RESUMO
During the translation surveillance mechanism known as ribosome-associated quality control, the ASC-1 complex (ASCC) disassembles ribosomes stalled on the mRNA. Here, we show that there are two distinct classes of stalled ribosome. Ribosomes stalled by translation elongation inhibitors or methylated mRNA are short lived in human cells because they are split by the ASCC. In contrast, although ultraviolet light and 4-nitroquinoline 1-oxide induce ribosome stalling by damaging mRNA, and the ASCC is recruited to these stalled ribosomes, we found that they are refractory to the ASCC. Consequently, unresolved UV- and 4NQO-stalled ribosomes persist in human cells. We show that ribosome stalling activates cell-cycle arrest, partly through ZAK-p38MAPK signaling, and that this cell-cycle delay is prolonged when the ASCC cannot resolve stalled ribosomes. Thus, we propose that the sensitivity of stalled ribosomes to the ASCC influences the kinetics of stall resolution, which in turn controls the adaptive stress response.
Assuntos
Dano ao DNA , Ribossomos , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismoRESUMO
Somatic mutations in DNA-binding sites for CCCTC-binding factor (CTCF) are significantly elevated in many cancers. Prior analysis has suggested that elevated mutation rates at CTCF-binding sites in skin cancers are a consequence of the CTCF-cohesin complex inhibiting repair of UV damage. Here, we show that CTCF binding modulates the formation of UV damage to induce mutation hot spots. Analysis of genome-wide CPD-seq data in UV-irradiated human cells indicates that formation of UV-induced cyclobutane pyrimidine dimers (CPDs) is primarily suppressed by CTCF binding but elevated at specific locations within the CTCF motif. Locations of CPD hot spots in the CTCF-binding motif coincide with mutation hot spots in melanoma. A similar pattern of damage formation is observed at CTCF-binding sites in vitro, indicating that UV damage modulation is a direct consequence of CTCF binding. We show that CTCF interacts with binding sites containing UV damage and inhibits repair by a model repair enzyme in vitro. Structural analysis and molecular dynamic simulations reveal the molecular mechanism for how CTCF binding modulates CPD formation.
Assuntos
Fator de Ligação a CCCTC/química , Reparo do DNA , Melanoma/genética , Proteínas Serina-Treonina Quinases/química , Dímeros de Pirimidina/efeitos da radiação , Neoplasias Cutâneas/genética , Sítios de Ligação , Ligação Competitiva , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Expressão Gênica , Humanos , Melanoma/metabolismo , Melanoma/patologia , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dímeros de Pirimidina/biossíntese , Dímeros de Pirimidina/química , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Raios UltravioletaRESUMO
Persistent luminescent nanoparticles (PLNPs) are promising for many bioapplications due to their unique afterglow luminescence following the stoppage of light excitation. However, PLNPs are prone to surface quenching that results in weak afterglow luminescence. Although some efforts have been made to reduce surface quenching through designing homogeneous core-shell PLNPs, the enhancement in afterglow luminescence was insignificant. We hypothesize that the independent absorption and emission of the shell caused less energy to reach the activator ions in the core. Hence, a heterogeneous core-shell PLNP where the shell has a higher band gap than the core would reduce the absorption and emission of the shell. In this work, ZnGa2O4 and Zn2GeO4 were coated on Zn1.2Ga1.6Ge0.2O4:Cr and Zn3Ga2Ge2O10:Eu nanocrystals, respectively, to form heterogeneous core-shell PLNPs and significant luminescence enhancement was achieved compared to their traditional homogeneous core-shell nanostructures.
RESUMO
Though the exact causes of systemic lupus erythematosus (SLE) remain unknown, exposure to ultraviolet (UV) light is one of the few well-known triggers of cutaneous inflammation in SLE. However, the precise cell types which contribute to the early cutaneous inflammatory response in lupus, and the ways that UV dosing and interferons modulate these findings, have not been thoroughly dissected. Here, we explore these questions using the NZM2328 spontaneous murine model of lupus. In addition, we use iNZM mice, which share the NZM2328 background but harbor a whole-body knockout of the type I interferon (IFN) receptor, and wild-type BALB/c mice. 10-13-week-old female mice of each strain were treated with acute (300 mJ/cm2 x1), chronic (100 mJ/cm2 daily x5 days), or no UVB, and skin was harvested and processed for bulk RNA sequencing and flow cytometry. We identify that inflammatory pathways and gene signatures related to myeloid cells - namely neutrophils and monocyte-derived dendritic cells - are a shared feature of the acute and chronic UVB response in NZM skin greater than iNZM and wild-type skin. We also verify recruitment and activation of these cells by flow cytometry in both acutely and chronically irradiated NZM and WT mice and demonstrate that these processes are dependent on type I IFN signaling. Taken together, these data indicate a skewed IFN-driven inflammatory response to both acute and chronic UVB exposure in lupus-prone skin dominated by myeloid cells, suggesting both the importance of type I IFNs and myeloid cells as therapeutic targets for photosensitive patients and highlighting the risks of even moderate UV exposure in this patient population.
RESUMO
Accumulation studies have found that adipose-derived stem cell (ADSC) exosomes have anti-oxidant and anti-inflammatory characteristics. The current study verified their therapeutic potential to elucidate mechanisms of ADSC exosome actions in ultraviolet B (UVB) light-induced skin injury. Exosomes were isolated from ADSCs and hypoxic pretreated ADSCs. Next-generation sequencing (NGS) was applied to characterize differential mRNA expression. A UV-induced mice skin injury model was generated to investigate therapeutic effects regarding the exosomes via immunofluorescence and ELISA analysis. Regulatory mechanisms were illustrated using luciferase report analysis and in vitro experiments. The results demonstrated that exosomes from hypoxic pretreated ADSCs (HExos) inhibited UVB light-induced vascular injury by reversing reactive oxygen species, inflammatory factor expression and excessive collagen degradation. NGS showed that HExos inhibits UV-induced skin damage via GLRX5 delivery, while GLRX5 downregulation inhibited the therapeutic effect of HExos on UV-induced skin damage. GLRX5 upregulation increased the protective Exo effect on UV-induced skin and EPC damage by inhibiting ferroptosis, inflammatory cytokine expression and excessive collagen degradation. Therefore, the data indicate that HExos attenuate UV light-induced skin injury via GLRX5 delivery and ferroptosis inhibition.
Assuntos
Exossomos , Ferroptose , Células-Tronco Mesenquimais , Animais , Camundongos , Colágeno , Modelos Animais de Doenças , Exossomos/genética , Exossomos/metabolismo , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Raios UltravioletaRESUMO
BACKGROUND: Psoralen + ultraviolet-A (PUVA) is associated with photocarcinogenesis. However, carcinogenic risk with other ultraviolet phototherapies remains unclear. OBJECTIVE: Evaluate whether phototherapy without psoralens increases skin cancer risk. METHODS: Retrospective cohort study of patients treated at a teaching-hospital phototherapy center (1977-2018). Skin cancer records were validated against pathology reports. Age-standardized incidence rates (ASIRs) of skin cancer were evaluated for gender, skin phototype, diagnosis, ultraviolet modality, anatomical site; and compared to provincial population incidence rates (2003). RESULTS: In total, 3506 patients treated with broadband-ultraviolet-B, narrowband-UVB and/or combined UVAB were assessed with a mean follow-up of 7.3 years. Majority of patients had psoriasis (60.9%) or eczema (26.4%). Median number of treatments was 43 (1-3598). Overall, 170 skin cancers (17 melanoma, 33 squamous cell carcinoma and 120 basal cell carcinoma) occurred in 79 patients. Patient-based and tumor-based ASIR of skin cancer was 149 (95% CI: 112-187)/100,000 and 264 (219-309)/100,000 person-years, respectively. There was no significant difference between tumor-based ASIRs for melanoma, squamous cell carcinoma, and basal cell carcinoma compared to the general population; or in phototherapy patients with-psoriasis or eczema; or immunosuppressants. No cumulative dose-response correlation between UVB and skin cancer was seen. LIMITATIONS: Treatment and follow-up duration. CONCLUSION: No increased risk of melanoma and keratinocyte cancer was found with phototherapy.
Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Eczema , Furocumarinas , Melanoma , Psoríase , Neoplasias Cutâneas , Terapia Ultravioleta , Humanos , Incidência , Melanoma/etiologia , Melanoma/complicações , Estudos Retrospectivos , Terapia Ultravioleta/efeitos adversos , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia , Fototerapia/efeitos adversos , Psoríase/complicações , Carcinoma Basocelular/etiologia , Carcinoma Basocelular/complicações , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/complicações , Eczema/complicaçõesRESUMO
As our knowledge of the harmful effects of ultraviolet radiation continues to evolve, sunscreen remains an integral part of a comprehensive photoprotection strategy against multiple endpoints of ultraviolet-mediated damage. Part 1 of this review covers sunscreen active and additive ingredient properties, mechanisms of action and gaps in coverage. Following an overview of sunscreen's efficacy in protecting against sunburn, photocarcinogenesis, photoaging, pigmentary disorders, and idiopathic photodermatoses, we highlight considerations for product use and selection in children and individuals with skin of color.
RESUMO
Megalurothrips usitatus Bagnall, an important pest of bean plants, is primarily managed with synthetic insecticides. M. usitatus has developed considerable resistance to various insecticides in multiple cowpea-growing areas in Hainan Province, China, posing challenges to its control in the field. Light control technology is a potentially effective physical control method for M. usitatus. The vision of thrips is highly sensitive to UV light, whereas other biological characteristics remain unknown. Therefore, this study evaluated the effects of ultraviolet light on the biological characteristics of M. usitatus. Results showed that the egg, larval, and pupal stages of M. usitatus were significantly shortened, and the emergence rate (79.59%) and adult survival rate (77.95%) were reduced under a devoid of UV light environment (UV-), compared with the full-spectrum light (control treatment group, CK) (p < 0.05). However, the single spawning quantity and total amount of spawning were significantly higher, and the sex ratio (57%) was the highest under UV- (p < 0.05). Single UV light (UV+) only affected the pupation rate. Also, the antioxidant enzymes, polyphenol oxidase, superoxide dismutase (SOD), and peroxidase activities were significantly and negatively correlated with the progression of generations under UV-, whereas catalase and SOD activities were significantly and positively correlated with the progression of generations under UV+. The UV- light conditions significantly interfered with the behavior selection of M. usitatus. The results of this study showed that the adaptability of M. usitatus populations would be greatly reduced in the absence of ultraviolet light, providing a theoretical basis for the control of M. usitatus populations.
Assuntos
Tisanópteros , Raios Ultravioleta , Animais , Tisanópteros/fisiologia , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Feminino , Pupa/efeitos da radiação , Pupa/crescimento & desenvolvimento , Masculino , Adaptação FisiológicaRESUMO
Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.
Assuntos
Avena , Germinação , Sementes , Raios Ultravioleta , Avena/efeitos dos fármacos , Avena/efeitos da radiação , Avena/crescimento & desenvolvimento , Sementes/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Estresse Salino/efeitos dos fármacos , Plântula/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Cloreto de SódioRESUMO
Aluminum (Al) may be beneficial to crops, but in excess becomes detrimental to the germination and initial development of seedlings. The main determining indicators are the type of crop and exposure duration. The aim of this study was to examine the influence of Al and of UV-C light on the germination and initial growth of white oats. Seeds were sown on germitest paper in a solution of 100, 200, 300, 400, or 500 mg/L of aluminum chloride and kept in a germination chamber at 20°C for a 12-hr photoperiod. Germination and seedling growth parameters were determined after 5 and 10 days. The seeds were also exposed to two doses of UV-C (0.85 and 3.42 kJ m-2) under aluminum chloride stress (200 mg/L). Data demonstrated that treatment with aluminum chloride significantly decrease in germination at 200 mg/L and total seedling length at 100 mg/L. Exposure of seeds to UV-C light under excess Al (200 mg/L) did not show a significant effect on germination and growth compared to control (non-irradiated). Results indicated that exposure to high concentration of Al in the medium adversely altered germination and initial growth of white oat seedlings. Although UV-C light alone was not detrimental to the germination process, treatment with UV-C light also failed to mitigate the toxic effects of Al.
Assuntos
Alumínio , Avena , Germinação , Plântula , Sementes , Raios Ultravioleta , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Avena/crescimento & desenvolvimento , Avena/efeitos dos fármacos , Avena/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Sementes/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/efeitos da radiação , Alumínio/toxicidade , Cloreto de Alumínio/toxicidadeRESUMO
Germicidal UV light (UV-C) has been shown to effectively suppress several plant pathogens as well as some arthropod pests. Recent reports describe the efficacy of nighttime applications of UV-C at doses from 100 to 200 J/m2 in vineyards to reduce grape powdery mildew (Erysiphe necator). Our in vitro studies confirmed the efficacy of UV-C to inhibit germination of E. necator and Botrytis cinerea conidia, demonstrated a range of tolerances to UV-C within a collection of E. necator isolates, and showed growth stage-specific effects of UV-C on B. cinerea. Nighttime use of UV-C was evaluated at 48 to 96 J/m2 in small plot trials (<1,000 vines) from 2020 to 2023. Once- or twice-weekly UV-C applications significantly reduced the incidence of foliar powdery mildew compared with non-UV-C-treated controls (P < 0.02). Suppression of powdery mildew on fruit was less consistent, where once or twice weekly UV-C exposure reduced powdery mildew disease severity in 2020 (P = 0.04), 2021 (P = 0.02), and 2023 (P = 0.003) but less so in 2022 (P = 0.07). Bunch rot severity was not significantly reduced with UV-C treatment in any year of the study. Application of UV-C until the onset of fruit color change (veraison) also had a minimal effect on the fruit-soluble solids, pH, anthocyanins, or phenolics in harvested fruit at any UV-C dose or frequency (P > 0.10). Suppression of powdery mildew by nighttime application of UV-C at lower doses in small plots suggests that such treatments merit further evaluation in larger-scale studies in Western Oregon.
Assuntos
Ascomicetos , Botrytis , Doenças das Plantas , Raios Ultravioleta , Vitis , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Vitis/microbiologia , Vitis/efeitos da radiação , Botrytis/efeitos da radiação , Botrytis/fisiologia , Ascomicetos/fisiologia , Ascomicetos/efeitos da radiação , Oregon , Esporos Fúngicos/efeitos da radiação , Esporos Fúngicos/fisiologiaRESUMO
Cutaneous field cancerization (CFC) refers to a skin region containing mutated cells' clones, predominantly arising from chronic exposure to ultraviolet radiation (UVR), which exhibits an elevated risk of developing precancerous and neoplastic lesions. Despite extensive research, many molecular aspects of CFC still need to be better understood. In this study, we conducted ex vivo assessment of cell differentiation, oxidative stress, inflammation, and DNA damage in CFC samples. We collected perilesional skin from 41 patients with skin cancer and non-photoexposed skin from 25 healthy control individuals. These biopsies were either paraffin-embedded for indirect immunofluorescence and immunohistochemistry stain or processed for proteins and mRNA extraction from the epidermidis. Our findings indicate a downregulation of p53 expression and an upregulation of Ki67 and p16 in CFC tissues. Additionally, there were alterations in keratinocyte differentiation markers, disrupted cell differentiation, increased expression of iNOS and proinflammatory cytokines IL-6 and IL-8, along with evidence of oxidative DNA damage. Collectively, our results suggest that despite its outwardly normal appearance, CFC tissue shows early signs of DNA damage, an active inflammatory state, oxidative stress, abnormal cell proliferation and differentiation.
Assuntos
Diferenciação Celular , Dano ao DNA , Inflamação , Estresse Oxidativo , Neoplasias Cutâneas , Raios Ultravioleta , Humanos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Raios Ultravioleta/efeitos adversos , Idoso , Queratinócitos/metabolismo , Queratinócitos/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Adulto , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Interleucina-6/metabolismo , Interleucina-6/genéticaRESUMO
Mammalian melanin is produced in melanocytes and accumulated in melanosomes. Melanogenesis is supported by many factors derived from the surrounding tissue environment, such as the epidermis, dermis, and subcutaneous tissue, in addition to numerous melanogenesis-related genes. The roles of these genes have been fully investigated and the molecular analysis has been performed. Moreover, the role of paracrine factors derived from epidermis has also been studied. However, the role of dermis has not been fully studied. Thus, in this review, dermis-derived factors including soluble and insoluble components were overviewed and discussed in normal and abnormal circumstances. Dermal factors play an important role in the regulation of melanogenesis in the normal and abnormal mammalian skin.
Assuntos
Melaninas , Melanócitos , Melaninas/metabolismo , Melanócitos/metabolismo , Humanos , Animais , Pele/metabolismo , Derme/metabolismo , Epiderme/metabolismo , MelanogêneseRESUMO
Indoor farming systems enable plant production in precisely controlled environments. However, implementing stable growth conditions and the absence of stress stimulants can weaken plants' defense responses and limit the accumulation of bioactive, health-beneficial phytochemicals. A potential solution is the controlled application of stressors, such as supplemental ultraviolet (UV) light. To this end, we analyzed the efficiency of short-term pre-harvest supplementation of the red-green-blue (RGB, LED) spectrum with ultraviolet B (UV-B) or C (UV-C) light to boost phytochemical synthesis. Additionally, given the biological harm of UV radiation due to high-energy photons, we monitored plants' photosynthetic activity during treatment and their morphology as well as sensory attributes after the treatment. Our analyses showed that UV-B radiation did not negatively impact photosynthetic activity while significantly increasing the overall antioxidant potential of lettuce through enhanced levels of secondary metabolites (total phenolics, flavonoids, anthocyanins), carotenoids, and ascorbic acid. On the contrary, UV-C radiation-induced anthocyanin accumulation in the green leaf cultivar significantly harmed the photosynthetic apparatus and limited plant growth. Taken together, we showed that short-term UV-B light supplementation is an efficient method for lettuce biofortification with healthy phytochemicals, while UV-C treatment is not recommended due to the negative impact on the quality (morphology, sensory properties) of the obtained leafy products. These results are crucial for understanding the potential of UV light supplementation for producing functional plants.
Assuntos
Antioxidantes , Lactuca , Fotossíntese , Raios Ultravioleta , Lactuca/metabolismo , Lactuca/efeitos da radiação , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Flavonoides/metabolismo , Compostos Fitoquímicos/metabolismo , Carotenoides/metabolismo , Antocianinas/metabolismo , Ácido Ascórbico/metabolismo , Fenóis/metabolismoRESUMO
Indoor air, especially with suspended particulate matter (PM), can be a carrier of airborne infectious pathogens. Without sufficient ventilation, airborne infectious diseases can be transmitted from one person to another. Indoor air quality (IAQ) significantly impacts people's daily lives as people spend 90% of their time indoors. An industrial-grade air cleaner prototype (filtration + ultraviolet light) was previously upgraded to clean indoor air to improve IAQ on two metrics: particulate matter (PM) and viable airborne bacteria. Previous experiments were conducted to test its removal efficiency on PM and airborne bacteria between the inlet and treated air. However, the longer-term improvement on IAQ would be more informative. Therefore, this research focused on quantifying longer-term improvement in a testing environment (poultry facility) loaded with high and variable PM and airborne bacteria concentrations. A 25-day experiment was conducted to treat indoor air using an air cleaner prototype with intermittent ON and OFF days in which PM and viable airborne bacteria were measured to quantify the treatment effect. The results showed an average of 55% reduction of total suspended particulate (TSP) concentration between OFF days (110 µg/m3) and ON days (49 µg/m3). An average of 47% reduction of total airborne viable bacteria concentrations was achieved between OFF days (â¼3200 CFU/m3) and ON days (â¼2000 CFU/m3). A cross-validation (CV) model was established to predict PM concentrations with five input variables, including the status of the air cleaner, time (h), ambient temperature, indoor relative humidity, and day of the week to help simulate the air-cleaning effect of this prototype. The model can approximately predict the air quality trend, and future improvements may be made to improve its accuracy.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Raios Ultravioleta , Melhoria de Qualidade , Bactérias , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Tamanho da PartículaRESUMO
To provide guidance to medical providers, wilderness users, and travelers, the Wilderness Medical Society convened an expert panel to develop evidence-based guidelines for treating water in situations where the potability of available water is not assured, including wilderness and international travel, areas impacted by disaster, and other areas without adequate sanitation. The guidelines present the available methods for reducing or eliminating microbiological contamination of water for individuals, groups, or households; evaluation of their effectiveness; and practical considerations. The evidence base includes both laboratory and clinical publications. The panel graded the recommendations based on the quality of supporting evidence and the balance between benefits and risks/burdens according to the criteria published by the American College of Chest Physicians.
Assuntos
Desastres , Medicina Selvagem , Humanos , Sociedades MédicasRESUMO
Acetamiprid is a novel nicotinic pesticide widely used in modern agriculture because of its low toxicity and specific biological target properties. The objective of this study was to understand the photolysis pattern of acetamiprid in the water column and elucidate its degradation products and mechanism. It was observed that acetamiprid exhibited different photolysis rates under different light source conditions in pure water, with ultraviolet > fluorescence > sunlight; furthermore, its photolysis half-life ranged from 17.3 to 28.6 h. In addition, alkaline conditions (pH 9.0) accelerated its photolysis rate, which increased with pH. Using gas chromatography-mass spectrometry, five direct photolysis products generated during the exposure of acetamiprid to pure water were successfully separated and identified. The molecular structure of acetamiprid was further analyzed using density functional theory, and the active photodegradation sites of acetamiprid were predicted. The mechanism of the photolytic transformation of acetamiprid in water was mainly related to hydroxyl substitution and oxidation. Based on these findings, a comprehensive transformation pathway for acetamiprid was proposed.
Assuntos
Neonicotinoides , Praguicidas , Nicotina , Agricultura , ÁguaRESUMO
Introduction: Melanoma, a malignant tumor arising from uncontrolled melanocytic proliferation, commonly found in the skin but capable of affecting extracutaneous sites, ranks fifth among diagnosed oncological entities and is a significant cause of cancer deaths, constituting over 80% of skin cancer mortality. Genetic factors and ultraviolet radiation (UVR) exposure, from both natural and artificial sources, are the primary risk factors. Case Presentation: We reported the case of a 25-year-old female with numerous pigmented nevi and notable changes attributed to extensive indoor tanning sessions. Dermatological examinations and dermoscopic evaluations revealed atypical features in two pigmented nevi, leading to surgical excision. Histopathological and immunohistochemical analyses confirmed a compound nevus in one lesion and superficial spreading melanoma in the other, emphasizing the importance of vigilant follow-up and the correct use of immunohistochemistry. Discussion: Indoor tanning significantly elevates the cutaneous melanoma risk, with initiation before age 35 amplifying the risk by up to 75%, especially in young women. The risk escalates with cumulative sessions, particularly exceeding 480, and individuals undergoing over 30 sessions face a 32% higher risk. UVR induces DNA damage, genetic mutations, and immunosuppression, contributing to oncogenesis. Genetic factors, like the PTCHD2 gene, may influence the tanning dependency. Legislation targeting minors has been enacted globally but only with partial efficacy. Tanning accelerators, though associated with minor side effects, correlate with high-risk behaviors. The case underscores the urgency of addressing indoor tanning risks, emphasizing targeted awareness efforts and legislative improvements. Conclusions: In conclusion, the reported case highlights the increased risk of cutaneous melanoma linked to indoor tanning, particularly among young women and specific sociodemographic groups. Despite legislative measures, challenges persist, suggesting the potential efficacy of online campaigns involving relatable influencers to raise awareness and discourage artificial tanning.
Assuntos
Melanoma , Nevo Pigmentado , Neoplasias Cutâneas , Feminino , Humanos , Adulto , Melanoma/etiologia , Melanoma/patologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Raios Ultravioleta/efeitos adversos , Pele/patologia , Nevo Pigmentado/complicaçõesRESUMO
OBJECTIVE: To analyze the effects and tolerability of physiotherapeutic methods with optical radiation (phototherapy) in acute respiratory diseases (ARD) on the basis of the modern scientific literature data and the results of doctors and patients survey. MATERIAL AND METHODS: An analysis of regulatory sources and modern scientific literature on the subject of research, survey of 200 patients with ARD and 100 primary care physicians of the Central Federal District on their sociomedical status and awareness of phototherapeutic treatment methods were conducted. RESULTS: Phototherapy in ARD have demonstrated chromogenic, immunostimulating, photosensitizing, vitamin-forming, trophostimulating, anti-inflammatory, analgesic, desensitizing, bactericidal and mycocidal, metabolic, coagulo-correcting therapeutic effects. Patients and doctors have been insufficiently aware of phototherapy methods and used them in practice relatively rare. A significant proportion of patients had ARD risk factors, namely teamwork, tobacco smoking and chronic diseases. CONCLUSION: 1. The therapeutic effects of all types of phototherapy in acute respiratory infections are interrelated with their etiopathogenesis. 2. Patients and doctors are insufficiently informed and relatively rarely use phototherapy methods. 3. A significant proportion of patients have risk factors for acute respiratory infections: teamwork (88%), tobacco smoking (68%) and chronic diseases (52%).
Assuntos
Fototerapia , Humanos , Fototerapia/métodos , Doença Aguda , Masculino , Feminino , Adulto , Doenças Respiratórias/terapia , Infecções Respiratórias/terapia , Pessoa de Meia-IdadeRESUMO
Recently, embedding organic phosphors into the polyvinyl alcohol (PVA) matrix has emerged as a convenient strategy to obtain efficient long-lived room temperature phosphorescence (RTP) via forming strong intermolecular hydrogen bonds with organic phosphors to minimize nonradiative relaxations. Regrettably, it is discovered that PVA is unable to trigger RTP emission when a novel functional phosphor THBE containing six extended biphenyl formaldehyde arms is doped into PVA matrix. Surprisingly, the excellent long-lived RTP emission can be easily obtained by doping THBE into PVA analogs, poly(vinyl alcohol-co-ethylene) (PVA-co-PE). The unique visualization growth process (i.e., white streak generation) of long-lived RTP is observed by UV light-driven aggregation of functional molecules THBE in PVA-co-PE matrix. The phosphorescent intensity of the luminescent film is enhanced by 55 times, from 729 to 40,785 a.u., and its phosphorescence lifetime is increased by 38 times, from 37.08 to 1415.41 ms. Due to the dynamically reversible RTP performance, as well as the permeability, flexibility, and wrinkle-free properties of the luminescent film, it can be utilized to create cutting-edge information storage devices.