Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biomed Sci ; 31(1): 19, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287325

RESUMO

BACKGROUND: Previous research in FMS-like tyrosine kinase 3 ligands (FLT3L) has primarily focused on their potential to generate dendritic cells (DCs) from bone marrow progenitors, with a limited understanding of how these cells affect CD8 T cell function. In this study, we further investigated the in vivo role of FLT3L for the immunomodulatory capabilities of CD8 T cells. METHODS: Albumin-conjugated FLT3L (Alb-FLT3L) was generated and applied for translational medicine purposes; here it was used to treat naïve C57BL/6 and OT1 mice for CD8 T cell response analysis. Syngeneic B16ova and E.G7ova mouse models were employed for adoptive cell transfer to evaluate the effects of Alb-FLT3L preconditioning of CD8 T cells on tumor progression. To uncover the underlying mechanisms of Alb-FLT3L modulation, we conducted bulk RNA-seq analysis of the CD44high CD8 T cells. STAT1-deficient mice were used to elucidate the functional roles of Alb-FLT3L in the modulation of T cells. Finally, antibody blockade of type one interferon signaling and in vitro coculture of plasmacytoid DCs (pDCs) with naive CD8 T cells was performed to determine the role of pDCs in mediating regulation of CD44high CD8 T cells. RESULTS: CD44high CD8 T cells were enhanced in C57BL/6 mice administrated with Alb-FLT3L. These CD8 T cells exhibited virtual memory features and had greater proliferative and effective functions. Notably, the adoptive transfer of CD44high naïve CD8 T cells into C57BL/6 mice with B16ova tumors led to significant tumor regression. RNA-seq analysis of the CD44high naïve CD8 T cells revealed FLT3L to induce CD44high CD8 T cells in a JAK-STAT1 signaling pathway-dependent manner, as supported by results indicating a decreased ability of FLT3L to enhance CD8 T cell proliferation in STAT1-deficient mice as compared to wild-type control mice. Moreover, antibody blockade of type one interferon signaling restricted the generation of FLT3L-induced CD44high CD8 T cells, while CD44 expression was able to be induced in naïve CD8 T cells cocultured with pDCs derived from FLT3L-treated mice. This suggests the crucial role of pDCs in mediating FLT3L regulation of CD44high CD8 T cells. CONCLUSIONS: These findings provide critical insight and support the therapeutic potential of Alb-FLT3L as an immune modulator in preconditioning of naïve CD8 T cells for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Células Dendríticas , Interferons , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo
2.
Front Immunol ; 13: 971001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330506

RESUMO

Virtual memory CD8+ T cells (TVM) have been described as cells with a memory-like phenotype but without previous antigen (Ag) exposure. TVM cells have the ability to respond better to innate stimuli rather than by TCR engagement, producing large amounts of interferon gamma (IFNγ) after stimulation with interleukin (IL)-12 plus IL-18. As a result of the phenotypic similarity, TVM cells have been erroneously included in the central memory T cell subset for many years. However, they can now be discriminated via the CD49d receptor, which is up-regulated only on conventional memory T cells (TMEM) and effector T cells (TEFF) after specific cognate Ag recognition by a TCR. In this work we show that systemic expression of IL-12 plus IL-18 induced an alteration in the normal TVM vs TMEM/TEFF distribution in secondary lymphoid organs and a preferential enrichment of TVM cells in the melanoma (B16) and the pancreatic ductal adenocarcinoma (KPC) tumor models. Using our KPC bearing OT-I mouse model, we observed a significant increase in CD8+ T cell infiltrating the tumor islets after IL-12+IL-18 stimulation with a lower average speed when compared to those from control mice. This finding indicates a stronger interaction of T cells with tumor cells after cytokine stimulation. These results correlate with a significant reduction in tumor size in both tumor models in IL-12+IL-18-treated OT-I mice compared to control OT-I mice. Interestingly, the absence of IFNγ completely abolished the high antitumor capacity induced by IL-12+IL-18 expression, indicating an important role for these cytokines in early tumor growth control. Thus, our studies provide significant new information that indicates an important role of TVM cells in the immune response against cancer.


Assuntos
Interferon gama , Neoplasias , Camundongos , Animais , Interferon gama/metabolismo , Linfócitos T CD8-Positivos , Interleucina-18 , Memória Imunológica , Interleucina-12/farmacologia , Citocinas/metabolismo , Receptores de Antígenos de Linfócitos T
3.
Front Immunol ; 13: 897569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720272

RESUMO

Recent studies highlighted that CD8+ T cells are necessary for restraining reservoir in HIV-1-infected individuals who undergo antiretroviral therapy (ART), whereas the underlying cellular and molecular mechanisms remain largely unknown. Here, we enrolled 60 virologically suppressed HIV-1-infected individuals, to assess the correlations of the effector molecules and phenotypic subsets of CD8+ T cells with HIV-1 DNA and cell-associated unspliced RNA (CA usRNA). We found that the levels of HIV-1 DNA and usRNA correlated positively with the percentage of CCL4+CCL5- CD8+ central memory cells (TCM) while negatively with CCL4-CCL5+ CD8+ terminally differentiated effector memory cells (TEMRA). Moreover, a virtual memory CD8+ T cell (TVM) subset was enriched in CCL4-CCL5+ TEMRA cells and phenotypically distinctive from CCL4+ TCM subset, supported by single-cell RNA-Seq data. Specifically, TVM cells showed superior cytotoxicity potentially driven by T-bet and RUNX3, while CCL4+ TCM subset displayed a suppressive phenotype dominated by JUNB and CREM. In viral inhibition assays, TVM cells inhibited HIV-1 reactivation more effectively than non-TVM CD8+ T cells, which was dependent on CCL5 secretion. Our study highlights CCL5-secreting TVM cells subset as a potential determinant of HIV-1 reservoir size. This might be helpful to design CD8+ T cell-based therapeutic strategies for cure of the disease.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Linfócitos T CD8-Positivos , Diferenciação Celular , Quimiocina CCL5/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos
4.
Cell Mol Immunol ; 18(3): 723-734, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32427883

RESUMO

Cancer cells can evade immune recognition by losing major histocompatibility complex (MHC) class I. Hence, MHC class I-negative cancers represent the most challenging cancers to treat. Chemotherapeutic drugs not only directly kill tumors but also modulate the tumor immune microenvironment. However, it remains unknown whether chemotherapy-treated cancer cells can activate CD8 T cells independent of tumor-derived MHC class I and whether such MHC class I-independent CD8 T-cell activation can be exploited for cancer immunotherapy. Here, we showed that chemotherapy-treated cancer cells directly activated CD8 T cells in an MHC class I-independent manner and that these activated CD8 T cells exhibit virtual memory (VM) phenotypes. Consistently, in vivo chemotherapeutic treatment preferentially increased tumor-infiltrating VM CD8 T cells. Mechanistically, MHC class I-independent activation of CD8 T cells requires cell-cell contact and activation of the PI3K pathway. VM CD8 T cells contribute to a superior therapeutic effect on MHC class I-deficient tumors. Using humanized mouse models or primary human CD8 T cells, we also demonstrated that chemotherapy-treated human lymphomas activated VM CD8 T cells independent of tumor-derived MHC class I. In conclusion, CD8 T cells can be directly activated in an MHC class I-independent manner by chemotherapy-treated cancers, and these activated CD8 T cells may be exploited for developing new strategies to treat MHC class I-deficient cancers.


Assuntos
Apresentação de Antígeno/imunologia , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linfoma/imunologia , Células T de Memória/imunologia , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Ativação Linfocitária/imunologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microambiente Tumoral
5.
Cell Mol Immunol ; 17(12): 1257-1265, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32210395

RESUMO

The viral reservoir is the major hurdle in developing and establishing an HIV cure. Understanding factors affecting the size and decay of this reservoir is crucial for the development of therapeutic strategies. Recent work highlighted that CD8+ T cells are involved in the control of viral replication in ART-treated HIV-1-infected individuals, but how CD8+ T cells sense and restrict the HIV reservoir are not fully understood. Here, we demonstrate that a population of unconventional CD45RA+, PanKIR+, and/or NKG2A+ virtual memory CD8+ T cells (TVM cells), which confer rapid and robust protective immunity against pathogens, plays an important role in restraining the HIV DNA reservoir in HIV-1-infected patients with effective ART. In patients undergoing ART, TVM cells negatively correlate with HIV DNA and positively correlate with circulating IFN-α2 and IL-15. Moreover, TVM cells constitutively express high levels of cytotoxic granule components, including granzyme B, perforin and granulysin, and demonstrate the capability to control HIV replication through both cytolytic and noncytolytic mechanisms. Furthermore, by using an ex vivo system, we showed that HIV reactivation is effectively suppressed by TVM cells through KIR-mediated recognition. This study suggests that TVM cells are a promising target to predict posttreatment virological control and to design immune-based interventions to reduce the reservoir size in ART-treated HIV-1-infected individuals.


Assuntos
Antirretrovirais/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Reservatórios de Doenças/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/imunologia , Memória Imunológica , Receptores KIR/metabolismo , Adulto , Proliferação de Células , Citocinas/metabolismo , DNA Viral/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Splicing de RNA/genética , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Ativação Viral , Replicação Viral , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA