Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Oncol ; 13: 1135456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284199

RESUMO

Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.

2.
Int J Pharm ; 624: 121911, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35700870

RESUMO

The low immunogenicity and tumor immunosuppressive microenvironment (TIM) are two major obstacles for cancer immunotherapy. Synergistically immunogenic cell death induction and tumor-associated macrophages depletion could perfectly overcome this limitation. Herein, a tumor-associated macrophage (TAMs) membrane-camouflaged pH-responsive doxorubicin (DOX) loaded hyaluronic acid (HA)-g-poly (histidine) polymeric micelles (DHP@M2) was fabricated for the first time. DHP@M2 could effectively accumulated into tumor regions via TAMs membrane mediated immune camouflage. In acidic tumor microenvironment, particle size of DHP was enlarged due to decrease hydrophobic interaction of inner core, which caused a "membrane escape effect" to expose inner HA residue. Together high expression of α4ß1 integrin, DHP@M2 could reach CD44/VCAM-1 dual-targetability to facilitate intracellular DOX accumulation for efficient ICD induction. Meanwhile, TAMs membrane could absorb colony stimulating factor 1(CSF1) through high expression of its receptor (CSF1R) on TAMs membrane to deplete TAMs in tumor tissues and relieved TIM. This strategy could efficiently induce cytotoxic T lymphocyte (CTLs) infiltration for antitumor immune response and inhibit tumor progression in 4T1 tumor bearing Balb/c mice. Therefore, DHP@M2 is suitable for cancer chemotherapy-sensitized immunotherapy.


Assuntos
Micelas , Neoplasias , Animais , Doxorrubicina/química , Doxorrubicina/farmacologia , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Fatores Imunológicos , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Polímeros/química , Microambiente Tumoral , Macrófagos Associados a Tumor
3.
Front Oncol ; 12: 1042730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713536

RESUMO

Background: Ovarian cancer is a deadly female malignancy with a high rate of recurrent and chemotherapy-resistant disease. Tumor-associated macrophages (TAMs) are a significant component of the tumor microenvironment and include high levels of M2-protumor macrophages that promote chemoresistance and metastatic spread. M2 macrophages can be converted to M1 anti-tumor macrophages, representing a novel therapeutic approach. Vesicles engineered from M1 macrophages (MEVs) are a novel method for converting M2 macrophages to M1 phenotype-like macrophages. Methods: Macrophages were isolated and cultured from human peripheral blood mononuclear cells. Macrophages were stimulated to M1 or M2 phenotypes utilizing LPS/IFN-γ and IL-4/IL-13, respectively. M1 MEVs were generated with nitrogen cavitation and ultracentrifugation. Co-culture of ovarian cancer cells with macrophages and M1 MEVs was followed by cytokine, PCR, and cell viability analysis. Murine macrophage cell line, RAW264.7 cells were cultured and used to generate M1 MEVs for use in ovarian cancer xenograft models. Results: M1 MEVs can effectively convert M2 macrophages to an M1-like state both in isolation and when co-cultured with ovarian cancer cells in vitro, resulting in a reduced ovarian cancer cell viability. Additionally, RAW264.7 M1 MEVs can localize to ovarian cancer tumor xenografts in mice. Conclusion: Human M1 MEVs can repolarize M2 macrophages to a M1 state and have anti-cancer activity against ovarian cancer cell lines. RAW264.7 M1 MEVs localize to tumor xenografts in vivo murine models.

4.
Adv Pharm Bull ; 10(4): 556-565, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33062602

RESUMO

Tumor microenvironment consists of malignant and non-malignant cells. The interaction of these dynamic and different cells is responsible for tumor progression at different levels. The non-malignant cells in TME contain cells such as tumor-associated macrophages (TAMs), cancer associated fibroblasts, pericytes, adipocytes, T cells, B cells, myeloid-derived suppressor cells (MDSCs), tumor-associated neutrophils (TANs), dendritic cells (DCs) and Vascular endothelial cells. TAMs are abundant in most human and murine cancers and their presence are associated with poor prognosis. The major event in tumor microenvironment is macrophage polarization into tumor-suppressive M1 or tumor-promoting M2 types. Although much evidence suggests that TAMS are primarily M2-like macrophages, the mechanism responsible for polarization into M1 and M2 macrophages remain unclear. TAM contributes cancer cell motility, invasion, metastases and angiogenesis. The relationship between TAM and tumor cells lead to used them as a diagnostic marker, therapeutic target and prognosis of cancer. This review presents the origin, polarization, role of TAMs in inflammation, metastasis, immune evasion and angiogenesis as well as they can be used as therapeutic target in variety of cancer cells. It is obvious that additional substantial and preclinical research is needed to support the effectiveness and applicability of this new and promising strategy for cancer treatment.

5.
Eur J Pharm Sci ; 142: 105136, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704343

RESUMO

Tumor-associated macrophages (TAMs) is a promising therapeutic target for cancer immunotherapy, while TAMs targeting therapy using nano-sized drug delivery system (NDDS) is a great challenge. To overcome these drawbacks, a novel erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle (dextran-grafted-poly (histidine) copolymer) was prepared to target deliver a selective CSF-1R inhibitor: BLZ-945 (shorten as DH@ECm) to TAMs for TAMs depletion. The prepared DH@ECm possessed favorable particle size (~190 nm) preferable immune camouflage and tumor homologies targeting characteristic when it was intravenously administrated into blood system. In tumor acidic microenvironment, DH@ECm possessed pH-responsive characteristic and unique "membrane escape effect" to facilitate recognition and internalization by TAMs via dextran-CD206 receptor specific interaction (about 3.9 fold than free drug), followed by TAMs depletion in vitro. For in vivo studies, DH@ECm could reverse tumor immune-microenvironment with the elevation of CD8+ T cells and possess sufficient tumor immunotherapy (inhibition rate: 64.5%). All the in vitro and in vivo studies demonstrated the therapeutical potential of DH@ECm for tumor immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/terapia , Membrana Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Polímeros/química , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Dextranos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Nanopartículas/química , Tamanho da Partícula , Microambiente Tumoral/efeitos dos fármacos
6.
J Clin Neurosci ; 67: 198-203, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31213381

RESUMO

OBJECTIVES: It is difficult to treat cavernous sinus (CS) meningiomas because of their complex vascular and neurological structures. Recently, immunotherapy has become an attractive therapeutic modality, but the role of tumor immune microenvironment is yet to be investigated for CS meningiomas. In the current study, these molecular and histopathological characteristics were examined in CS meningiomas. METHODS: The present study used twenty-eight meningioma tissues arising in two different locations (8 CS and 20 convexity meningiomas). Immunohistochemical analyses were performed with CD3, CD4, CD8, Foxp3, CD163, PDGFR-ß, VEGF receptors 1 & 2 (VEGFR-1, VEGFR-2), VEGF-A and HIF-1α. Quantitative polymerase chain reaction (qPCR) was performed to assess the expression of Foxp3, VEGF-A, CD163, VEGFRs-1 & 2 and HIF-1α. RESULTS: The numbers of different tumor-infiltrating immune cells, such as immunosuppressive cells, were significantly lower in CS meningiomas compared with convexity meningiomas. Analysis of the vascular characteristics showed the vessels in the CS meningiomas were covered with PDGFR-ß-positive pericytes and were negative or had only very low amounts of VEGFR-1 and VEGFR-2. However, most vessels in convexity meningiomas showed high VEGFRs expression and were not covered with pericytes. Immunohistochemical and qPCR analyses revealed that the expression of HIF-1α, VEGF-A and VEGFRs-1 & 2 was lower in CS meningiomas. CONCLUSION: Fewer immunocompetent cells were observed in CS meningiomas compared with convexity meningiomas. Lower expression of VEGF-A, VEGFRs-1 and 2, and the vascular structure may contribute to this specific immune microenvironment.


Assuntos
Neoplasias Meníngeas/imunologia , Neoplasias Meníngeas/patologia , Meningioma/imunologia , Meningioma/patologia , Neovascularização Patológica/patologia , Seio Cavernoso/patologia , Humanos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA