Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.300
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2409262121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39145929

RESUMO

Insig-1 and Insig-2 are endoplasmic reticulum (ER) proteins that inhibit lipid synthesis by blocking transport of sterol regulatory element-binding proteins (SREBP-1 and SREBP-2) from ER to Golgi. In the Golgi, SREBPs are processed proteolytically to release their transcription-activating domains, which enhance the synthesis of fatty acids, triglycerides, and cholesterol. Heretofore, the two Insigs have redundant functions, and there is no rationale for two isoforms. The current data identify a specific function for Insig-2. We show that eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, inhibits fatty acid synthesis in human fibroblasts and rat hepatocytes by activating adenylate cyclase, which induces protein kinase A (PKA) to phosphorylate serine-106 in Insig-2. Phosphorylated Insig-2 inhibits the proteolytic processing of SREBP-1, thereby blocking fatty acid synthesis. Phosphorylated Insig-2 does not block the processing of SREBP-2, which activates cholesterol synthesis. Insig-1 lacks serine-106 and is not phosphorylated at this site. EPA inhibition of SREBP-1 processing was reduced by the replacement of serine-106 in Insig-2 with alanine or by treatment with KT5720, a PKA inhibitor. Inhibition did not occur in mutant human fibroblasts that possess Insig-1 but lack Insig-2. These data provide an Insig-2-specific mechanism for the long-known inhibition of fatty acid synthesis by polyunsaturated fatty acids.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Fibroblastos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Proteína de Ligação a Elemento Regulador de Esterol 1 , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Fosforilação , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Ácido Eicosapentaenoico/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Hepatócitos/metabolismo
2.
Annu Rev Pharmacol Toxicol ; 63: 383-406, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662586

RESUMO

The long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood, supplements, and concentrated pharmaceutical preparations. Prospective cohort studies demonstrate an association between higher intakes of EPA+DHA or higher levels of EPA and DHA in the body and lower risk of developing cardiovascular disease (CVD), especially coronary heart disease and myocardial infarction, and of cardiovascular mortality in the general population. The cardioprotective effect of EPA and DHA is due to the beneficial modulation of a number of risk factors for CVD. Some large trials support the use of EPA+DHA (or EPA alone) in high-risk patients, although the evidence is inconsistent. This review presents key studies of EPA and DHA in the primary and secondary prevention of CVD, briefly describes potential mechanisms of action, and discusses recently published RCTs and meta-analyses. Potential adverse aspects of long-chain omega-3 fatty acids in relation to CVD are discussed.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Ácidos Graxos Ômega-3 , Humanos , Estudos Prospectivos , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle
3.
FASEB J ; 38(10): e23699, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38805158

RESUMO

This meeting report presents a consensus on the biological aspects of lipid emulsions in parenteral nutrition, emphasizing the unanimous support for the integration of lipid emulsions, particularly those containing fish oil, owing to their many potential benefits beyond caloric provision. Lipid emulsions have evolved from simple energy sources to complex formulations designed to improve safety profiles and offer therapeutic benefits. The consensus highlights the critical role of omega-3 polyunsaturated fatty acids (PUFAs), notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), found in fish oil and other marine oils, for their anti-inflammatory properties, muscle mass preservation, and as precursors to the specialized pro-resolving mediators (SPMs). SPMs play a significant role in immune modulation, tissue repair, and the active resolution of inflammation without impairing host defense mechanisms. The panel's agreement underscores the importance of incorporating fish oil within clinical practices to facilitate recovery in conditions like surgery, critical illness, or immobility, while cautioning against therapies that might disrupt natural inflammation resolution processes. This consensus not only reaffirms the role of specific lipid components in enhancing patient outcomes, but also suggests a shift towards nutrition-based therapeutic strategies in clinical settings, advocating for the proactive evidence-based use of lipid emulsions enriched with omega-3 PUFAs. Furthermore, we should seek to apply our knowledge concerning DHA, EPA, and their SPM derivatives, to produce more informative randomized controlled trial protocols, thus allowing more authoritative clinical recommendations.


Assuntos
Inflamação , Humanos , Inflamação/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Ácido Eicosapentaenoico/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Nutrição Parenteral/métodos , Óleos de Peixe/uso terapêutico , Ácidos Docosa-Hexaenoicos/uso terapêutico , Emulsões Gordurosas Intravenosas/uso terapêutico , Animais
4.
FASEB J ; 38(14): e23807, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38989570

RESUMO

Specialized proresolving mediators (SPMs) promote local macrophage efferocytosis but excess leukocytes early in inflammation require additional leukocyte clearance mechanism for resolution. Here, neutrophil clearance mechanisms from localized acute inflammation were investigated in mouse dorsal air pouches. 15-HEPE (15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid) levels were increased in the exudates. Activated human neutrophils converted 15-HEPE to lipoxin A5 (5S,6R,15S-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), 15-epi-lipoxin A5 (5S,6R,15R-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), and resolvin E4 (RvE4; 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid). Exogenous 15-epi-lipoxin A5, 15-epi-lipoxin A4 and a structural lipoxin mimetic significantly decreased exudate neutrophils and increased local tissue macrophage efferocytosis, with comparison to naproxen. 15-epi-lipoxin A5 also cleared exudate neutrophils faster than the apparent local capacity for stimulated macrophage efferocytosis, so the fate of exudate neutrophils was tracked with CD45.1 variant neutrophils. 15-epi-lipoxin A5 augmented the exit of adoptively transferred neutrophils from the pouch exudate to the spleen, and significantly increased splenic SIRPa+ and MARCO+ macrophage efferocytosis. Together, these findings demonstrate new systemic resolution mechanisms for 15-epi-lipoxin A5 and RvE4 in localized tissue inflammation, which distally engage the spleen to activate macrophage efferocytosis for the clearance of tissue exudate neutrophils.


Assuntos
Lipoxinas , Macrófagos , Neutrófilos , Baço , Animais , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Humanos , Lipoxinas/metabolismo , Lipoxinas/farmacologia , Baço/metabolismo , Baço/citologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Camundongos Endogâmicos C57BL , Fagocitose , Masculino , Inflamação/metabolismo , Ácidos Heptanoicos
5.
Proc Natl Acad Sci U S A ; 119(30): e2122158119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858418

RESUMO

Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.


Assuntos
Ácido Eicosapentaenoico , Neuralgia , Proteínas de Transporte de Nucleotídeos , Trifosfato de Adenosina/metabolismo , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Humanos , Resistência à Insulina , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/genética , Nociceptividade , Proteínas de Transporte de Nucleotídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo
6.
Proteomics ; 24(19): e2300393, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38430206

RESUMO

Prostate cancer (PCa) is one of the leading causes of cancer morbidity and mortality in men. Metastasis is the main cause of PCa-associated death. Recent evidence indicated a significant reduction in PCa mortality associated with higher ω-3 polyunsaturated fatty acids (PUFAs) consumption. However, the underlying mechanisms remained elusive. In this study, we applied global acetylome profiling to study the effect of fatty acids treatment. Results indicated that oleic acid (OA, monounsaturated fatty acid, MUFA, 100 µM) elevates while EPA (eicosapentaenoic acid, 100 µM) reduces the acetyl-CoA level, which alters the global acetylome. After treatment, two crucial cell motility regulators, PFN1 and FLNA, were found with altered acetylation levels. OA increased the acetylation of PFN1 and FLNA, whereas EPA decreased PFN1 acetylation level. Furthermore, OA promotes while EPA inhibits PCa migration and invasion. Immunofluorescence assay indicated that EPA impedes the formation of lamellipodia or filopodia through reduced localization of PFN1 and FLNA to the leading edge of cells. Therefore, perturbed acetylome may be one critical step in fatty acid-affected cancer cell motility. This study provides some new insights into the response of ω-3 PUFAs treatment and a better understanding of cancer cell migration and invasion modulation.


Assuntos
Movimento Celular , Ácido Eicosapentaenoico , Filaminas , Ácido Oleico , Profilinas , Neoplasias da Próstata , Masculino , Humanos , Profilinas/metabolismo , Profilinas/genética , Acetilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Movimento Celular/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Filaminas/metabolismo , Filaminas/genética , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Linhagem Celular Tumoral
7.
J Lipid Res ; 65(6): 100548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649096

RESUMO

DHA is abundant in the brain where it regulates cell survival, neurogenesis, and neuroinflammation. DHA can be obtained from the diet or synthesized from alpha-linolenic acid (ALA; 18:3n-3) via a series of desaturation and elongation reactions occurring in the liver. Tracer studies suggest that dietary DHA can downregulate its own synthesis, but the mechanism remains undetermined and is the primary objective of this manuscript. First, we show by tracing 13C content (δ13C) of DHA via compound-specific isotope analysis, that following low dietary DHA, the brain receives DHA synthesized from ALA. We then show that dietary DHA increases mouse liver and serum EPA, which is dependant on ALA. Furthermore, by compound-specific isotope analysis we demonstrate that the source of increased EPA is slowed EPA metabolism, not increased DHA retroconversion as previously assumed. DHA feeding alone or with ALA lowered liver elongation of very long chain (ELOVL2, EPA elongation) enzyme activity despite no change in protein content. To further evaluate the role of ELOVL2, a liver-specific Elovl2 KO was generated showing that DHA feeding in the presence or absence of a functional liver ELOVL2 yields similar results. An enzyme competition assay for EPA elongation suggests both uncompetitive and noncompetitive inhibition by DHA depending on DHA levels. To translate our findings, we show that DHA supplementation in men and women increases EPA levels in a manner dependent on a SNP (rs953413) in the ELOVL2 gene. In conclusion, we identify a novel feedback inhibition pathway where dietary DHA downregulates its liver synthesis by inhibiting EPA elongation.


Assuntos
Ácidos Docosa-Hexaenoicos , Regulação para Baixo , Ácido Eicosapentaenoico , Fígado , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/administração & dosagem
8.
J Virol ; 97(11): e0120923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37843366

RESUMO

IMPORTANCE: Porcine epidemic diarrhea caused by porcine coronaviruses remains a major threat to the global swine industry. Fatty acids are extensively involved in the whole life of the virus. In this study, we found that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) significantly reduced the viral load of porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine delta coronavirus (PDCoV) and acted on the replication of the viruses rather than attachment and entry. We further confirmed that DHA and EPA inhibited PEDV replication by alleviating the endoplasmic reticulum stress. Meanwhile, DHA and EPA alleviate PEDV-induced inflammation and reactive oxygen species (ROS) levels and enhance the cellular antioxidant capacity. These data indicate that DHA and EPA have antiviral effects on porcine coronaviruses and provide a molecular basis for the development of new fatty acid-based therapies to control porcine coronavirus infection and transmission.


Assuntos
Infecções por Coronavirus , Coronavirus , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Doenças dos Suínos , Animais , Coronavirus/fisiologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/tratamento farmacológico , Vírus da Gastroenterite Transmissível/fisiologia , Replicação Viral/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos
9.
Haematologica ; 109(6): 1918-1932, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105727

RESUMO

Inflammatory vasculopathy is critical in sickle cell disease (SCD)-associated organ damage. An imbalance between pro-inflammatory and pro-resolving mechanisms in response to different triggers such as hypoxia/reoxygenation or infections has been proposed to contribute to the progression of SCD. Administration of specialized pro-resolving lipid mediators may provide an effective therapeutic strategy to target inflammatory vasculopathy and to modulate inflammatory response. Epeleuton (15 hydroxy eicosapentaenoic acid ethyl ester) is a novel, orally administered, second-generation ω-3 fatty acid with a favorable clinical safety profile. In this study we show that epeleuton re-programs the lipidomic pattern of target organs for SCD towards a pro-resolving pattern. This protects against systemic and local inflammatory responses and improves red cell features, resulting in reduced hemolysis and sickling compared with that in vehicle-treated SCD mice. In addition, epeleuton prevents hypoxia/reoxygenation-induced activation of nuclear factor-κB with downregulation of the NLRP3 inflammasome in lung, kidney, and liver. This was associated with downregulation of markers of vascular activation in epeleuton-treated SCD mice when compared to vehicle-treated animals. Collectively our data support the potential therapeutic utility of epeleuton and provide the rationale for the design of clinical trials to evaluate the efficacy of epeleuton in patients with SCD.


Assuntos
Anemia Falciforme , Modelos Animais de Doenças , Traumatismo por Reperfusão , Animais , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Anemia Falciforme/complicações , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Humanos , Masculino , Hipóxia/metabolismo , Hipóxia/tratamento farmacológico
10.
J Nutr ; 154(1): 87-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37940004

RESUMO

BACKGROUND: Research suggests omega-3 polyunsaturated fatty acids (PUFAs) exert favorable effects on several biological processes involved in the development and progression of atherosclerotic cardiovascular disease (ASCVD). However, studies examining the relationship between omega-3 PUFAs and peripheral artery disease (PAD) are scarce. OBJECTIVES: We evaluated the associations between omega-3 PUFAs and incident PAD in a meta-analysis of the Multi-Ethnic Study of Atherosclerosis (MESA) and Atherosclerosis Risk in Communities (ARIC) study cohorts. METHODS: Omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were measured at baseline for all MESA (n = 6495) and Minnesota ARIC participants (n = 3612). Incident clinical PAD events (MESA n = 106; ARIC n = 149) identified primarily through ICD discharge codes were assessed through follow-up of each cohort. Associations between omega-3 PUFAs (EPA, DHA, and EPA+DHA) and incident PAD were modeled in MESA and ARIC as quartiles and continuously using Cox proportional hazards regression, respectively. A fixed-effects meta-analysis was conducted to evaluate associations in the 2 cohorts combined. RESULTS: In the fully adjusted model, in 10,107 participants, no significant associations were observed between EPA, DHA, or EPA+DHA, and incident PAD modeled as quartiles or continuously for either MESA or ARIC cohorts separately or in the meta-analysis after a follow-up of approximately 15 y. CONCLUSION: This study is consistent with previous literature indicating that the beneficial effects of omega-3 PUFAs on the markers of ASCVD may not translate to a clinically meaningful decrease in PAD risk.


Assuntos
Aterosclerose , Ácidos Graxos Ômega-3 , Doença Arterial Periférica , Humanos , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Aterosclerose/prevenção & controle
11.
J Nutr ; 154(4): 1271-1281, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38367811

RESUMO

BACKGROUND: Myokines have a prominent effect on improving insulin resistance (IR) by inducing browning of white adipose tissue (WAT). Although docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) play roles in improving IR and stimulating browning, whether they mediate myokines directly remains unknown. OBJECTIVE: This study aims to investigate the effects of DHA and EPA on browning-related myokines under IR and clarify the mechanism via Ca2+ signaling. METHODS: The expression and secretion levels of myokines in IR mice and IR myotubes were detected after DHA/EPA treatment. The crosstalk between myotubes and adipocytes was evaluated through a method in which IR adipocytes were treated with the culture medium supernatant of myotubes treated with DHA/EPA. The expression of browning markers in the WAT of IR mice and adipocytes was determined. A calcium chelator was used to determine whether DHA and EPA regulate myokine production through a calcium ion-dependent pathway. RESULTS: In vivo experiments: 3:1 and 1:3 DHA/EPA promoted the mRNA levels of Irisin, IL-6, IL-15, and FGF21 in skeletal muscle, stimulated WAT browning, reduced lipid accumulation; 3:1 DHA/EPA upregulated the serum concentration of Irisin; 1:3 DHA/EPA upregulated the serum concentrations of Irisin, IL-6, and FGF21. In vitro experiments: the levels of Irisin and IL-6 in C2C12 myotubes and their medium supernatant were significantly elevated in the 3:1 and 1:3 groups and the upregulation of browning markers and reduction in fat accumulation were observed in adipocytes treated with the medium supernatant of C2C12 myotubes in the 3:1 and 1:3 groups. However, the above phenomena disappeared when Ca2+ signaling was inhibited. CONCLUSIONS: Treatment with DHA and EPA at composition ratios of 3:1 and 1:3 induces browning of WAT in IR mice, which is likely related to the promotion of the accumulation of myokines, especially Irisin and IL-6, via Ca2+ signaling.


Assuntos
Resistência à Insulina , Insulina , Camundongos , Animais , Insulina/metabolismo , Miocinas , Interleucina-6/genética , Interleucina-6/metabolismo , Ácido Eicosapentaenoico/farmacologia , Fibronectinas/metabolismo , Sinalização do Cálcio , Insulina Regular Humana , Ácidos Docosa-Hexaenoicos/farmacologia
12.
Neuroendocrinology ; 114(6): 553-576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38301617

RESUMO

INTRODUCTION: Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS: Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS: Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION: Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.


Assuntos
Corticosterona , Dieta Hiperlipídica , Ácido Eicosapentaenoico , Sistema Hipotálamo-Hipofisário , Camundongos Transgênicos , Sistema Hipófise-Suprarrenal , Animais , Masculino , Feminino , Dieta Hiperlipídica/efeitos adversos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/administração & dosagem , Camundongos , Corticosterona/sangue , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
13.
Prostaglandins Other Lipid Mediat ; 174: 106854, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38825147

RESUMO

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplements have exhibited inconsistent effects on cancer risk, and their potential efficacy as cancer preventive agents has been increasingly questioned, especially in recent large randomized clinical trials. The role of host factors that govern EPA and DHA metabolism in relation to their impact on carcinogenesis remains understudied. Resolvins, the products of EPA and DHA oxidative metabolism, demonstrate intriguing antitumorigenic effects through mechanisms such as promoting macrophage phagocytosis of cell debris and inhibiting the production of proinflammatory chemokines and cytokines by tumor-associated macrophages (TAMs), which are crucial for cancer progression. However, clinical studies have not yet shown a significant increase in target tissue levels of resolvins with EPA and DHA supplementation. 15-Lipoxygenase-1 (ALOX15), a key enzyme in EPA and DHA oxidative metabolism, is often lost in various major human cancers, including precancerous and advanced colorectal cancers. Further research is needed to elucidate whether the loss of ALOX15 expression in colorectal precancerous and cancerous cells affects EPA and DHA oxidative metabolism, the formation of resolvins, and subsequently carcinogenesis. The findings from these studies could aid in the development of novel and effective chemoprevention interventions to reduce cancer risk.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Neoplasias , Humanos , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Neoplasias/patologia , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Suplementos Nutricionais
14.
J Periodontal Res ; 59(1): 195-203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947141

RESUMO

OBJECTIVE: To investigate, in vivo, the effect of local application of Resolvin E1 (RvE1) on the bone regeneration of critical-size defects (CSDs) in Wistar rats utilizing gene expression and micro-computed tomographic (micro-CT) analysis. BACKGROUND: The inflammation-resolving actions of RvE1 are well established. The molecular mechanism of its bone-regenerative actions has been of significant interest in recent years; however, there is limited information regarding the same. MATERIALS AND METHODS: Thirty Wistar rats with a 5 mm induced critical-size calvarial defect were randomly allocated into four groups: no treatment/negative control (n = 5), treatment using bovine bone grafts/positive control (n = 5), treatment using local delivery of RvE1 (n = 11) and treatment using RvE1 mixed with bovine bone graft (n = 9). After 4 weeks, RNA isolation, complementary DNA synthesis and real-time polymerase chain reaction were used for genetic expression of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The rats were sacrificed after 12 weeks and micro-CT imaging was performed to analyse the characteristics of the newly formed bone (NFB). The data were analysed using ANOVA and the least significant difference tests (α ≤ .05). RESULTS: The RvE1 + bovine graft group had statistically highest mean NFB (20.75 ± 2.67 mm3 ) compared to other groups (p < .001). Similarly, RvE1 + bovine graft group also demonstrated statistically highest mean genetic expression of ALP (31.71 ± 2.97; p = .008) and OPN (34.78 ± 3.62; p < .001) compared to negative control and RvE1 groups. CONCLUSION: Resolvin E1 with adjunct bovine bone graft demonstrated an enhanced bone regeneration compared to RvE1 or bovine graft alone in the calvarial defect of Wistar rats.


Assuntos
Regeneração Óssea , Ácido Eicosapentaenoico , Ácido Eicosapentaenoico/análogos & derivados , Ratos , Animais , Bovinos , Ratos Wistar , Microtomografia por Raio-X , Regeneração Óssea/genética , Ácido Eicosapentaenoico/farmacologia , Expressão Gênica
15.
Crit Care ; 28(1): 38, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302945

RESUMO

The optimal feeding strategy for critically ill patients is still debated, but feeding must be adapted to individual patient needs. Critically ill patients are at risk of muscle catabolism, leading to loss of muscle mass and its consequent clinical impacts. Timing of introduction of feeding and protein targets have been explored in recent trials. These suggest that "moderate" protein provision (maximum 1.2 g/kg/day) is best during the initial stages of illness. Unresolved inflammation may be a key factor in driving muscle catabolism. The omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are substrates for synthesis of mediators termed specialized pro-resolving mediators or SPMs that actively resolve inflammation. There is evidence from other settings that high-dose oral EPA + DHA increases muscle protein synthesis, decreases muscle protein breakdown, and maintains muscle mass. SPMs may be responsible for some of these effects, especially upon muscle protein breakdown. Given these findings, provision of EPA and DHA as part of medical nutritional therapy in critically ill patients at risk of loss of muscle mass seems to be a strategy to prevent the persistence of inflammation and the related anabolic resistance and muscle loss.


Assuntos
Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3 , Humanos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Estado Terminal/terapia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/tratamento farmacológico , Músculo Esquelético , Proteínas Musculares
16.
Exp Cell Res ; 424(1): 113491, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708860

RESUMO

Astrocytes are highly energy-consuming glial cells critical for metabolic support to neurons. A growing body of evidence suggests that mitochondrial dysfunction in astrocytes is involved in age-related neurodegenerative disorders and that fish oil, rich in docosahexaenoic (DHA) and eicosapentaenoic (EPA) fatty acids, may alleviate cognition impairment in Parkinson's and Alzheimer's diseases. The present study examines the effect of DHA and EPA on mitochondrial membrane potential (MMP), apoptosis activation and ATP levels in astrocytes cultured in medium containing glucose or galactose, which limits oxidative phosphorylation (OXPHOS). MMP, expressed as the ratio of red to green JC-10 and MitoTracker fluorescence, increased in EPA-incubated cells in a dose dependent manner and was higher than in DHA-incubated astrocytes, also after uncoupling of OXPHOS by carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In cells cultured in glucose and galactose medium mitochondrial hyperpolarization had no impact on intracellular ATP level. Furthermore, both EPA and DHA elevated mitochondrial cardiolipin content, however only EPA did so in a dose-dependent manner and reduced apoptosis which was analyzed by flow cytometry.


Assuntos
Cardiolipinas , Ácido Eicosapentaenoico , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Astrócitos , Galactose , Potencial da Membrana Mitocondrial , Trifosfato de Adenosina/farmacologia
17.
Lipids Health Dis ; 23(1): 214, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982376

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), mainly including α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), possess antioxidant properties and play a crucial role in growth and development. However, the combined effects of ALA, EPA, and DHA at different concentrations have rarely been reported. This work explored the effects of EPA, ALA, and DHA on the viability and antioxidant capacity of mouse hepatocytes, with the objective of enhancing the antioxidant capacity. Within the appropriate concentration range, cell viability and the activity of glutathione S-transferase, superoxide dismutase, and catalase were increased, while the oxidation products of malondialdehyde and the level of intracellular reactive oxygen species were obviously reduced. Thus, oxidative stress was relieved, and cellular antioxidant levels were improved. Finally, response surface optimization was carried out for EPA, ALA, and DHA, and the model was established. The antioxidant capacity of the cells was highest at EPA, ALA, and DHA concentrations of 145.46, 405.05, and 551.52 µM, respectively. These findings lay the foundation for further exploration of the interactive mechanisms of n-3 PUFAs in the body, as well as their applications in nutraceutical food.


Assuntos
Antioxidantes , Sobrevivência Celular , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3 , Hepatócitos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase , Animais , Camundongos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Malondialdeído/metabolismo , Ácido alfa-Linolênico/farmacologia , Glutationa Transferase/metabolismo
18.
BMC Urol ; 24(1): 130, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907230

RESUMO

BACKGROUND: One of the most common, but least studied, diabetic complication is diabetic bladder dysfunction. Current therapies include glucose control and symptom-based interventions. However, efficacy of these therapies is mixed and often have undesirable side effects. Diabetes is now known to be a chronic inflammatory disease. Specialized pro-resolving mediators are a class of compounds that promote the resolution of inflammation and have been shown to be effective in treating chronic inflammatory conditions. In this study we examine the ability of resolvin E1 to improve signs of diabetic bladder dysfunction. METHODS: Male Akita mice (Type 1 diabetic) develop hyperglycemia at 4 weeks and signs of bladder underactivity by 15 weeks. Starting at 15 weeks, mice were given one or two weeks of daily resolvin E1 and compared to age-matched wild type and untreated Akita mice. RESULTS: Resolvin E1 did not affect diabetic blood glucose after one week, although there was a slight decrease after two weeks. Diabetes decreased body weight and increased bladder weights and this was not affected by resolvin E1. Evan's blue dye extravasation (an indirect index of inflammation) was dramatically suppressed after one week of resolvin E1 treatment, but, surprisingly, had returned to diabetic levels after two weeks of treatment. Using cystometry, untreated Akita mice showed signs of underactivity (increased void volumes and intercontraction intervals). One week of resolvin E1treatment restored these cystometric findings back to control levels. After two weeks of treatment, cystometric changes were changed from controls but still significantly different from untreated levels, indicating a durable treatment effect even in the presence of increased inflammation at 2 weeks. CONCLUSIONS: Resolvin E1 has a beneficial effect on diabetic bladder dysfunction in the type 1 diabetic male Akita mouse model.


Assuntos
Diabetes Mellitus Tipo 1 , Modelos Animais de Doenças , Ácido Eicosapentaenoico , Bexiga Urinária , Animais , Masculino , Camundongos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Doenças da Bexiga Urinária/tratamento farmacológico , Doenças da Bexiga Urinária/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL
19.
Mar Drugs ; 22(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38786598

RESUMO

This paper aims to provide an in-depth review of the specific outcomes associated with omega-3 polyunsaturated fatty acids (PUFAs), focusing on their purported effects on post-surgical complications in trauma patients. A comprehensive investigation of omega-3 polyunsaturated fatty acids was conducted until February 2023 using the PubMed database. Surgical trauma is characterized by a disruption in immune response post surgery, known to induce systemic inflammation. Omega-3 PUFAs are believed to offer potential improvements in multiple post-surgical complications because of their anti-inflammatory and antioxidant properties. Inconsistent findings have emerged in the context of cardiac surgeries, with the route of administration playing a mediating role in these outcomes. The effects of omega-3 PUFAs on post-operative atrial fibrillation have exhibited variability across various studies. Omega-3 PUFAs have demonstrated positive effects in liver surgery outcomes and in patients with acute respiratory distress syndrome. Omega-3 is suggested to offer potential benefits, particularly in the perioperative care of patients undergoing traumatic procedures. Incorporating omega-3 in such cases is hypothesized to contribute to a reduction in certain surgical outcomes, such as hospitalization duration and length of stay in the intensive care unit. Therefore, comprehensive assessments of adverse effects can aid in identifying the presence of subtle or inconspicuous side effects associated with omega-3.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3 , Complicações Pós-Operatórias , Humanos , Complicações Pós-Operatórias/prevenção & controle , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ferimentos e Lesões/cirurgia , Animais
20.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612589

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.


Assuntos
Ácidos Graxos Ômega-3 , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Adulto , Camundongos , Animais , Ácidos Graxos Ômega-3/farmacologia , Adutos de DNA , Carcinogênese , Transformação Celular Neoplásica , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA