Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 435(2): 113923, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190870

RESUMO

Atrial fibrillation (AF) is an extremely common clinical arrhythmia disease, but whether its mechanism is associated with ferroptosis remains unclear. The tRNA-derived small RNAs (tsRNAs) are involved in a variety of cardiovascular diseases, however, their role and mechanism in atrial remodeling in AF have not been studied. We aimed to explore whether tsRNAs mediate ferroptosis in AF progression. The AF models were constructed to detect ferroptosis-related indicators, and Ferrostatin-1 (Fer-1) was introduced to clarify the relationship between ferroptosis and AF. Atrial myocardial tissue was used for small RNA sequencing to screen potential tsRNAs. tsRNA functioned on ferroptosis and AF was explored. Atrial fibrosis and changes in the cellular structures and arrangement were observed in AF mice model, and these alterations were accompanied by ferroptosis occurrence, exhibited by the accumulation of Fe2+ and MDA levels and the decrease of expression of FTH1, GPX4, and SLC7A11. Blocking above ferroptosis activation with Fer-1 resulted in a significant improvement for AF. A total of 7 tsRNAs were upregulated (including tsRNA-5008a) and 2 tsRNAs were downregulated in atrial myocardial tissue in the AF group compared with the sham group. We constructed a tsRNA-mRNA regulated network, which showed tsRNA-5008a targeted 16 ferroptosis-related genes. Knockdown of tsRNA-5008a significantly suppressed ferroptosis through targeting SLC7A11 and diminished myocardial fibrosis both in vitro and in vivo. On the contrary, tsRNA-5008a mimics promoted ferroptosis in cardiomyocytes. Collectively, tsRNA-5008a involved in AF through ferroptosis. Our study provides novel insights into the role of tsRNA-5008a mediated ferroptosis in AF progression.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Cicloexilaminas , Ferroptose , Fenilenodiaminas , Animais , Camundongos , Fibrilação Atrial/genética , Miócitos Cardíacos , Remodelamento Atrial/genética , Ferroptose/genética , Átrios do Coração
2.
Genomics ; 116(4): 110885, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38866256

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a devastating neurological and pathological condition. Exosomal tsRNAs have reported to be promising biomarkers for cancer diagnosis and therapy. This study aimed to investigate the roles of SCI-associated exosomes, and related tsRNA mechanisms in SCI. METHODS: The serum of healthy controls and SCI patients at the acute stage were collected for exosomes isolation, and the two different exosomes were used to treat human astrocytes (HA). The cell viability, apoptosis, and cycle were determined, and the expression of the related proteins were detected by western blot. Then, the two different exosomes were sent for tsRNA sequencing, and four significant known differentially expressed tsRNAs (DE-tsRNAs) were selected for RT-qPCR validation. Finally, tRT-41 was chosen to further explore its roles and related mechanisms in SCI. RESULTS: After sequencing, 21 DE-tsRNAs were identified, which were significantly enriched in pathways of Apelin, AMPK, Hippo, MAPK, Ras, calcium, PI3K-Akt, and Rap1. RT-qPCR showed that tRF-41 had higher levels in the SCI-associated exosomes. Compared with the control HA, healthy exosomes did not significantly affect the growth of HA cells, but SCI-associated exosomes inhibited viability of HA cells, while promoted their apoptosis and increased the HA cells in G2/M phase; but tRF-41 inhibitor reversed the actions of SCI-associated exosomes. Additionally, SCI-associated exosomes, similar with tRF-41 mimics, down-regulated IGF-1, NGF, Wnt3a, and ß-catenin, while up-regulated IL-1ß and IL-6; but tRF-41 inhibitor had the opposite actions, and reversed the effects induced by SCI-associated exosomes. CONCLUSIONS: SCI-associated exosomes delivered tRF-41 may inhibit the growth of HA through regulating Wnt/ ß-catenin pathway and inflammation response, thereby facilitating the progression of SCI.


Assuntos
Exossomos , Traumatismos da Medula Espinal , Exossomos/metabolismo , Humanos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Apoptose , Astrócitos/metabolismo , Masculino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Progressão da Doença , Células Cultivadas , Midkina/metabolismo , Midkina/genética , Adulto , Proliferação de Células , Pessoa de Meia-Idade
3.
Cancer Cell Int ; 24(1): 200, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840243

RESUMO

Ferroptosis, an iron-dependent regulated cell death mechanism, holds significant promise as a therapeutic strategy in oncology. In the current study, we explored the regulatory effects of epigallocatechin gallate (EGCG), a prominent polyphenol in green tea, on ferroptosis and its potential therapeutic implications for non-small cell lung cancer (NSCLC). Treatment of NSCLC cell lines with varying concentrations of EGCG resulted in a notable suppression of cell proliferation, as evidenced by a reduction in Ki67 immunofluorescence staining. Western blot analyses demonstrated that EGCG treatment led to a decrease in the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) while increasing the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4). These molecular changes were accompanied by an increase in intracellular iron, malondialdehyde (MDA), and reactive oxygen species (ROS), alongside ultrastructural alterations characteristic of ferroptosis. Through small RNA sequencing and RT-qPCR, transfer RNA-derived small RNA 13502 (tsRNA-13502) was identified as a significant target of EGCG action, with its expression being upregulated in NSCLC tissues compared to adjacent non-tumorous tissues. EGCG was found to modulate the ferroptosis pathway by downregulating tsRNA-13502 and altering the expression of key ferroptosis regulators (GPX4/SLC7A11 and ACSL4), thereby promoting the accumulation of iron, MDA, and ROS, and ultimately inducing ferroptosis in NSCLC cells. This study elucidates EGCG's multifaceted mechanisms of action, underscoring the modulation of ferroptosis as a viable therapeutic approach for enhancing NSCLC treatment outcomes.

4.
J Assist Reprod Genet ; 41(3): 781-793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270749

RESUMO

PURPOSE: Can small RNA derived from embryos in conditioned embryo culture medium (ECM) influence embryo implantation? METHODS: We employed small RNA sequencing to investigate the expression profiles of transfer RNA-derived small RNA (tsRNA) and microRNA (miRNA) in ECM from high-quality and low-quality embryos. Quantitative real-time PCR was employed to validate the findings of small RNA sequencing. Additionally, we conducted bioinformatics analysis to predict the potential functions of these small RNAs in embryo implantation. To establish the role of tiRNA-1:35-Leu-TAG-2 in embryonic trophoblast cell adhesion, we utilized co-culture systems involving JAR and Ishikawa cells. RESULTS: Our analysis revealed upregulation of nine tsRNAs and four miRNAs in ECM derived from high-quality embryos, whereas 37 tsRNAs and 12 miRNAs exhibited upregulation in ECM from low-quality embryos. The bioinformatics analysis of tsRNA, miRNA, and mRNA pathways indicated that their respective target genes may play pivotal roles in both embryo development and endometrial receptivity. Utilizing tiRNA mimics, we demonstrated that the prominently expressed tiRNA-1:35-Leu-TAG-2 in the low-quality ECM group can be internalized by Ishikawa cells. Notably, transfection of tiRNA-1:35-Leu-TAG-2 into Ishikawa cells reduced the attachment rate of JAR spheroids. CONCLUSION: Our investigation uncovers significant variation in the expression profiles of tsRNAs and miRNAs between ECM derived from high- and low-quality embryos. Intriguingly, the release of tiRNA-1:35-Leu-TAG-2 by low-quality embryos detrimentally affects embryo implantation and endometrial receptivity. These findings provide fresh insights into understanding the molecular foundations of embryo-endometrial communication.


Assuntos
MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Implantação do Embrião/genética , Embrião de Mamíferos/metabolismo , Técnicas de Cocultura , Desenvolvimento Embrionário/genética , Endométrio/metabolismo
5.
BMC Biol ; 21(1): 39, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36803965

RESUMO

BACKGROUND: Adaptation to high-altitude hypobaric hypoxia has been shown to require a set of physiological traits enabled by an associated set of genetic modifications, as well as transcriptome regulation. These lead to both lifetime adaptation of individuals to hypoxia at high altitudes and generational evolution of populations as seen for instance in those of Tibet. Additionally, RNA modifications, which are sensitive to environmental exposure, have been shown to play pivotal biological roles in maintaining the physiological functions of organs. However, the dynamic RNA modification landscape and related molecular mechanisms in mouse tissues under hypobaric hypoxia exposure remain to be fully understood. Here, we explore the tissue-specific distribution pattern of multiple RNA modifications across mouse tissues. RESULTS: By applying an LC-MS/MS-dependent RNA modification detection platform, we identified the distribution of multiple RNA modifications in total RNA, tRNA-enriched fragments, and 17-50-nt sncRNAs across mouse tissues; these patterns were associated with the expression levels of RNA modification modifiers in different tissues. Moreover, the tissue-specific abundance of RNA modifications was sensitively altered across different RNA groups in a simulated high-altitude (over 5500 m) hypobaric hypoxia mouse model with the activation of the hypoxia response in mouse peripheral blood and multiple tissues. RNase digestion experiments revealed that the alteration of RNA modification abundance under hypoxia exposure impacted the molecular stability of tissue total tRNA-enriched fragments and isolated individual tRNAs, such as tRNAAla, tRNAval, tRNAGlu, and tRNALeu. In vitro transfection experiments showed that the transfection of testis total tRNA-enriched fragments from the hypoxia group into GC-2spd cells attenuated the cell proliferation rate and led to a reduction in overall nascent protein synthesis in cells. CONCLUSIONS: Our results reveal that the abundance of RNA modifications for different classes of RNAs under physiological conditions is tissue-specific and responds to hypobaric hypoxia exposure in a tissue-specific manner. Mechanistically, the dysregulation of tRNA modifications under hypobaric hypoxia attenuated the cell proliferation rate, facilitated the sensitivity of tRNA to RNases, and led to a reduction in overall nascent protein synthesis, suggesting an active role of tRNA epitranscriptome alteration in the adaptive response to environmental hypoxia exposure.


Assuntos
Hipóxia , Espectrometria de Massas em Tandem , Masculino , Camundongos , Animais , Cromatografia Líquida , Hipóxia/genética , Ribonuclease Pancreático , RNA de Transferência/genética , RNA
6.
Cancer Sci ; 114(12): 4607-4621, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37770420

RESUMO

Evaluating the accuracy of pulmonary nodule diagnosis avoids repeated low-dose computed tomography (LDCT)/CT scans or invasive examination, yet remains a main clinical challenge. Screening for new diagnostic tools is urgent. Herein, we established a nomogram based on the diagnostic signature of five circulating tsRNAs and CT information to predict malignant pulmonary nodules. In total, 249 blood samples of patients with pulmonary nodules were selected from three different lung cancer centers. Five tsRNAs were identified in the discovery and training cohorts and the diagnostic signature was established by the randomForest algorithm (tRF-Ser-TGA-003, tRF-Val-CAC-005, tRF-Ala-AGC-060, tRF-Val-CAC-024, and tiRNA-Gln-TTG-001). A nomogram was developed by combining tsRNA signature and CT information. The high level of accuracy was identified in an internal validation cohort (n = 83, area under the receiver operating characteristic curve [AUC] = 0.930, sensitivity 100.0%, specificity 73.8%) and external validation cohort (n = 66, AUC = 0.943, sensitivity 100.0%, specificity 86.8%). Furthermore, the diagnostic ability of our model discriminating invasive malignant ones from noninvasive lesions was assessed. A robust performance was achieved in the diagnosis of invasive malignant lesions in both training and validation cohorts (discovery cohort: AUC = 0.850, sensitivity 86.0%, specificity 81.4%; internal validation cohort: AUC = 0.784, sensitivity 78.8%, specificity 78.1%; and external validation cohort: AUC = 0.837, sensitivity 85.7%, specificity 84.0%). This novel circulating tsRNA-based diagnostic model has potential significance in predicting malignant pulmonary nodules. Application of the model could improve the accuracy of pulmonary nodule diagnosis and optimize surgical plans.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Nomogramas , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Tomografia Computadorizada por Raios X/métodos , Pulmão/patologia , Estudos Retrospectivos
7.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33333550

RESUMO

Plant transcriptome encompasses numerous endogenous, regulatory non-coding RNAs (ncRNAs) that play a major biological role in regulating key physiological mechanisms. While studies have shown that ncRNAs are extremely diverse and ubiquitous, the functions of the vast majority of ncRNAs are still unknown. With ever-increasing ncRNAs under study, it is essential to identify, categorize and annotate these ncRNAs on a genome-wide scale. The use of high-throughput RNA sequencing (RNA-seq) technologies provides a broader picture of the non-coding component of transcriptome, enabling the comprehensive identification and annotation of all major ncRNAs across samples. However, the detection of known and emerging class of ncRNAs from RNA-seq data demands complex computational methods owing to their unique as well as similar characteristics. Here, we discuss major plant endogenous, regulatory ncRNAs in an RNA sample followed by computational strategies applied to discover each class of ncRNAs using RNA-seq. We also provide a collection of relevant software packages and databases to present a comprehensive bioinformatics toolbox for plant ncRNA researchers. We assume that the discussions in this review will provide a rationale for the discovery of all major categories of plant ncRNAs.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica de Plantas , Plantas , RNA de Plantas , RNA não Traduzido , RNA-Seq , Software , Plantas/genética , Plantas/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , RNA não Traduzido/biossíntese , RNA não Traduzido/genética
8.
Reprod Biol Endocrinol ; 21(1): 106, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924131

RESUMO

Small non-coding RNAs (sncRNAs), being the top regulators of gene expression, have been thoroughly studied in various biological systems, including the testis. Research over the last decade has generated significant evidence in support of the crucial roles of sncRNAs in male reproduction, particularly in the maintenance of primordial germ cells, meiosis, spermiogenesis, sperm fertility, and early post-fertilization development. The most commonly studied small RNAs in spermatogenesis are microRNAs (miRNAs), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), and transfer RNA-derived small RNAs (ts-RNAs). Small non-coding RNAs are crucial in regulating the dynamic, spatial, and temporal gene expression profiles in developing germ cells. A number of small RNAs, particularly miRNAs and tsRNAs, are loaded on spermatozoa during their epididymal maturation. With regard to their roles in fertility, miRNAs have been studied most often, followed by piRNAs and tsRNAs. Dysregulation of more than 100 miRNAs has been shown to correlate with infertility. piRNA and tsRNA dysregulations in infertility have been studied in only 3-5 studies. Sperm-borne small RNAs hold great potential to act as biomarkers of sperm quality and fertility. In this article, we review the role of small RNAs in spermatogenesis, their association with infertility, and their potential as biomarkers of sperm quality and fertility.


Assuntos
Infertilidade Masculina , MicroRNAs , Pequeno RNA não Traduzido , Humanos , Masculino , Sêmen/metabolismo , Espermatogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatozoides/metabolismo , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Biomarcadores/metabolismo
9.
RNA Biol ; 20(1): 136-139, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37016725

RESUMO

The Keystone Symposium 'Small Regulatory RNAs: From Bench to Bedside' was held in Santa Fe, New Mexico from May 1-4, 2022. The symposium was organized by Frank J. Slack, Jörg Vogel, Ivan Martinez and Karyn Schmidt, and brought together scientists working in noncoding RNA biology, therapeutics, and technologies to address mechanistic questions about small regulatory RNAs and facilitate translation of these findings into clinical applications. The conference addressed four specific aims: Aim 1. Focus on the exciting biology of small regulatory RNAs, highlighting the best current research into the role that small RNAs play in fundamental biological processes; Aim 2. Focus on the latest efforts to harness the power of these RNAs as agents in the fight against disease and provide the basic understanding that will drive the invention of powerful clinical tools; Aim 3. Attract leaders from both academia and industry working in small RNAs to one place for critical discussions that will advance the field and accelerate the bench to bedside use of this technology; Aim 4. Provide a stimulating environment where students, postdoctoral researchers and junior investigators, along with scientists from Biotechnology and Pharmaceutical companies specializing in small regulatory RNAs, can present and discuss their research with the best minds in the field.


Assuntos
RNA não Traduzido , Humanos , RNA não Traduzido/genética , Congressos como Assunto
10.
Genomics ; 114(1): 409-442, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954000

RESUMO

Not all transcribed RNAs are protein-coding. Some non-coding RNAs (ncRNAs) seem to be non-functional and are resulted from spurious transcription. Many others have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several ncRNAs, as major elements, regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. RNA-mediated gene regulation machinery is evolutionarily ancient and pretty complex. In this review, the current knowledge in the field of RNA-mediated gene silencing have been summarized.


Assuntos
Redes Reguladoras de Genes , RNA não Traduzido , Regulação da Expressão Gênica , RNA de Plantas/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
11.
J Oral Rehabil ; 50(12): 1487-1497, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37574812

RESUMO

BACKGROUND: Tissue engineering using bone mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic for bone regeneration. However, the effect of bone regeneration remains unsatisfactory due to the BMSCs' functional abnormality influenced by hypoxia. In this study, we attempt to explore the mechanism of osteogenic differentiation of BMSCs under hypoxic conditions from the perspective of non-coding RNA regulation. METHODS: The study employed BMSCs obtained from healthy donors and simulated hypoxia using CoCl2 stimulation. High-throughput sequencing technique was used to identify differential expression profiles of tRNA-derived small RNA (tsRNA) in three experimental groups: BMSCs-0d, BMSCs-7d and BMSCs-0d-CoCl2 . TargetScan and miRanda algorithms were used to determine tsRNA target genes, while Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were employed for the prediction of biological functions. Real-time reverse transcriptase-polymerase chain reaction (Real-time RT-PCR) was carried out on four selected differentially expressed tsRNAs. RESULTS: After the osteogenic induction and CoCl2 stimulated separately, there were 19 tsRNAs differentially expressed in BMSCs, including 14 upregulated and five downregulated. According to the analysis of biological information, these tsRNAs may regulate 311 potential target genes and mainly enrich the pathways such as metabolic pathways, Wnt signalling pathway, osteoclast differentiation, cellular senescence and mTOR signalling pathway. The results of Real-time RT-PCR for 3'tiRNA-41-GlnTTG-6, 3'tiRNA-42-LysTTT-8, 5'tiRNA-35-CysACA-1 and tRF3a-AsnGTT-9 were consistent with small RNA sequencing data. CONCLUSION: We discovered the tsRNA that changes the process of osteogenesis and hypoxia, which provides new targets for promoting survival and regeneration functions after BMSCs transplantation.


Assuntos
Osteogênese , RNA , Humanos , Osteogênese/genética , RNA/metabolismo , RNA/farmacologia , Diferenciação Celular/genética , Hipóxia/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/farmacologia , Células da Medula Óssea/metabolismo , Células Cultivadas
12.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298511

RESUMO

The genetically related assemblages of the intestinal protozoa parasite Giardia lamblia are morphologically indistinguishable and are often derived from specific hosts. The Giardia assemblages are separated by large genetic distances, which might account for their relevant biological and pathogenic differences. In this work, we analyzed the RNAs cargo released into exosomal-like vesicles (ElVs) by the assemblages A and B, which differentially infect humans, and the assemblage E, which infects hoofed animals. The RNA sequencing analysis revealed that the ElVs of each assemblage contained distinct small RNA (sRNA) biotypes, suggesting a preference for specific packaging in each assemblage. These sRNAs were classified into three categories, ribosomal-small RNAs (rsRNAs), messenger-small RNAs (msRNAs), and transfer-small RNAs (tsRNAs), which may play a regulatory role in parasite communication and contribute to host-specificity and pathogenesis. Uptake experiments showed, for the first time, that ElVs were successfully internalized by the parasite trophozoites. Furthermore, we observed that the sRNAs contained inside these ElVs were first located below the plasma membrane but then distributed along the cytoplasm. Overall, the study provides new insights into the molecular mechanisms underlying the host-specificity and pathogenesis of G. lamblia and highlights the potential role of sRNAs in parasite communication and regulation.


Assuntos
Exossomos , Giardíase , Parasitos , Humanos , Animais , Giardia/genética , RNA/metabolismo , Exossomos/genética , Exossomos/metabolismo , Giardíase/parasitologia , RNA de Transferência/metabolismo , RNA Ribossômico/metabolismo
13.
Semin Cancer Biol ; 75: 29-37, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34029740

RESUMO

Transfer RNAs (tRNAs) participate in protein synthesis through delivering amino acids to the ribosome. Nevertheless, recent studies revealed that tRNAs can undergo cleavage by endoribonucleases to generate a heterogeneous class of small RNAs, designated as tRNA-derived small RNAs (tsRNAs). Accumulating evidence demonstrates that tsRNAs play an important role in many biological processes, and their dysregulation is associated with the progression of diseases including cancer. Abnormally expressed tsRNAs contribute to tumor initiation and development through distinct mechanisms, such as transcriptional regulation and RNA interference. In this review, we briefly summarize the current knowledge regarding classification, biogenesis and biological function of tsRNAs. Moreover, we highlight the dysregulation and critical roles of tsRNAs in cancer and discuss their potentials as diagnostic and prognostic biomarkers or therapeutic targets.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , Biossíntese de Proteínas , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Animais , Biomarcadores Tumorais/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo
14.
BMC Genomics ; 23(1): 44, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35012466

RESUMO

BACKGROUND: Small RNAs (sRNAs) regulate numerous plant processes directly related to yield, such as disease resistance and plant growth. To exploit this yield-regulating potential of sRNAs, the sRNA profile of one of the world's most important staple crops - rice - was investigated throughout plant development using next-generation sequencing. RESULTS: Root and leaves were investigated at both the vegetative and generative phase, and early-life sRNA expression was characterized in the embryo and endosperm. This led to the identification of 49,505 novel sRNAs and 5581 tRNA-derived sRNAs (tsRNAs). In all tissues, 24 nt small interfering RNAs (siRNAs) were highly expressed and associated with euchromatic, but not heterochromatic transposable elements. Twenty-one nt siRNAs deriving from genic regions in the endosperm were exceptionally highly expressed, mimicking previously reported expression levels of 24 nt siRNAs in younger endosperm samples. In rice embryos, sRNA content was highly diverse while tsRNAs were underrepresented, possibly due to snoRNA activity. Publicly available mRNA expression and DNA methylation profiles were used to identify putative siRNA targets in embryo and endosperm. These include multiple genes related to the plant hormones gibberellic acid and ethylene, and to seed phytoalexin and iron content. CONCLUSIONS: This work introduces multiple sRNAs as potential regulators of rice yield and quality, identifying them as possible targets for the continuous search to optimize rice production.


Assuntos
Oryza , Elementos de DNA Transponíveis , Endosperma , Regulação da Expressão Gênica de Plantas , Oryza/genética , Desenvolvimento Vegetal , RNA de Plantas , RNA Interferente Pequeno , Sementes
15.
Biochem Biophys Res Commun ; 636(Pt 2): 119-127, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36368154

RESUMO

Keloid is a common pathological scar, which involves the regulation of immune microenvironment. tRNA derived fragments (tsRNAs/tRFs) are a novel type of functional small non-coding RNAs. To this day, the role and effect of tRFs in keloid remain unclear. Herein, our purpose was to confirm that tRFs participate in the occurrence and development of keloid by regulating M2 macrophages. The infiltration of M2 macrophages in keloid tissue was detected by immunofluorescence. The tRFs expression profiles in M1 and M2 macrophages were evaluated by small RNA sequencing. We validated the expression of key differentially expressed tRFs and the effect of a key tRF on M2 polarization of macrophages was measured by RT-qPCR, Western blot and immunofluorescence. M2 macrophages infiltration was increased and M1 macrophages was decreased in keloid tissue, compared with normal skin tissue. Meanwhile, 2896 tRFs were differentially expressed between M2 macrophages and M1 macrophages, with the expression of 1661 tRFs were increased and 1235 were decreased in M2 macrophages. Functional annotation exposed that target genes of the tRFs significantly enriched in the function of transcription, DNA-templated; protein binding and cytoplasm. Pathway analysis showed that the differentially expressed tRFs were mainly involved in macrophage polarization-related signaling pathways, including MAPK signaling pathways, Wnt signaling pathways and PI3K-AKt signaling pathways. The results of RT-qPCR detection for tsRNA-14777, tsRNA-14778 and tsRNA-14783 were in accordance with the small RNA sequencing date. Finally, overexpression of tsRNA-14783 promoted macrophage M2 polarization, as evidence by the increase of M2 macrophage marker TGF-ß, IL-10 and CD206, and the decrease of M1 macrophage marker IL-1 and NOS2. Our results proved that tsRNA-14783 might be participated in keloid formation via regulation of M2 macrophages polarization. tsRNA-14783 may be potential therapeutic target for keloid.


Assuntos
Queloide , Humanos , Queloide/genética , Queloide/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Via de Sinalização Wnt
16.
J Transl Med ; 20(1): 128, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287671

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is one of the most common liver diseases and has no safe and effective drug for treatment. We have previously reported the function of blueberry, but the effective monomer and related molecular mechanism remain unclear. METHODS: The monomer of blueberry was examined by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). The NASH cell model was constructed by exposing HepG2 cells to free fatty acids. The NASH mouse model was induced by a high-fat diet for 12 weeks. NASH cell and mouse models were treated with different concentrations of blueberry monomers. The molecular mechanism was studied by Oil Red O staining, ELISA, enzyme activity, haematoxylin-eosin (H&E) staining, immunohistochemistry, immunofluorescence, western blot, RNA sequencing, and qRT-PCR. RESULTS: We identified one of the main monomer of blueberry as tectorigenin (TEC). Cyanidin-3-O glucoside (C3G) and TEC could significantly inhibit the formation of lipid droplets in steatosis hepatocytes, and the effect of TEC on the formation of lipid droplets was significantly higher than that of C3G. TEC can promote cell proliferation and inhibit the release of inflammatory mediators in NASH cell model. Additionally, TEC administration provided a protective role against high-fat diets induced lipid damage, and suppressed lipid accumulation. In NASH mouse model, TEC can activate autophagy, inhibit pyroptosis and the release of inflammatory mediators. In NASH cell model, TEC inhibited pyroptosis by stimulating autophagy. Then, small RNA sequencing revealed that TEC up-regulated the expression of tRF-47-58ZZJQJYSWRYVMMV5BO (tRF-47). The knockdown of tRF-47 blunted the beneficial effects of TEC on NASH in vitro, including inhibition of autophagy, activation of pyroptosis and release of inflammatory factors. Similarly, suppression of tRF-47 promoted the lipid injury and lipid deposition in vivo. CONCLUSIONS: These results demonstrated that tRF-47-mediated autophagy and pyroptosis plays a vital role in the function of TEC to treat NASH, suggesting that TEC may be a promising drug for the treatment of NASH.


Assuntos
Mirtilos Azuis (Planta) , Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia , Cromatografia Líquida , Isoflavonas , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Piroptose , Transdução de Sinais , Espectrometria de Massas em Tandem
17.
Reprod Biol Endocrinol ; 20(1): 106, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869479

RESUMO

BACKGROUND: There is a lack of biomarkers for distinguishing non-obstructive azoospermia (NOA) patients with successful sperm retrieval (Sp+) from those with failed sperm retrieval (Sp-). This study aimed to determine the potential of extracellular vesicles tRNA-derived small RNA (tsRNA) as a novel non-invasive biomarker for successful sperm retrieval by microdissection testicular sperm extraction (mTESE). METHODS: The study included 18 patients with NOA with successful sperm retrieval (Sp+) and 23 patients with NOA with failed sperm retrieval (Sp-), 15 obstructive azoospermia (OA) patients, 5 idiopathic oligospermia (IO) patients, and 12 healthy people. Seminal plasma extracellular vesicles tsRNA levels were used in a two-stage case-control study (screened by tsRNA sequencing on Illumina NextSeq instrument and validated by qRT-PCR). The bioinformatic analysis was performed to determine the role of tsRNA in the pathogenesis of non-obstructive azoospermia. RESULTS: Two tsRNAs (tRF-Val-AAC-010: AUC = 0.96, specificity = 80%, sensitivity = 95%; tRF-Pro-AGG-003: AUC = 0.96, specificity = 87%, sensitivity = 95%) were found to have high predictive accuracy for distinguishing the origin of azoospermia. In addition, the extracellular vesicles tRF-Val-AAC-010 resulted in high predictive ability (AUC = 0.89, sensitivity = 72%, specificity = 91%, P < 0.0001) in predicting the presence of sperm in non-obstructive azoospermia undergoing mTESE. Finally, bioinformatic analysis revealed that tRF-Val-AAC-010 were involved in spermatogenesis. CONCLUSIONS: This study identified that the extracellular vesicles tRF-Val-AAC-010 and tRF-Pro-AGG-003 are biomarkers for the diagnosis of non-obstructive azoospermia, and that tRF-Val-AAC-010 as a potential non-invasive biomarker for predicting the presence of sperm in non-obstructive azoospermia testicular tissue.


Assuntos
Azoospermia , Vesículas Extracelulares , Azoospermia/diagnóstico , Azoospermia/genética , Estudos de Casos e Controles , Vesículas Extracelulares/patologia , Humanos , Masculino , Microdissecção , Estudos Retrospectivos , Sêmen , Recuperação Espermática , Espermatozoides/patologia , Testículo/patologia
18.
Cell Commun Signal ; 20(1): 68, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590368

RESUMO

BACKGROUND: As a new kind of non-coding RNAs (ncRNAs), tRNA derivatives play an important role in gastric carcinoma (GC). Nevertheless, the underlying mechanism tRNA derivatives were involved in was rarely illustrated. METHODS: We screened out the tRNA derivative, tRF-Val-CAC-016, based on the tsRNA sequencing and demonstrated the effect tRF-Val-CAC-016 exerted on GC proliferation in vitro and in vivo. We applied Dual-luciferase reporter assay, RIP assay, and bioinformatic analysis to discover the downstream target of tRF-Val-CAC-016. Then CACNA1d was selected, and the oncogenic characteristics were verified. Subsequently, we detected the possible regulation of the canonical MAPK signaling pathway to further explore the downstream mechanism of tRF-Val-CAC-016. RESULTS: As a result, we found that tRF-Val-CAC-016 was low-expressed in GC, and upregulation of tRF-Val-CAC-016 could significantly suppress the proliferation of GC cell lines. Meanwhile, tRF-Val-CAC-016 regulated the canonical MAPK signaling pathway by targeting CACNA1d. CONCLUSIONS: tRF-Val-CAC-016 modulates the transduction of CACNA1d-mediated MAPK signaling pathways to suppress the proliferation of gastric carcinoma. This study discussed the function and mechanism of tRF-Val-CAC-016 in GC for the first time. The pioneering work has contributed to our present understanding of tRNA derivative, which might provide an alternative mean for the targeted therapy of GC. Video abstract.


Assuntos
Carcinoma , Neoplasias Gástricas , Canais de Cálcio Tipo L/metabolismo , Proliferação de Células/genética , Humanos , Sistema de Sinalização das MAP Quinases , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neoplasias Gástricas/genética
19.
Cell Mol Biol Lett ; 27(1): 47, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705912

RESUMO

BACKGROUND: Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling diseases. Recently, it has been discovered that tRNA-derived small RNAs (tsRNAs), a new type of noncoding RNAs, are related to the proliferation and migration of VSMCs. tsRNAs regulate target gene expression through miRNA-like functions. This study aims to explore the potential of tsRNAs in human aortic smooth muscle cell (HASMC) proliferation. METHODS: High-throughput sequencing was performed to analyze the tsRNA expression profile of proliferative and quiescent HASMCs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the sequence results and subcellular distribution of AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076. Based on the microRNA-like functions of tsRNAs, we predicted target promoters and mRNAs and constructed tsRNA-promoter and tsRNA-mRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the function of target genes. EdU incorporation assay, Western blot, and dual-luciferase reporter gene assay were utilized to detect the effects of tsRNAs on HASMC proliferation. RESULTS: Compared with quiescent HASMCs, there were 1838 differentially expressed tsRNAs in proliferative HASMCs, including 887 with increased expression (fold change > 2, p < 0.05) and 951 with decreased expression (fold change < ½, p < 0.05). AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076 were increased in proliferative HASMCs and were mainly located in the nucleus. Bioinformatics analysis suggested that the four tsRNAs involved a variety of GO terms and pathways related to VSMC proliferation. AS-tDR-000067 promoted HASMC proliferation by suppressing p53 transcription in a promoter-targeted manner. AS-tDR-000076 accelerated HASMC proliferation by attenuating mitofusin 2 (MFN2) levels in a 3'-untranslated region (UTR)-targeted manner. CONCLUSIONS: During HASMC proliferation, the expression levels of many tsRNAs are altered. AS-tDR-000067 and AS-tDR-000076 act as new factors promoting VSMC proliferation.


Assuntos
MicroRNAs , Miócitos de Músculo Liso , Regiões 3' não Traduzidas , Aorta/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/farmacologia
20.
Cell Mol Life Sci ; 78(6): 2607-2619, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388834

RESUMO

Transfer RNA (tRNA)-derived fragments (tRFs) are an emerging class of conserved small non-coding RNAs that play important roles in post-transcriptional gene regulation. High-throughput sequencing of multiple biological samples have identified heterogeneous species of tRFs with distinct functionalities. These small RNAs have garnered a lot of scientific attention due to their ubiquitous expression and versatility in regulating various biological processes. In this review, we highlight our current understanding of tRF biogenesis and their regulatory functions. We summarize the diverse modes of biogenesis through which tRFs are generated and discuss the mechanism through which different tRF species regulate gene expression and the biological implications. Finally, we conceptualize research areas that require focus to strengthen our understanding of the biogenesis and function of tRFs.


Assuntos
Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Plantas/genética , Plantas/metabolismo , Processamento Pós-Transcricional do RNA , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Ribonucleoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA