620-2631, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27986917

RESUMO

When wounding or grafting interrupts the original connection of plant tissue, cell proliferation is induced and the divided tissue is reunited. Previous studies suggested that gibberellin derived from the cotyledon is required for tissue reunion in cucumber and tomato incised hypocotyls, and tissue reunion of Arabidopsis incised flowering stems is controlled by auxin. Differences in the hormone requirements of the tissue reunion process between Arabidopsis and cucumber might be due to differences in organs or species. In this study, we performed morphological and gene expression analyses of graft union in Arabidopsis hypocotyl. We found that removal of the cotyledon and treatment of the cotyledon with the auxin transport inhibitor triiodobenzoic acid (TIBA) suppressed cell proliferation of vascular tissue during graft union formation. These treatments also suppressed expression of IAA5, ANAC071, ANAC096 and CYCB1;1. ANAC071 is involved in the tissue reunion process. The anac071 anac096 double mutant suppressed cell proliferation more so than either of the single mutants. On the other hand, paclobutrazol treatment or deficiency of gibberellin biosynthesis genes suppressed expansion of cortex cells, and exogenous gibberellin treatment or rga/gai mutations that lack the negative regulator of gibberellin reversed this inhibition. The up-regulation of the key gibberellin biosynthesis gene GA20ox1 during graft union formation was prevented by cotyledon removal or TIBA treatment. These data suggest that auxin regulates cell proliferation of vascular tissue and expansion of cortex cells by promoting gibberellin biosynthesis during graft attachment. We hypothesize that the cotyledon-derived phytohormones are essential for graft reunion of the hypocotyl, processed in a cell type-specific manner, in Arabidopsis.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferação de Células/efeitos dos fármacos , Cotilédone/citologia , Cotilédone/efeitos dos fármacos , Cotilédone/genética , Cotilédone/fisiologia , Giberelinas/metabolismo , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/genética , Hipocótilo/fisiologia , Ácidos Indolacéticos/metabolismo , Especificidade de Órgãos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Ácidos Tri-Iodobenzoicos/farmacologia , Regulação para Cima
4.
Plant J ; 80(4): 604-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182467

RESUMO

One week after partial incision of Arabidopsis inflorescence stems, the repair process in damaged tissue includes pith cell proliferation. Auxin is a key factor driving this process, and ANAC071, a transcription factor gene, is upregulated in the distal region of the incised stem. Here we show that XTH20 and the closely related XTH19, members of xyloglucan endotransglucosylase/hydrolases family catalyzing molecular grafting and/or hydrolysis of cell wall xyloglucans, were also upregulated in the distal part of the incised stem, similar to ANAC071. XTH19 was expressed in the proximal incision region after 3 days or after auxin application to the decapitated stem. Horizontal positioning of the plant with the incised side up resulted in decreased ProDR 5 :GUS, ANAC071, XTH20, and XTH19 expression and reduced pith cell proliferation. In incised stems of Pro35S :ANAC071-SRDX plants, expression of XTH20 and XTH19 was substantially and moderately decreased, respectively. XTH20 and XTH19 expression and pith cell proliferation were suppressed in anac071 plants and were increased in Pro35S :ANAC071 plants. Pith cell proliferation was also inhibited in the xth20xth19 double mutant. Furthermore, ANAC071 bound to the XTH20 and XTH19 promoters to induce their expression. This study revealed XTH20 and XTH19 induction by auxin via ANAC071 in the distal part of an incised stem and their involvement in cell proliferation in the tissue reunion process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carboidratos/química , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Inflorescência/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA