Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(44): e2302440120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871198

RESUMO

Seed dispersal by frugivores is a fundamental function for plant community dynamics in fragmented landscapes, where forest remnants are typically embedded in a matrix of anthropogenic habitats. Frugivores can mediate both connectivity among forest remnants and plant colonization of the matrix. However, it remains poorly understood how frugivore communities change from forest to matrix due to the loss or replacement of species with traits that are less advantageous in open habitats and whether such changes ultimately influence the composition and traits of dispersed plants via species interactions. Here, we close this gap by using a unique dataset of seed-dispersal networks that were sampled in forest patches and adjacent matrix habitats of seven fragmented landscapes across Europe. We found a similar diversity of frugivores, plants, and interactions contributing to seed dispersal in forest and matrix, but a high turnover (replacement) in all these components. The turnover of dispersed seeds was smaller than that of frugivore communities because different frugivore species provided complementary seed dispersal in forest and matrix. Importantly, the turnover involved functional changes toward larger and more mobile frugivores in the matrix, which dispersed taller, larger-seeded plants with later fruiting periods. Our study provides a trait-based understanding of frugivore-mediated seed dispersal through fragmented landscapes, uncovering nonrandom shifts that can have cascading consequences for the composition of regenerating plant communities. Our findings also highlight the importance of forest remnants and frugivore faunas for ecosystem resilience, demonstrating a high potential for passive forest restoration of unmanaged lands in the matrix.


Assuntos
Ecossistema , Dispersão de Sementes , Florestas , Sementes , Frutas , Árvores
2.
New Phytol ; 241(6): 2423-2434, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037289

RESUMO

Predictive relationships between plant traits and environmental factors can be derived at global and regional scales, informing efforts to reorient ecological models around functional traits. However, in a changing climate, the environmental variables used as predictors in such relationships are far from stationary. This could yield errors in trait-environment model predictions if timescale is not accounted for. Here, the timescale dependence of trait-environment relationships is investigated by regressing in situ trait measurements of specific leaf area, leaf nitrogen content, and wood density on local climate characteristics summarized across several increasingly long timescales. We identify contrasting responses of leaf and wood traits to climate timescale. Leaf traits are best predicted by recent climate timescales, while wood density is a longer term memory trait. The use of sub-optimal climate timescales reduces the accuracy of the resulting trait-environment relationships. This study concludes that plant traits respond to climate conditions on the timescale of tissue lifespans rather than long-term climate normals, even at large spatial scales where multiple ecological and physiological mechanisms drive trait change. Thus, determining trait-environment relationships with temporally relevant climate variables may be critical for predicting trait change in a nonstationary climate system.


Assuntos
Clima , Plantas , Madeira , Modelos Teóricos , Fenótipo , Folhas de Planta
3.
Proc Biol Sci ; 290(1992): 20222263, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722083

RESUMO

Anthropogenic increases in temperature and nutrient loads will likely impact food web structure and stability. Although their independent effects have been reasonably well studied, their joint effects-particularly on coupled ecological and phenotypic dynamics-remain poorly understood. Here we experimentally manipulated temperature and nutrient levels in microbial food webs and used time-series analysis to quantify the strength of reciprocal effects between ecological and phenotypic dynamics across trophic levels. We found that (1) joint-often interactive-effects of temperature and nutrients on ecological dynamics are more common at higher trophic levels, (2) temperature and nutrients interact to shift the relative strength of top-down versus bottom-up control, and (3) rapid phenotypic change mediates observed ecological responses to changes in temperature and nutrients. Our results uncover how feedback between ecological and phenotypic dynamics mediate food web responses to environmental change. This suggests important but previously unknown ways that temperature and nutrients might jointly control the rapid eco-phenotypic feedback that determine food web dynamics in a changing world.


Assuntos
Cadeia Alimentar , Nutrientes , Temperatura , Estado Nutricional
4.
New Phytol ; 240(4): 1390-1404, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710419

RESUMO

Covariation of plant functional traits, that is, phenotypic integration, might constrain their variability. This was observed for inter- and intraspecific variation, but there is no evidence of a relationship between phenotypic integration and the functional variation within single plants (within-individual trait variation; WTV), which could be key to understand the extent of WTV in contexts like plant-plant interactions. We studied the relationship between WTV and phenotypic integration in c. 500 trees of 21 species in planted forest patches varying in species richness in subtropical China. Using visible and near-infrared spectroscopy (Vis-NIRS), we measured nine leaf morphological and chemical traits. For each tree, we assessed metrics of single and multitrait variation to assess WTV, and we used plant trait network properties based on trait correlations to quantify phenotypic integration. Against expectations, strong phenotypic integration within a tree led to greater variation across leaves. Not only this was true for single traits, but also the dispersion in a tree's multitrait hypervolume was positively associated with tree's phenotypic integration. Surprisingly, we only detected weak influence of the surrounding tree-species diversity on these relationships. Our study suggests that integrated phenotypes allow the variability of leaf phenotypes within the organism and supports that phenotypic integration prevents maladaptive variation.


Assuntos
Florestas , Árvores , Árvores/anatomia & histologia , Folhas de Planta/anatomia & histologia , Plantas , Fenótipo
5.
J Anim Ecol ; 92(7): 1290-1293, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403332

RESUMO

Research Highlight: Hoenle, P. O., Staab, M., Donoso, D. A., Argoti, A., & Blüthgen, N. (2023). Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13896. Space, time and abiotic variation are primary axes across investigations of community ecology and disturbed ecosystems offer tractable systems for assessing their relative impact. While recovering forests can act as isolated case studies in understanding community assembly, it is not well understood how individual microhabitats respond to recovery and ultimately shape community attributes. Hoenle et al. (2023) leverage the ubiquity and microhabitat-specific diversity of ants across a gradient from active agricultural sites to old-growth forest and assess how recovery and stratification together shape communities. The authors find distinct stratification across phylogenetic, functional and trait diversity as forest recovery time increases, while also recovering unique recovery trajectories contingent on trait sampling. While stratified, phylogenetic and functional diversity did not increase along this recovery gradient. Ten out of 13 sampled traits were jointly influenced by both stratification and recovery time. In contrast to intuitive predictions, a majority of trait means converged throughout the recovery period. Results highlight the multifaceted nature of recovery-based community assembly and the capacity of multidimensional sampling to uncover surprising patterns in ecologically diverse lineages.


Assuntos
Formigas , Ecossistema , Animais , Filogenia , Ecologia/métodos , Florestas , Fenótipo , Biodiversidade
6.
Ecol Lett ; 25(3): 581-597, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35199922

RESUMO

Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.


Assuntos
Aves , Ecossistema , Animais , Biodiversidade , Evolução Biológica , Humanos , Filogenia
7.
New Phytol ; 236(2): 413-432, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811421

RESUMO

Ecophysiologists have reported a range of relationships, including intrinsic trade-offs across and within species between plant relative growth rate in high resource conditions (RGR) vs adaptation to tolerate cold or arid climates, arising from trait-based mechanisms. Few studies have considered ecotypes within a species, in which the lack of a trade-off would contribute to a wide species range and resilience to climate change. For 15 ecotypes of Arabidopsis thaliana in a common garden we tested for associations between RGR vs adaptation to cold or dry native climates and assessed hypotheses for its mediation by 15 functional traits. Ecotypes native to warmer, drier climates had higher leaf density, leaf mass per area, root mass fraction, nitrogen per leaf area and carbon isotope ratio, and lower osmotic potential at full turgor. Relative growth rate was statistically independent of the climate of the ecotype native range and of individual functional traits. The decoupling of RGR and cold or drought adaptation in Arabidopsis is consistent with multiple stress resistance and avoidance mechanisms for ecotypic climate adaptation and would contribute to the species' wide geographic range and resilience as the climate changes.


Assuntos
Arabidopsis , Adaptação Fisiológica , Isótopos de Carbono , Ecótipo , Nitrogênio , Folhas de Planta
8.
New Phytol ; 234(4): 1168-1174, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297052

RESUMO

Niche theory considering the traits of species and individuals provides a powerful tool to integrate ecology and evolution of species. In plant ecology, morphological and physiological traits are commonly considered as niche dimensions, whereas phytochemical traits are mostly neglected in this context despite their pivotal functions in plant responses to their environment and in mediating interactions. The diversity of plant phytochemicals can thus mediate three key processes: niche choice, conformance and construction. Here, we integrate frameworks from niche theory with chemical ecology and argue that plants use their individual-specific diversity in phytochemicals (chemodiversity) for different niche realization processes. Our concept has important implications for ecosystem processes and stability and increases the predictive ability of chemical ecology.


Assuntos
Evolução Biológica , Ecossistema , Ecologia , Fenótipo , Compostos Fitoquímicos , Plantas
9.
New Phytol ; 234(5): 1654-1663, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181920

RESUMO

The plume of hot gases rising above a wildfire can heat and kill the buds in tree crowns. This can reduce leaf area and rates of photosynthesis, growth, and reproduction, and may ultimately lead to mortality. These effects vary seasonally, but the mechanisms governing this seasonality are not well understood. A trait-based physical model combining buoyant plume and energy budget theories shows the seasonality of bud necrosis height may originate from temporal variation in climate, fire behaviour, and/or bud functional traits. To assess the relative importance of these drivers, we parameterized the model with time-series data for air temperature, fireline intensity, and bud traits from Pinus contorta, Picea glauca, and Populus tremuloides. Air temperature, fireline intensity, and bud traits all varied significantly through time, causing significant seasonal variation in predicted necrosis height. Bud traits and fireline intensity explained almost all the variation in necrosis height, with air temperature explaining relatively minor amounts of variation. The seasonality of fire effects on tree crowns appears to originate from seasonal variation in functional traits and fire behaviour. Our approach and results provide needed insight into the physical mechanisms linking environmental variation to plant performance via functional traits.


Assuntos
Incêndios , Árvores , Clima , Necrose , Estações do Ano
10.
New Phytol ; 234(1): 50-63, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981534

RESUMO

Tropical forests are important to the regulation of climate and the maintenance of biodiversity on Earth. However, these ecosystems are threatened by climate change, as temperatures rise and droughts' frequency and duration increase. Xylem anatomical traits are an essential component in understanding and predicting forest responses to changes in water availability. We calculated the community-weighted means and variances of xylem anatomical traits of hydraulic and structural importance (plot-level trait values weighted by species abundance) to assess their linkages to local adaptation and community assembly in response to varying soil water conditions in an environmentally diverse Brazilian Atlantic Forest habitat. Scaling approaches revealed community-level tradeoffs in xylem traits not observed at the species level. Towards drier sites, xylem structural reinforcement and integration balanced against hydraulic efficiency and capacitance xylem traits, leading to changes in plant community diversity. We show how general community assembly rules are reflected in persistent fiber-parenchyma and xylem hydraulic tradeoffs. Trait variation across a moisture gradient is larger between species than within species and is realized mainly through changes in species composition and abundance, suggesting habitat specialization. Modeling efforts to predict tropical forest diversity and drought sensitivity may benefit from adding hydraulic architecture traits into the analysis.


Assuntos
Secas , Árvores , Ecossistema , Florestas , Folhas de Planta , Árvores/fisiologia , Clima Tropical , Água , Xilema/fisiologia
11.
Glob Chang Biol ; 28(7): 2296-2311, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981602

RESUMO

Extreme climatic events can reshape the functional structure of ecological communities, potentially altering ecological interactions and ecosystem functioning. While these shifts have been widely documented, evidence of their persistence and potential flow-on effects on ecosystem structure following relaxation of extreme events remains limited. Here, we investigate changes in the functional trait structure - encompassing dimensions of resource use, thermal affinity, and body size - of herbivorous fishes in a temperate reef system that experienced an extreme marine heatwave (MHW) and subsequent return to cool conditions. We quantify how changes in the trait structure modified the nature and intensity of herbivory-related functions (macroalgae, turf, and sediment removal), and explored the potential flow-on effects on the recovery dynamics of macroalgal foundation species. The trait structure of the herbivorous fish assemblage shifted as a result of the MHW, from dominance of cool-water browsing species to increased evenness in the distribution of abundance among temperate and tropical guilds supporting novel herbivory roles (i.e. scraping, cropping, and sediment sucking). Despite the abundance of tropical herbivorous fishes and intensity of herbivory-related functions declined following a period of cooling after the MHW, the underlying trait structure displayed limited recovery. Concomitantly, algal assemblages displayed a lack of recovery of the formerly dominant foundational species, the kelp Ecklonia radiata, transitioning to an alternative state dominated by turf and Sargassum spp. Our study demonstrates a legacy effect of an extreme MHW and exemplified the value of monitoring phenotypic (trait mediated) changes in the nature of core ecosystem processes to predict and adapt to the future configurations of changing reef ecosystems.


Assuntos
Herbivoria , Alga Marinha , Animais , Recifes de Corais , Ecossistema , Peixes , Florestas
12.
Ann Bot ; 129(3): 343-356, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34918027

RESUMO

BACKGROUND AND AIMS: Determining within-species large-scale variation in phenotypic traits is central to elucidate the drivers of species' ranges. Intraspecific comparisons offer the opportunity to understand how trade-offs and biogeographical history constrain adaptation to contrasted environmental conditions. Here we test whether functional traits, ecological strategies from the CSR scheme and phenotypic plasticity in response to abiotic stress vary along a latitudinal or a center- margins gradient within the native range of Arabidopsis thaliana. METHODS: We experimentally examined the phenotypic outcomes of plant adaptation at the center and margins of its geographic range using 30 accessions from southern, central and northern Europe. We characterized the variation of traits related to stress tolerance, resource use, colonization ability, CSR strategy scores, survival and fecundity in response to high temperature (34 °C) or frost (- 6 °C), combined with a water deficit treatment. KEY RESULTS: We found evidence for both a latitudinal and a center-margins differentiation for the traits under scrutiny. Age at maturity, leaf dry matter content, specific leaf area and leaf nitrogen content varied along a latitudinal gradient. Northern accessions presented a greater survival to stress than central and southern accessions. Leaf area, C-scores, R-scores and fruit number followed a center-margins differentiation. Central accessions displayed a higher phenotypic plasticity than northern and southern accessions for most studied traits. CONCLUSIONS: Traits related to an acquisitive/conservative resource-use trade-off followed a latitudinal gradient. Traits associated with a competition/colonization trade-off differentiated along the historic colonization of the distribution range and then followed a center-margins differentiation. Our findings pinpoint the need to consider the joint effect of evolutionary history and environmental factors when examining phenotypic variation across the distribution range of a species.


Assuntos
Arabidopsis , Aclimatação , Adaptação Fisiológica , Arabidopsis/genética , Nitrogênio , Fenótipo
13.
Oecologia ; 200(3-4): 455-470, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344837

RESUMO

Understanding the extent to which species' traits mediate patterns of community assembly is key to predict the effect of natural and anthropogenic disturbances on ecosystem functioning. Here, we apply a trait-based community assembly framework to understand how four different habitat configurations (kelp forests, Sargassum spp. beds, hard corals, and turfs) shape the trophic and energetic dynamics of reef fish assemblages in a tropical-temperate transition zone. Specifically, we tested (i) the degree of trait divergence and convergence in each habitat, (ii) which traits explained variation in species' abundances, and (iii) differences in standing biomass (kg ha-1), secondary productivity (kg ha-1 day-1) and turnover (% day-1). Fish assemblages in coral and kelp habitats displayed greater evidence of trait convergence, while turf and Sargassum spp. habitats displayed a higher degree of trait divergence, a pattern that was mostly driven by traits related to resource use and thermal affinity. This filtering effect had an imprint on the trophic and energetic dynamics of reef fishes, with turf habitats supporting higher fish biomass and productivity. However, these gains were strongly dependent on trophic guild, with herbivores/detritivores disproportionately contributing to among-habitat differences. Despite these perceived overall gains, turnover was decoupled for fishes that act as conduit of energy to higher trophic levels (i.e. microinvertivores), with coral habitats displaying higher rates of fish biomass replenishment than turf despite their lower productivity. This has important implications for biodiversity conservation and fisheries management, questioning the long-term sustainability of ecological processes and fisheries yields in increasingly altered marine habitats.


Assuntos
Antozoários , Kelp , Animais , Ecossistema , Peixes , Estado Nutricional
14.
Glob Chang Biol ; 27(15): 3532-3546, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34056817

RESUMO

Urban expansion poses a serious threat to biodiversity. Given that the expected area of urban land cover is predicted to increase by 2-3 million km2 by 2050, urban environments are one of the most widespread human-dominated land-uses affecting biodiversity. Responses to urbanization differ greatly among species. Some species are unable to tolerate urban environments (i.e., urban avoiders), others are able to adapt and use areas with moderate levels of urbanization (i.e., urban adapters), and yet others are able to colonize and even thrive in urban environments (i.e., urban exploiters). Quantifying species-specific responses to urbanization remains an important goal, but our current understanding of urban tolerance is heavily biased toward traditionally well-studied taxa (e.g., mammals and birds). We integrated a continuous measure of urbanization-night-time lights-with over 900,000 species' observations from the Global Biodiversity Information Facility to derive a comprehensive analysis of species-specific (N = 158 species) responses of butterflies to urbanization across Europe. The majority of butterfly species included in our analysis avoided urban areas, regardless of whether species' urban affinities were quantified as a mean score of urban affinity across all occurrences (79%) or as a species' response curve to the whole urbanization gradient (55%). We then used species-specific responses to urbanization to assess which life history strategies promote urban affinity in butterflies. These trait-based analyses found strong evidence that the average number of flight months, likely associated with thermal niche breath, and number of adult food types were positively associated with urban affinity, while hostplant specialism was negatively associated with urban affinity. Overall, our results demonstrate that specialist butterflies, both in terms of thermal and diet preferences, are most at risk from increasing urbanization, and should thus be considered in urban planning and prioritized for conservation.


Assuntos
Borboletas , Animais , Biodiversidade , Aves , Ecossistema , Europa (Continente) , Humanos , Urbanização
15.
Ann Bot ; 127(4): 397-410, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33507251

RESUMO

BACKGROUND: Investigating the causes and consequences of intraspecific trait variation (ITV) in plants is not novel, as it has long been recognized that such variation shapes biotic and abiotic interactions. While evolutionary and population biology have extensively investigated ITV, only in the last 10 years has interest in ITV surged within community and comparative ecology. SCOPE: Despite this recent interest, still lacking are thorough descriptions of ITV's extent, the spatial and temporal structure of ITV, and stronger connections between ITV and community and ecosystem properties. Our primary aim in this review is to synthesize the recent literature and ask: (1) How extensive is intraspecific variation in traits across scales, and what underlying mechanisms drive this variation? (2) How does this variation impact higher-order ecological processes (e.g. population dynamics, community assembly, invasion, ecosystem productivity)? (3) What are the consequences of ignoring ITV and how can these be mitigated? and (4) What are the most pressing research questions, and how can current practices be modified to suit our research needs? Our secondary aim is to target diverse and underrepresented traits and plant organs, including anatomy, wood, roots, hydraulics, reproduction and secondary chemistry. In addressing these aims, we showcase papers from the Special Issue. CONCLUSIONS: Plant ITV plays a key role in determining individual and population performance, species interactions, community structure and assembly, and ecosystem properties. Its extent varies widely across species, traits and environments, and it remains difficult to develop a predictive model for ITV that is broadly applicable. Systematically characterizing the sources (e.g. ontogeny, population differences) of ITV will be a vital step forward towards identifying generalities and the underlying mechanisms that shape ITV. While the use of species means to link traits to higher-order processes may be appropriate in many cases, such approaches can obscure potentially meaningful variation. We urge the reporting of individual replicates and population means in online data repositories, a greater consideration of the mechanisms that enhance and constrain ITV's extent, and studies that span sub-disciplines.


Assuntos
Ecossistema , Plantas , Evolução Biológica , Fenótipo , Plantas/genética
16.
Oecologia ; 197(1): 43-59, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34379198

RESUMO

Constrained multivariate analysis is a common tool for linking ecological communities to environment. The follow-up is the development of the double-constrained correspondence analysis (dc-CA), integrating traits as species-related predictors. Further, methods have been proposed to integrate information on phylogenetic relationships and space variability. We expand this framework, proposing a dc-CA-based algorithm for decomposing variation in community structure and testing the simple and conditional effects of four sets of predictors: environment characteristics and space configuration as predictors related to sites, while traits and niche (dis)similarities as species-related predictors. In our approach, ecological niches differ from traits in that the latter are distinguished by and characterize the individual level, while niches are measured on the species level, and when compared, they are characteristics of communities and should be used as separate predictors. The novelties of this approach are the introduction of new niche parameters, niche dissimilarities, synthetic niche-based diversity which we related to environmental features, the development of an algorithm for the full variation decomposition and testing of the community-environment-niche-traits-space (CENTS) space by dc-CAs with and without covariates, and new types of diagrams for the results. Applying these methods to a dataset on freshwater mollusks, we learned that niche predictors may be as important as traits in explaining community structure and are not redundant, overweighting the environmental and spatial predictors. Our algorithm opens new pathways for developing integrative methods linking life, environment, and other predictors, both in theoretical and practical applications, including assessment of human impact on habitats and ecological systems.


Assuntos
Biodiversidade , Ecossistema , Humanos , Fenótipo , Filogenia
17.
Glob Chang Biol ; 26(12): 7255-7267, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32896934

RESUMO

The growing use of functional traits in ecological research has brought new insights into biodiversity responses to global environmental change. However, further progress depends on overcoming three major challenges involving (a) statistical correlations between traits, (b) phylogenetic constraints on the combination of traits possessed by any single species, and (c) spatial effects on trait structure and trait-environment relationships. Here, we introduce a new framework for quantifying trait correlations, phylogenetic constraints and spatial variability at large scales by combining openly available species' trait, occurrence and phylogenetic data with gridded, high-resolution environmental layers and computational modelling. Our approach is suitable for use among a wide range of taxonomic groups inhabiting terrestrial, marine and freshwater habitats. We demonstrate its application using freshwater macroinvertebrate data from 35 countries in Europe. We identified a subset of available macroinvertebrate traits, corresponding to a life-history model with axes of resistance, resilience and resource use, as relatively unaffected by correlations and phylogenetic constraints. Trait structure responded more consistently to environmental variation than taxonomic structure, regardless of location. A re-analysis of existing data on macroinvertebrate communities of European alpine streams supported this conclusion, and demonstrated that occurrence-based functional diversity indices are highly sensitive to the traits included in their calculation. Overall, our findings suggest that the search for quantitative trait-environment relationships using single traits or simple combinations of multiple traits is unlikely to be productive. Instead, there is a need to embrace the value of conceptual frameworks linking community responses to environmental change via traits which correspond to the axes of life-history models. Through a novel integration of tools and databases, our flexible framework can address this need.


Assuntos
Biodiversidade , Ecossistema , Ecologia , Europa (Continente) , Fenótipo , Filogenia
18.
Proc Natl Acad Sci U S A ; 114(46): 12202-12207, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087943

RESUMO

Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions.


Assuntos
Distribuição Animal , Mudança Climática , Peixes/fisiologia , Modelos Estatísticos , Adaptação Biológica , Animais , Regiões Árticas , Ecossistema , Temperatura
19.
Proc Biol Sci ; 286(1911): 20191645, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31551055

RESUMO

Diel vertical migration (DVM), the daily movement of organisms through oceanic water columns, is mainly driven by spatio-temporal variations in the light affecting the intensity of predator-prey interactions. Migration patterns of an organism are intrinsically linked to the distribution of its conspecifics, its prey and its predators, each with their own fitness-seeking imperatives. We present a mechanistic, trait-based model of DVM for the different components of a pelagic community. Specifically, we consider size, sensory mode and feeding mode as key traits, representing a community of copepods that prey on each other and are, in turn, preyed upon by fish. Using game-theoretic principles, we explore the optimal distribution of the main groups of a planktonic pelagic food web simultaneously. Within one single framework, our model reproduces a whole suite of observed patterns, such as size-dependent DVM patterns of copepods and reverse migrations. These patterns can only be reproduced when different trophic levels are considered at the same time. This study facilitates a quantitative understanding of the drivers of DVM, and is an important step towards mechanistically underpinned predictions of DVM patterns and biologically mediated carbon export.


Assuntos
Migração Animal , Copépodes/fisiologia , Cadeia Alimentar , Modelos Estatísticos , Animais , Teoria dos Jogos , Oceanos e Mares , Plâncton
20.
Oecologia ; 190(3): 629-637, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31214834

RESUMO

Species with large intraspecific trait variability (ITV) have larger niche breadth than species with low ITV and thus are expected to be more abundant at the local scale. However, whether the positive ITV-abundance relationship holds in heterogeneous local environments remains uncertain. Using an individual-based trait dataset encompassing three leaf traits (leaf area, specific leaf area, and leaf dry mass content) of 20,248 individuals across 80 species in an environmentally heterogeneous subtropical forest in eastern China, ITV for each trait of each species was estimated by rarefaction. Resource-based niche breadth and marginality (the absolute distance between the mean resource states used by a species and the mean plot-wise resource states) were estimated simultaneously by the K-S method and the outlying mean index, respectively. Species with moderate ITV were often locally abundant, while species with large or small ITV were locally rare. This unimodal relationship between ITV and species abundance persisted when traits were analyzed separately and for all tree size classes. There was also a hump-backed relationship between niche breadth and marginality, and ITV was positively associated with niche breadth. The combined results suggest either a trade-off between the benefit from expanding niche breadth to adapt to multiple habitats and the disadvantage of reducing competitive ability, or a scarcity of favorable resources. Our results do not support the traditional thought that ITV positively correlates with species abundance in heterogeneous local environments. Instead, our study suggests that moderate-rather than large-intraspecific trait variability increases species abundance at local scales.


Assuntos
Florestas , Árvores , China , Ecossistema , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA