Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.182
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 103(3): 1789-1826, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787480

RESUMO

Solar ultraviolet-B (UV-B) radiation has played a crucial role in the evolution of life on Earth, and potential changes in its levels could affect the health and functionality of humans and the ecosystems. UV exposure presents both risks and benefits to humans. However, optimal UV-B radiation exposure depends on several environmental and physiological factors and cannot be easily determined. The present document provides a review of the current state of knowledge relative to the effects of UV-B radiation on human health. A brief description of the physical mechanisms that control the levels of solar UV-B radiation at the Earth's surface is provided, with special emphasis on the role of ozone and the importance of the Montreal Protocol. A comprehensive review of studies reporting current trends in levels of surface solar UV-B radiation and projections of future levels reveals the dominant role of climatic changes in the long-term variability of UV-B radiation and its impact on the development of melanomas as well as eye disorders. The review provides strong evidence that despite the success of the Montreal Protocol and the expected ozone recovery, the future evolution of the levels of solar UV-B radiation at the Earth's surface is not certain.


Assuntos
Ecossistema , Ozônio , Humanos , Raios Ultravioleta/efeitos adversos , Doses de Radiação
2.
Proc Natl Acad Sci U S A ; 121(14): e2308374121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38489380

RESUMO

Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.


Assuntos
Pele , Raios Ultravioleta , Sistema Imunitário , Encéfalo , Sistemas Neurossecretores
3.
Bioessays ; : e2400135, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39233509

RESUMO

Melanomas arise from transformed melanocytes, positioned at the dermal-epidermal junction in the basal layer of the epidermis. Melanocytes are completely surrounded by keratinocyte neighbors, with which they communicate through direct contact and paracrine signaling to maintain normal growth control and homeostasis. UV radiation from sunlight reshapes this communication network to drive a protective tanning response. However, repeated rounds of sun exposure result in accumulation of mutations in melanocytes that have been considered as primary drivers of melanoma initiation and progression. It is now clear that mutations in melanocytes are not sufficient to drive tumor formation-the tumor environment plays a critical role. This review focuses on changes in melanocyte-keratinocyte communication that contribute to melanoma initiation and progression, with a particular focus on recent mechanistic insights that lay a foundation for developing new ways to intercept melanoma development.

4.
Curr Issues Mol Biol ; 46(3): 1924-1942, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534742

RESUMO

Ultraviolet (UV) radiation plays a crucial role in the development of melanoma and non-melanoma skin cancers. The types of UV radiation are differentiated by wavelength: UVA (315 to 400 nm), UVB (280 to 320 nm), and UVC (100 to 280 nm). UV radiation can cause direct DNA damage in the forms of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). In addition, UV radiation can also cause DNA damage indirectly through photosensitization reactions caused by reactive oxygen species (ROS), which manifest as 8-hydroxy-2'-deoxyguanine (8-OHdG). Both direct and indirect DNA damage can lead to mutations in genes that promote the development of skin cancers. The development of melanoma is largely influenced by the signaling of the melanocortin one receptor (MC1R), which plays an essential role in the synthesis of melanin in the skin. UV-induced mutations in the BRAF and NRAS genes are also significant risk factors in melanoma development. UV radiation plays a significant role in basal cell carcinoma (BCC) development by causing mutations in the Hedgehog (Hh) pathway, which dysregulates cell proliferation and survival. UV radiation can also induce the development of squamous cell carcinoma via mutations in the TP53 gene and upregulation of MMPs in the stroma layer of the skin.

5.
Am J Hum Genet ; 108(9): 1611-1630, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34343493

RESUMO

Genome-wide association studies (GWASs) have identified a melanoma-associated locus on chromosome band 7p21.1 with rs117132860 as the lead SNP and a secondary independent signal marked by rs73069846. rs117132860 is also associated with tanning ability and cutaneous squamous cell carcinoma (cSCC). Because ultraviolet radiation (UVR) is a key environmental exposure for all three traits, we investigated the mechanisms by which this locus contributes to melanoma risk, focusing on cellular response to UVR. Fine-mapping of melanoma GWASs identified four independent sets of candidate causal variants. A GWAS region-focused Capture-C study of primary melanocytes identified physical interactions between two causal sets and the promoter of the aryl hydrocarbon receptor (AHR). Subsequent chromatin state annotation, eQTL, and luciferase assays identified rs117132860 as a functional variant and reinforced AHR as a likely causal gene. Because AHR plays critical roles in cellular response to dioxin and UVR, we explored links between this SNP and AHR expression after both 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and ultraviolet B (UVB) exposure. Allele-specific AHR binding to rs117132860-G was enhanced following both, consistent with predicted weakened AHR binding to the risk/poor-tanning rs117132860-A allele, and allele-preferential AHR expression driven from the protective rs117132860-G allele was observed following UVB exposure. Small deletions surrounding rs117132860 introduced via CRISPR abrogates AHR binding, reduces melanocyte cell growth, and prolongs growth arrest following UVB exposure. These data suggest AHR is a melanoma susceptibility gene at the 7p21.1 risk locus and rs117132860 is a functional variant within a UVB-responsive element, leading to allelic AHR expression and altering melanocyte growth phenotypes upon exposure.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Escamosas/genética , Cromossomos Humanos Par 7 , Loci Gênicos , Melanócitos/metabolismo , Melanoma/genética , Receptores de Hidrocarboneto Arílico/genética , Neoplasias Cutâneas/genética , Alelos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/patologia , Melanócitos/efeitos da radiação , Melanoma/metabolismo , Melanoma/patologia , Dibenzodioxinas Policloradas/toxicidade , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Regiões Promotoras Genéticas , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Banho de Sol , Raios Ultravioleta/efeitos adversos
6.
Toxicol Appl Pharmacol ; 482: 116773, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036231

RESUMO

Changes in gene expression underlie many pathogenic endpoints including carcinogenesis. Metals, like arsenic, alter gene expression; however, the consequences of co-exposures of metals with other stressors are less understood. Although arsenic acts as a co-carcinogen by enhancing the development of UVR skin cancers, changes in gene expression in arsenic UVR co-carcinogenesis have not been investigated. We performed RNA-sequencing analysis to profile changes in gene expression distinct from arsenic or UVR exposures alone. A large number of differentially expressed genes (DEGs) were identified after arsenic exposure alone, while after UVR exposure alone fewer genes were changed. A distinct increase in the number of DEGs was identified after exposure to combined arsenic and UVR exposure that was synergistic rather than additive. In addition, a majority of these DEGs were unique from arsenic or UVR alone suggesting a distinct response to combined arsenic-UVR exposure. Globally, arsenic alone and arsenic plus UVR exposure caused a global downregulation of genes while fewer genes were upregulated. Gene Ontology analysis using the DEGs revealed cellular processes related to chromosome instability, cell cycle, cellular transformation, and signaling were targeted by combined arsenic and UVR exposure, distinct from UVR alone and arsenic alone, while others were related to epigenetic mechanisms such as the modification of histones. This result suggests the cellular functions we identified in this study may be key in understanding how arsenic enhances UVR carcinogenesis and that arsenic-enhanced gene expression changes may drive co-carcinogenesis of UVR exposure.


Assuntos
Arsênio , Neoplasias Cutâneas , Humanos , Arsênio/toxicidade , Transcriptoma , Raios Ultravioleta/efeitos adversos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Carcinogênese
7.
Exp Dermatol ; 33(3): e15034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459631

RESUMO

Polymorphic light eruption (PLE) has been mechanistically linked to cytokine abnormalities. Emerging preclinical evidence posits the skin microbiome as a critical modulator of ultraviolet (UV)-induced cytokine expression, thereby influencing subsequent immune responses. This intricate relationship remains underexplored in the context of PLE. Hence, we investigated the differential responses between disinfected and non-disinfected skin following both single and repetitive exposures to solar-simulated UV radiation in patients with PLE. An experimental, half-body pilot study was conducted involving six PLE patients and 15 healthy controls. Participants' skin was exposed to single and multiple doses of solar-simulated UV radiation, both in disinfected and in non-disinfected skin areas. The co-primary outcomes were PLE score and cytokine expression in blister fluid analysed through OLINK proteomic profiling. Secondary outcomes were erythema, pigmentation, induction of apoptotic cells in vacuum-generated suction blisters, and density of infiltrate in skin biopsies of PLE patients. Among the 71 cytokines analysed, baseline expression levels of 20 specific cytokines-integral to processes such as apoptosis, inflammation, immune cell recruitment, cellular growth, and differentiation-were significantly impaired in PLE patients compared with healthy controls. Notably, skin disinfection reversed the observed cytokine imbalances following a single UV exposure at the minimal erythema dose (MED) level and exhibited even more pronounced effects after multiple UV exposures. However, no significant differences were evident in PLE score, erythema, pigmentation, or rates of apoptotic cell induction upon UV radiation. These findings provide evidence for UV-driven cytokine regulation by the skin microbiota and imply microbiome involvement in the PLE immune response.


Assuntos
Dermatite de Contato , Transtornos de Fotossensibilidade , Humanos , Transtornos de Fotossensibilidade/metabolismo , Projetos Piloto , Proteômica , Pele/patologia , Raios Ultravioleta , Citocinas , Eritema
8.
Exp Eye Res ; 243: 109900, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636803

RESUMO

A pterygium is a wedge-shaped fibrovascular growth of the conjunctiva membrane that extends onto the cornea, which is the outer layer of the eye. It is also known as surfer's eye. Growth of a pterygium can also occur on the either side of the eye, attaching firmly to the sclera. Pterygia are one of the world's most common ocular diseases. However, the pathogenesis remains unsolved to date. As the pathogenesis of pterygium is closely related to finding the ideal treatment, a clear understanding of the pathogenesis will lead to better treatment and lower the recurrence rate, which is notably high and more difficult to treat than a primary pterygium. Massive studies have recently been conducted to determine the exact causes and mechanism of pterygia. We evaluated the pathogenetic factors ultraviolet radiation, viral infection, tumor suppressor genes p53, growth factors, oxidative stress, apoptosis and neuropeptides in the progression of the disease. The heightened expression of TRPV1 suggests its potential contribution in the occurrence of pterygium, promoting its inflammation and modulating sensory responses in ocular tissues. Subsequently, the developmental mechanism of pterygium, along with its correlation with dry eye disease is proposed to facilitate the identification of pathogenetic factors for pterygia, contributing to the advancement of understanding in this area and may lead to improved surgical outcomes.


Assuntos
Pterígio , Pterígio/etiologia , Pterígio/metabolismo , Humanos , Fatores de Risco , Estresse Oxidativo , Raios Ultravioleta/efeitos adversos , Apoptose , Túnica Conjuntiva/patologia
9.
Photochem Photobiol Sci ; 23(3): 517-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337129

RESUMO

Squamous cell carcinoma represents the second most common type of keratinocyte carcinoma with ultraviolet radiation (UVR) making up the primary risk factor. Oral photoprotection aims to reduce incidence rates through oral intake of photoprotective compounds. Recently, drug repurposing has gained traction as an interesting source of chemoprevention. Because of their reported photoprotective properties, we investigated the potential of bucillamine, carvedilol, metformin, and phenformin as photoprotective compounds following oral intake in UVR-exposed hairless mice. Tumour development was observed in all groups in response to UVR, with only the positive control (Nicotinamide) demonstrating a reduction in tumour incidence (23.8%). No change in tumour development was observed in the four repurposed drug groups compared to the UV control group, whereas nicotinamide significantly reduced carcinogenesis (P = 0.00012). Metformin treatment significantly reduced UVR-induced erythema (P = 0.012), bucillamine and phenformin increased dorsal pigmentation (P = 0.0013, and P = 0.0005), but no other photoprotective effect was observed across the repurposed groups. This study demonstrates that oral supplementation with bucillamine, carvedilol, metformin, or phenformin does not affect UVR-induced carcinogenesis in hairless mice.


Assuntos
Carcinoma de Células Escamosas , Cisteína/análogos & derivados , Neoplasias Cutâneas , Camundongos , Animais , Raios Ultravioleta , Carvedilol/farmacologia , Camundongos Pelados , Fenformin/farmacologia , Carcinoma de Células Escamosas/prevenção & controle , Carcinoma de Células Escamosas/etiologia , Carcinogênese/efeitos da radiação , Niacinamida/farmacologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/patologia , Pele/efeitos da radiação
10.
Photochem Photobiol Sci ; 23(6): 1209-1215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38743195

RESUMO

Common therapeutics in relation to melanoma and non-melanoma cancers include the use of kinase inhibitors. The long-term benefits of kinases, however, are limited by development of drug resistance. An alternative approach for treatment would be to focus on transcription factors. Cyclic AMP-regulatory element-binding protein (CREB) is a transcription factor that is commonly overactivated or overexpressed in many different cancers including skin cancer. Ultraviolet radiation (UVR), one of the main causes of skin cancer, can activate CREB in both melanocytes and keratinocytes. In addition, CREB has been found to be activated in skin cancers. Considering the prominent role that CREB plays in skin cancers, the studies reviewed herein raise the possibility of CREB as a potential prognostic and diagnostic marker of skin cancer and a novel target for therapeutic intervention.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Neoplasias Cutâneas , Raios Ultravioleta , Humanos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Animais
11.
Photochem Photobiol Sci ; 23(5): 919-930, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589652

RESUMO

Exposure to ultraviolet radiation (UVR) leads to skin DNA damage, specifically in the form of cyclobutane pyrimidine dimers, with thymidine dimers being the most common. Quantifying these dimers can indicate the extent of DNA damage resulting from UVR exposure. Here, a new liquid chromatography-mass spectrometry (LC-MS) method was used to quantify thymidine dimers in the urine after a temporary increase in real-life UVR exposure. Healthy Danish volunteers (n = 27) experienced increased UVR exposure during a winter vacation. Individual exposure, assessed via personally worn electronic UVR dosimeters, revealed a mean exposure level of 32.9 standard erythema doses (SEDs) during the last week of vacation. Morning urine thymidine dimer concentrations were markedly elevated both 1 and 2 days post-vacation, and individual thymidine dimer levels correlated with UVR exposure during the last week of the vacation. The strongest correlation with erythema-weighted personal UVR exposure (Power model, r2 = 0.64, p < 0.001) was observed when both morning urine samples were combined to measure 48-h thymidine dimer excretion, whereas 24-h excretion based on a single sample provided a weaker correlation (Power model, r2 = 0.55, p < 0.001). Sex, age, and skin phototype had no significant effect on these correlations. For the first time, urinary thymidine dimer excretion was quantified by LC-MS to evaluate the effect of a temporary increase in personal UVR exposure in a real-life setting. The high sensitivity to elevated UVR exposure and correlation between urinary excretion and measured SED suggest that this approach may be used to quantify DNA damage and repair and to evaluate photoprevention strategies.


Assuntos
Dímeros de Pirimidina , Raios Ultravioleta , Humanos , Dímeros de Pirimidina/análise , Masculino , Adulto , Feminino , Dano ao DNA , Pessoa de Meia-Idade , Espectrometria de Massas , Cromatografia Líquida , Adulto Jovem , Exposição à Radiação/análise , Voluntários Saudáveis
12.
J Fluoresc ; 34(1): 367-380, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37266836

RESUMO

Exposure of antimalarial herbal drugs (AMHDs) to ultraviolet radiation (UVR) affects the potency and integrity of the AMHDs. Instant classification of the AMHDs exposed to UVR (UVR-AMHDs) from unexposed ones (Non-UVR-AMHDs) would be beneficial for public health safety, especially in warm regions. For the first time, this work combined laser-induced autofluorescence (LIAF) with chemometric techniques to classify UVR-AMHDs from Non-UVR-AMHDs. LIAF spectra data were recorded from 200 ml of each of the UVR-AMHDs and Non-UVR-AMHDs. To extract useful data from the spectra fingerprint, principal components (PCs) analysis was used. The performance of five chemometric algorithms: random forest (RF), neural network (NN), support vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbour (KNN), were compared after optimization by validation. The chemometric algorithms showed that KNN, SVM, NN, and RF were superior with a classification accuracy of 100% for UVR-AMHDs while LDA had a classification accuracy of 98.8% after standardization of the spectra data and was used as an input variable for the model. Meanwhile, a classification accuracy of 100% was obtained for KNN, LDA, SVM, and NN when the raw spectra data was used as input except for RF for which a classification accuracy of 99.9% was obtained. Classification accuracy above 99.74 ± 0.26% at 3 PCs in both the training and testing sets were obtained from the chemometric models. The results showed that the LIAF, combined with the chemometric techniques, can be used to classify UVR-AMHDs from Non-UVR-AMHDs for consumer confidence in malaria-prone regions. The technique offers a non-destructive, rapid, and viable tool for identifying UVR-AMHDs in resource-poor countries.


Assuntos
Antimaláricos , Raios Ultravioleta , Quimiometria , Análise Discriminante , Lasers , Máquina de Vetores de Suporte
13.
Eur J Epidemiol ; 39(1): 13-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38170370

RESUMO

BACKGROUND: Numerous epidemiologic studies and a few systematic reviews have investigated the association between occupational solar exposure and basal cell carcinoma (BCC). However, previous reviews have several deficits with regard to included and excluded studies/risk estimates and the assessment of risk of selection bias (RoSB). Our aim was to review epidemiologic studies with a focus on these deficits and to use meta-(regression) analyses to summarize risk estimates. METHODS: We systematically searched PubMed (including MEDLINE) and Embase for epidemiologic studies. Study evaluation considered four main aspects of risk of bias assessments, i.e. Selection of subjects (selection bias); Exposure variables; Outcome variables; Data analysis. RESULTS: Of 56 identified references, 32 were used for meta-(regression) analyses. The overall pooled risk estimate for BCC comparing high/present vs. low/absent occupational solar exposure was 1.20 (95% CI 1.02-1.43); among studies without major deficits regarding data analysis, it was 1.10 (95% CI 0.91-1.33). Studies with low and high RoSB had pooled risk estimates of 0.83 (95% CI 0.73-0.93) and 1.95 (95% CI 1.42-2.67), respectively. The definitions of exposure and outcome variables were not correlated with study risk estimates. Studies with low RoSB in populations with the same latitude or lower than Germany had a pooled risk estimate of 1.01 (95% CI 0.88-1.15). CONCLUSION: Due to the different associations between occupational solar exposure and BCC among studies with low and high RoSB, we reason that the current epidemiologic evidence base does not permit the conclusion that regular outdoor workers have an increased risk of BCC.


Assuntos
Carcinoma Basocelular , Exposição Ocupacional , Neoplasias Cutâneas , Humanos , Carcinoma Basocelular/epidemiologia , Carcinoma Basocelular/etiologia , Alemanha , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Viés de Seleção , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia
14.
Dermatology ; 240(3): 453-461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599196

RESUMO

INTRODUCTION: Ultraviolet radiation (UVR) is the primary risk factor for keratinocyte carcinomas. Oral supplementation with nicotinamide (NAM) is reported to reduce the formation of new keratinocyte carcinomas. NAM's photoprotection is mediated by enhanced DNA repair. We wanted to explore whether NAM in combination with antiproliferative (metformin [Met]) or antioxidant (phloroglucinol [PG]) compounds could potentially enhance its photoprotective effects. METHODS: Hairless mice (C3.Cg-Hrhr/TifBomTac) were treated orally with either a standard dose of NAM monotherapy (NAM-mono; 600 mg/kg) or NAM (400 mg/kg) combined with Met (200 mg/kg) (NAM-Met) or PG (75 mg/kg) (NAM-PG). Mice were irradiated with 3.5 standard erythema doses of UVR three times per week to induce tumour development. Photoprotective effects were based on (i) tumour onset of the first three tumours, (ii) skin photodamage, and (iii) DNA damage (cyclobutane pyrimidine dimers [CPDs] and pyrimidine-pyrimidone (6-4) photoproducts [6-4PPs]). RESULTS: All mice treated with NAM demonstrated a delay in tumour onset and reduced tumour burden compared to the UV control group (NAM, NAM-Met, NAM-PG vs. UV control: p ≤ 0.015). NAM-mono and NAM-PG increased time until all three tumours with no difference between them, indicating a similar degree of photoprotection. NAM-mono had no effect on DNA damage compared to the UV control group (p > 0.05), whereas NAM-PG reduced 6-4PP lesions (p < 0.01) but not CPDs (p > 0.05) compared to NAM-mono. NAM-Met delayed the onset of the third tumour compared to the UV control but demonstrated a quicker onset compared to NAM-mono, suggesting inferior photoprotection compared to nicotinamide monotherapy. CONCLUSION: NAM-PG was as effective in delaying UVR-induced tumour onset as NAM-mono. The reduction in 6-4PP lesions may indicate that the mechanism of NAM-PG is better suited for photoprotection than NAM-mono. NAM-mono was superior to NAM-Met, indicating a dose dependency of NAM's photoprotection. These results highlight the potential for combining photoprotective compounds to enhance photoprotection.


Assuntos
Metformina , Camundongos Pelados , Niacinamida , Neoplasias Cutâneas , Raios Ultravioleta , Animais , Niacinamida/uso terapêutico , Niacinamida/farmacologia , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta/efeitos adversos , Camundongos , Metformina/farmacologia , Metformina/uso terapêutico , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Induzidas por Radiação/etiologia , Quimioterapia Combinada , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Feminino , Complexo Vitamínico B/uso terapêutico , Complexo Vitamínico B/farmacologia
15.
Photodermatol Photoimmunol Photomed ; 40(4): e12985, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38845468

RESUMO

BACKGROUND: Photoprotection is the first measure in the prevention and treatment of the deleterious effects that sunlight can cause on the skin. It is well known that prolonged exposure to solar radiation leads to acute and chronic complications, such as erythema, accelerated skin aging, proinflammatory and procarcinogenic effects, and eye damage, among others. METHODS: A better understanding of the molecules that can protect against ultraviolet radiation and their effects will lead to improvements in skin health. RESULTS: Most of these effects of the sunlight are modulated by oxidative stress and proinflammatory mechanisms, therefore, the supplementation of substances that can regulate and neutralize reactive oxygen species would be beneficial for skin protection. Current evidence indicates that systemic photoprotection should be used as an adjunctive measure to topical photoprotection. CONCLUSION: Oral photoprotectors are a promising option in improving protection against damage induced by UVR, as they contain active ingredients that increase the antioxidant effects of the body, complementing other photoprotection measures. We present a review of oral photoprotectors and their effects.


Assuntos
Substâncias Protetoras , Raios Ultravioleta , Humanos , Administração Oral , Antioxidantes/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos , Substâncias Protetoras/administração & dosagem
16.
Photodermatol Photoimmunol Photomed ; 40(3): e12961, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38676310

RESUMO

BACKGROUND: Environmental ultraviolet radiation has deleterious effects on humans, including sunburn and immune perturbations. These immune changes are involved in skin carcinogenesis. OBJECTIVES: To determine whether nicotinamide riboside and/or pterostilbene administered systemically inhibits inflammatory and immune effects of exposure to mid-range ultraviolet radiation. METHODS: To examine UVB radiation-induced inflammatory effects, mice were fed standard chow/water, 0.04% pterostilbene in chow and 0.2% nicotinamide riboside in drinking water, diet with nicotinamide riboside alone, or diet with pterostilbene alone. After 4 weeks, mice were exposed to UVB radiation (3500 J/m2), and 24-/48-h ear swelling was assessed. We also asked if each agent or the combination inhibits UVB radiation suppression of contact hypersensitivity in two models. Mice were fed standard diet/water or chow containing 0.08% pterostilbene, water with 0.4% nicotinamide riboside, or both for 4 weeks. Low-dose: Half the mice in each group were exposed on the depilated dorsum to UVB radiation (1700 J/m2) daily for 4 days, whereas half were mock-irradiated. Mice were immunized on the exposed dorsum to dinitrofluorobenzene 4 h after the last irradiation, challenged 7 days later on the ears with dinitrofluorobenzene, and 24-h ear swelling assessed. High dose: Mice were treated similarly except that a single dose of 10,000 J/m2 of radiation was administered and immunization was performed on the unirradiated shaved abdomen 3 days later. RESULTS: Nicotinamide riboside and pterostilbene together inhibited UVB-induced skin swelling more than either alone. Pterostilbene alone and both given together could inhibit UVB-induced immune suppression in both the low-dose and high-dose models while nicotinamide riboside alone was more effective in the low-dose model than the high-dose model. CONCLUSION: Nicotinamide riboside and pterostilbene have protective effects against UVB radiation-induced tissue swelling and immune suppression.


Assuntos
Niacinamida , Niacinamida/análogos & derivados , Compostos de Piridínio , Estilbenos , Raios Ultravioleta , Animais , Niacinamida/farmacologia , Compostos de Piridínio/farmacologia , Camundongos , Raios Ultravioleta/efeitos adversos , Estilbenos/farmacologia , Feminino , Dermatite de Contato/imunologia , Dermatite de Contato/patologia , Dermatite de Contato/etiologia
17.
Photodermatol Photoimmunol Photomed ; 40(1): e12943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288770

RESUMO

BACKGROUND: The human skin microbiome is a dynamic ecosystem that plays an important role in skin health. The skin microbiome has been implicated in numerous diseases, and our knowledge surrounding it continues to evolve. A better understanding of the interactions between the environment and the skin microbiome will lead to improvements in skin health. METHODS: This article reviews the published literature surrounding the impact of ultraviolet radiation (UVR) and sunscreen on the skin microbiome. RESULTS: Skin microbes are differentially impacted by UVR, and alterations in the microbiome can be detected following UVR exposure. These changes are related to direct bactericidal effects, alterations in the cutaneous metabolome, and changes in the cutaneous immune system. UV filters used in sunscreen have been shown to have bactericidal effects, and many compounds used in sunscreen emulsions can also negatively impact cutaneous microbes. CONCLUSION: A healthy microbiome has been shown to produce compounds that help protect the skin from UVR, and sunscreen has the potential to reduce the diversity of the skin microbiome. This indicates that designing sunscreen products that both provide protection against UVR and preserve the skin microbiome may offer additional benefits to skin health when compared with traditional sunscreen products.


Assuntos
Protetores Solares , Raios Ultravioleta , Humanos , Protetores Solares/farmacologia , Raios Ultravioleta/efeitos adversos , Ecossistema , Pele/efeitos da radiação
18.
Photodermatol Photoimmunol Photomed ; 40(1): e12945, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288772

RESUMO

BACKGROUND: Photoprotection is crucial in preventing the development and progression of various skin diseases. However, patients with skin disease have limited awareness of photoprotection. We evaluated the knowledge and behavioral patterns of photoprotection among Koreans with skin diseases. METHODS: A cross-sectional study was conducted in 11 general hospitals across South Korea. The study population consisted of patients aged 19 years or older who visited dermatologic clinics for their skin diseases. A self-administered questionnaire was used to collect patient demographics, knowledge of photoprotection, and photoprotective habits. RESULTS: In this study, 1173 patients with skin cancer, hyperpigmentary disorders, hypopigmentary disorders, or other skin diseases participated. Females scored significantly higher in knowledge of photoprotection compared to males (mean score 8.4 vs. 7.8; p < .001), and younger patients (<50 years) scored higher than older patients (mean score 8.7 vs. 7.5; p < .001). Males also reported longer sun exposure times and lower usage of photoprotective measures (both p < .001). Patients with skin cancer had the lowest mean knowledge score (7.1 ± 2.6) and were less likely to use photoprotective measures compared to other groups (p < .001). In contrast, patients with hyperpigmentation actively avoided sun exposure compared with other groups (p < 0.001). CONCLUSIONS: Knowledge of photoprotection among Korean patients with skin diseases varied depending on the gender, age, and type of skin disease. Their photoprotective behaviors were inadequate, especially among males and those with skin cancer. These findings emphasize the importance of educating and tailoring photoprotection strategies for patients with skin diseases.


Assuntos
Hiperpigmentação , Neoplasias Cutâneas , Masculino , Feminino , Humanos , Raios Ultravioleta/efeitos adversos , Protetores Solares/uso terapêutico , Estudos Transversais , Neoplasias Cutâneas/tratamento farmacológico , Hábitos , Hiperpigmentação/tratamento farmacológico
19.
Photodermatol Photoimmunol Photomed ; 40(1): e12934, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38017654

RESUMO

BACKGROUND/PURPOSE: Exposure to sunlight has been shown to cause pigmentary alterations, photoaging and photocarcinogenesis. Understanding photoprotective patterns in adolescent populations is beneficial to public health initiatives. We utilized data provided by the American College Health Association's National College Health Assessment to evaluate photoprotective behaviors among adolescent populations. METHODS: Behavioral questions related to photoprotection were analyzed from the American College Health Association (ACHA) National College Health Assessment (NCHA) (Version III). RESULTS: When comparing races, Black/African American respondents had the lowest association of practicing photoprotective behaviors in comparison to white respondents (p < .05). When comparing US geographic regions, the south had the lowest association of photoprotective measures (p < .05). LIMITATIONS: The response rate of each institution varied, although there was still a large quantity of respondents. Finally, we cannot discern the specific reasoning for adolescent populations not using sunscreen. CONCLUSION: These data identify demographics where efforts to enhance education on photoprotective behaviors, specifically among skin of color and southern population, to support public health initiatives.


Assuntos
Neoplasias Cutâneas , Luz Solar , Humanos , Adolescente , Protetores Solares/uso terapêutico , Pele , Neoplasias Cutâneas/prevenção & controle , Universidades , Raios Ultravioleta
20.
Proc Natl Acad Sci U S A ; 118(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33323525

RESUMO

With nearly every country combating the 2019 novel coronavirus (COVID-19), there is a need to understand how local environmental conditions may modify transmission. To date, quantifying seasonality of the disease has been limited by scarce data and the difficulty of isolating climatological variables from other drivers of transmission in observational studies. We combine a spatially resolved dataset of confirmed COVID-19 cases, composed of 3,235 regions across 173 countries, with local environmental conditions and a statistical approach developed to quantify causal effects of environmental conditions in observational data settings. We find that ultraviolet (UV) radiation has a statistically significant effect on daily COVID-19 growth rates: a SD increase in UV lowers the daily growth rate of COVID-19 cases by ∼1 percentage point over the subsequent 2.5 wk, relative to an average in-sample growth rate of 13.2%. The time pattern of lagged effects peaks 9 to 11 d after UV exposure, consistent with the combined timescale of incubation, testing, and reporting. Cumulative effects of temperature and humidity are not statistically significant. Simulations illustrate how seasonal changes in UV have influenced regional patterns of COVID-19 growth rates from January to June, indicating that UV has a substantially smaller effect on the spread of the disease than social distancing policies. Furthermore, total COVID-19 seasonality has indeterminate sign for most regions during this period due to uncertain effects of other environmental variables. Our findings indicate UV exposure influences COVID-19 cases, but a comprehensive understanding of seasonality awaits further analysis.


Assuntos
COVID-19/epidemiologia , Pandemias , SARS-CoV-2/efeitos da radiação , Raios Ultravioleta , COVID-19/virologia , Humanos , Umidade , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA