Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.670
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 87: 533-553, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925257

RESUMO

The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like ß-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.


Assuntos
Nanoestruturas/química , Peptídeos/química , Proteínas Amiloidogênicas/química , Animais , Biotecnologia , Humanos , Modelos Moleculares , Nanotecnologia/métodos , Oligopeptídeos/química , Ácidos Nucleicos Peptídicos/química , Engenharia de Proteínas
2.
Trends Biochem Sci ; 49(4): 283-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238217

RESUMO

Two reports by Dhuri et al. and Oyaghire et al., respectively, show that, through installing chiral centers at the backbone of the artificial nucleic acid, peptide nucleic acid (PNA), enhanced miRNA targeting and genome modification can be achieved, with important implications in fighting cancers and ß-thalassemia.


Assuntos
MicroRNAs , Ácidos Nucleicos Peptídicos , MicroRNAs/genética
3.
RNA ; 30(6): 624-643, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38413166

RESUMO

Antisense oligomer (ASO)-based antibiotics that target mRNAs of essential bacterial genes have great potential for counteracting antimicrobial resistance and for precision microbiome editing. To date, the development of such antisense antibiotics has primarily focused on using phosphorodiamidate morpholino (PMO) and peptide nucleic acid (PNA) backbones, largely ignoring the growing number of chemical modalities that have spurred the success of ASO-based human therapy. Here, we directly compare the activities of seven chemically distinct 10mer ASOs, all designed to target the essential gene acpP upon delivery with a KFF-peptide carrier into Salmonella. Our systematic analysis of PNA, PMO, phosphorothioate (PTO)-modified DNA, 2'-methylated RNA (RNA-OMe), 2'-methoxyethylated RNA (RNA-MOE), 2'-fluorinated RNA (RNA-F), and 2'-4'-locked RNA (LNA) is based on a variety of in vitro and in vivo methods to evaluate ASO uptake, target pairing and inhibition of bacterial growth. Our data show that only PNA and PMO are efficiently delivered by the KFF peptide into Salmonella to inhibit bacterial growth. Nevertheless, the strong target binding affinity and in vitro translational repression activity of LNA and RNA-MOE make them promising modalities for antisense antibiotics that will require the identification of an effective carrier.


Assuntos
Antibacterianos , Oligonucleotídeos Antissenso , Ácidos Nucleicos Peptídicos , Antibacterianos/farmacologia , Antibacterianos/química , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Morfolinos/química , Morfolinos/farmacologia , Morfolinos/genética , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/genética , Humanos
4.
Nucleic Acids Res ; 52(6): 3469-3482, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38421613

RESUMO

Gene-editing technologies have revolutionized biotechnology, but current gene editors suffer from several limitations. Here, we harnessed the power of gamma-modified peptide nucleic acids (γPNAs) to facilitate targeted, specific DNA invasion and used T7 endonuclease I (T7EI) to recognize and cleave the γPNA-invaded DNA. Our data show that T7EI can specifically target PNA-invaded linear and circular DNA to introduce double-strand breaks (DSBs). Our PNA-Guided T7EI (PG-T7EI) technology demonstrates that T7EI can be used as a programmable nuclease capable of generating single or multiple specific DSBs in vitro under a broad range of conditions and could be potentially applied for large-scale genomic manipulation. With no protospacer adjacent motif (PAM) constraints and featuring a compact protein size, our PG-T7EI system will facilitate and expand DNA manipulations both in vitro and in vivo, including cloning, large-fragment DNA assembly, and gene editing, with exciting applications in biotechnology, medicine, agriculture, and synthetic biology.


Assuntos
Quebras de DNA de Cadeia Dupla , Desoxirribonuclease I , Ácidos Nucleicos Peptídicos , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , DNA Circular , Edição de Genes
5.
RNA ; 29(4): 434-445, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36653113

RESUMO

RNA therapeutics have emerged as next-generation therapy for the treatment of many diseases. Unlike small molecules, RNA targeted drugs are not limited by the availability of binding pockets on the protein, but rather utilize Watson-Crick (WC) base-pairing rules to recognize the target RNA and modulate gene expression. Antisense oligonucleotides (ASOs) present a powerful therapeutic approach to treat disorders triggered by genetic alterations. ASOs recognize the cognate site on the target RNA to alter gene expression. Nine single-stranded ASOs have been approved for clinical use and several candidates are in late-stage clinical trials for both rare and common diseases. Several chemical modifications, including phosphorothioates, locked nucleic acid, phosphorodiamidate, morpholino, and peptide nucleic acids (PNAs), have been investigated for efficient RNA targeting. PNAs are synthetic DNA mimics where the deoxyribose phosphate backbone is replaced by N-(2-aminoethyl)-glycine units. The neutral pseudopeptide backbone of PNAs contributes to enhanced binding affinity and high biological stability. PNAs hybridize with the complementary site in the target RNA and act by a steric hindrance--based mechanism. In the last three decades, various PNA designs, chemical modifications, and delivery strategies have been explored to demonstrate their potential as an effective and safe RNA-targeting platform. This review covers the advances in PNA-mediated targeting of coding and noncoding RNAs for a myriad of therapeutic applications.


Assuntos
Ácidos Nucleicos Peptídicos , RNA , RNA/genética , RNA/uso terapêutico , RNA/química , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/uso terapêutico , Ácidos Nucleicos Peptídicos/química , DNA/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Pareamento de Bases
6.
RNA ; 29(5): 570-583, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36750372

RESUMO

Antisense oligomers (ASOs), such as peptide nucleic acids (PNAs), designed to inhibit the translation of essential bacterial genes, have emerged as attractive sequence- and species-specific programmable RNA antibiotics. Yet, potential drawbacks include unwanted side effects caused by their binding to transcripts other than the intended target. To facilitate the design of PNAs with minimal off-target effects, we developed MASON (make antisense oligomers now), a web server for the design of PNAs that target bacterial mRNAs. MASON generates PNA sequences complementary to the translational start site of a bacterial gene of interest and reports critical sequence attributes and potential off-target sites. We based MASON's off-target predictions on experiments in which we treated Salmonella enterica serovar Typhimurium with a series of 10-mer PNAs derived from a PNA targeting the essential gene acpP but carrying two serial mismatches. Growth inhibition and RNA-sequencing (RNA-seq) data revealed that PNAs with terminal mismatches are still able to target acpP, suggesting wider off-target effects than anticipated. Comparison of these results to an RNA-seq data set from uropathogenic Escherichia coli (UPEC) treated with eleven different PNAs confirmed that our findings are not unique to Salmonella We believe that MASON's off-target assessment will improve the design of specific PNAs and other ASOs.


Assuntos
Ácidos Nucleicos Peptídicos , RNA Mensageiro/genética , RNA Mensageiro/química , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/química , Oligonucleotídeos Antissenso/farmacologia , Bactérias/genética , RNA , Salmonella typhimurium/genética
7.
Nucleic Acids Res ; 51(17): 9491-9506, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37560931

RESUMO

Programmable site-specific nucleases promise to unlock myriad applications in basic biology research, biotechnology and gene therapy. Gene-editing systems have revolutionized our ability to engineer genomes across diverse eukaryotic species. However, key challenges, including delivery, specificity and targeting organellar genomes, pose barriers to translational applications. Here, we use peptide nucleic acids (PNAs) to facilitate precise DNA strand invasion and unwinding, enabling prokaryotic Argonaute (pAgo) proteins to specifically bind displaced single-stranded DNA and introduce site-specific double-strand breaks (DSBs) independent of the target sequence. We named this technology PNA-assisted pAgo editing (PNP editing) and determined key parameters for designing PNP editors to efficiently generate programable site-specific DSBs. Our design allows the simultaneous use of multiple PNP editors to generate multiple site-specific DSBs, thereby informing design considerations for potential in vitro and in vivo applications, including genome editing.


Assuntos
Quebras de DNA de Cadeia Dupla , Edição de Genes , Ácidos Nucleicos Peptídicos , Sistemas CRISPR-Cas , DNA/genética , Edição de Genes/métodos , Genoma , Ácidos Nucleicos Peptídicos/metabolismo , Proteínas Argonautas/metabolismo
8.
Nucleic Acids Res ; 51(16): 8532-8549, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37216608

RESUMO

Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.


Assuntos
Ataxia de Friedreich , Oligonucleotídeos , Ácidos Nucleicos Peptídicos , Expansão das Repetições de Trinucleotídeos , Humanos , DNA , Replicação do DNA/efeitos dos fármacos , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Oligonucleotídeos/farmacologia , Ácidos Nucleicos Peptídicos/farmacologia , Saccharomyces cerevisiae/genética
9.
Anal Chem ; 96(6): 2599-2609, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38300270

RESUMO

Programmable site-specific nucleases (SSNs) hold extraordinary promise to unlock myriad gene editing applications in medicine and agriculture. However, developing small and specific SSNs is needed to overcome the delivery and specificity translational challenges of current genome engineering technologies. Structure-guided nucleases have been harnessed to generate double-strand DNA breaks but with limited success and translational potential. Here, we harnessed the power of peptide nucleic acids (PNAs) for site-specific DNA invasion and the generation of localized DNA structures that are recognized and cleaved by the eukaryotic resolvase AtMOC1 from Arabidopsis thaliana. We named this technology PNA-assisted Resolvase-mediated (PNR) editing. We tested the PNR editing concept in vitro and demonstrated its precise target specificity, examined the nucleotide requirement around the PNA invasion for the AtMOC1-mediated cleavage, mapped the AtMOC1-mediated cleavage sites, tested the role of different types and lengths of PNA molecules invasion into dsDNA for the AtMOC1-mediated cleavage, optimized the in vitro PNA invasion and AtMOC1 cleavage conditions such as temperature, buffer conditions, and cleavage time points, and demonstrated the multiplex cleavage for precise fragment release. We discuss the best design parameters for efficient, site-specific in vitro cleavage using PNR editors.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Quebras de DNA de Cadeia Dupla , DNA/química , Edição de Genes , Temperatura
10.
Anal Chem ; 96(19): 7470-7478, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696229

RESUMO

MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.


Assuntos
Vidro , MicroRNAs , Nanofios , Ácidos Nucleicos Peptídicos , Dióxido de Silício , MicroRNAs/análise , Ácidos Nucleicos Peptídicos/química , Dióxido de Silício/química , Humanos , Nanofios/química , Vidro/química , Técnicas Biossensoriais/métodos , Limite de Detecção
11.
Anal Chem ; 96(32): 13174-13184, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39093925

RESUMO

The small molecule epiberberine (EPI) is a natural alkaloid with versatile bioactivities against several diseases including cancer and bacterial infection. EPI can induce the formation of a unique binding pocket at the 5' side of a human telomeric G-quadruplex (HTG) sequence with four telomeric repeats (Q4), resulting in a nanomolar binding affinity (KD approximately 26 nM) with significant fluorescence enhancement upon binding. It is important to understand (1) how EPI binding affects HTG structural stability and (2) how enhanced EPI binding may be achieved through the engineering of the DNA binding pocket. In this work, the EPI-binding-induced HTG structure stabilization effect was probed by a peptide nucleic acid (PNA) invasion assay in combination with a series of biophysical techniques. We show that the PNA invasion-based method may be useful for the characterization of compounds binding to DNA (and RNA) structures under physiological conditions without the need to vary the solution temperature or buffer components, which are typically needed for structural stability characterization. Importantly, the combination of theoretical modeling and experimental quantification allows us to successfully engineer Q4 derivative Q4-ds-A by a simple extension of a duplex structure to Q4 at the 5' end. Q4-ds-A is an excellent EPI binder with a KD of 8 nM, with the binding enhancement achieved through the preformation of a binding pocket and a reduced dissociation rate. The tight binding of Q4 and Q4-ds-A with EPI allows us to develop a novel magnetic bead-based affinity purification system to effectively extract EPI from Rhizoma coptidis (Huang Lian) extracts.


Assuntos
Berberina , Quadruplex G , Berberina/química , Berberina/análogos & derivados , Berberina/farmacologia , Humanos , DNA/química , Ácidos Nucleicos Peptídicos/química
12.
Chembiochem ; 25(11): e202400029, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38595046

RESUMO

Peptide nucleic acid (PNA) based antisense strategy is a promising therapeutic approach to specifically inhibit target gene expression. However, unlike protein coding genes, identification of an ideal PNA binding site for non-coding RNA is not straightforward. Here, we compare the inhibitory activities of PNA molecules that bind a non-coding 4.5S RNA called SRP RNA, a key component of the bacterial signal recognition particle (SRP). A 9-mer PNA (PNA9) complementary to the tetraloop region of the RNA was more potent in inhibiting its interaction with the SRP protein, compared to an 8-mer PNA (PNA8) targeting a stem-loop. PNA9, which contained a homo-pyrimidine sequence could form a triplex with the complementary stretch of RNA in vitro as confirmed using a fluorescent derivative of PNA9 (F-PNA13). The RNA-PNA complex formation resulted in inhibition of SRP function with PNA9 and F-PNA13, but not PNA8 highlighting the importance of target site selection. Surprisingly, F-PNA13 which was more potent in inhibiting SRP function in vitro, showed weaker antibacterial activity compared to PNA9 likely due to poor cell penetration of the longer PNA. Our results underscore the importance of suitable target site selection and optimum PNA length to develop better antisense molecules against non-coding RNA.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Sítios de Ligação , RNA não Traduzido/genética , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Sequência de Bases , Conformação de Ácido Nucleico
13.
Biopolymers ; 115(2): e23567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37792292

RESUMO

Peptide nucleic acid (PNA) is a unique combination of peptides and nucleic acids. PNA can exhibit hydrogen bonding interactions with complementary nucleobases like DNA/RNA. Also, its polyamide backbone allows easy incorporation of biomolecules like peptides and proteins to build hybrid molecular constructs. Because of chimeric structural properties, PNA has lots of potential to build diverse nanostructures. However, progress in the PNA material field is still immature compared with its massive applications in antisense oligonucleotide research. Examples of well-defined molecular assemblies have been reported with PNA amphiphiles, self-assembling guanine-PNA monomers/dimers, and PNA-decorated nucleic acids/ polymers/ peptides. All these works indicate the great potential of PNA to be used as bionanomaterials. The review summarizes the recent reports on PNA-based nanostructures and their versatile applications. Additionally, this review shares a perspective to promote a better understanding of controlling molecular assembly by the systematic structural modifications of PNA monomers.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/metabolismo , DNA/química , Nanoestruturas/química , Peptídeos
14.
Pancreatology ; 24(4): 584-591, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693041

RESUMO

OBJECTIVES: We aimed to assess the diagnostic utility of an immunohistochemical panel including calcium-binding protein P, p53, Ki-67, and SMAD family member 4 and K-ras mutation for diagnosing pancreatic solid lesion specimens obtained by endoscopic ultrasound-guided fine-needle biopsy and to confirm their usefulness in histologically inconclusive cases. METHODS: Immunohistochemistry and peptide nucleic acid-clamping polymerase chain reaction for K-ras mutation were performed on 96 endoscopic ultrasound-guided fine-needle biopsy specimens. The diagnostic efficacy of each marker and the combination of markers was calculated. The diagnostic performances of these markers were evaluated in 27 endoscopic ultrasound-guided fine-needle biopsy specimens with histologically inconclusive diagnoses. A classification tree was constructed. RESULTS: K-ras mutation showed the highest accuracy and consistency. Positivity in more than two or three of the five markers showed high diagnostic accuracy (94.6 % and 93.6 %, respectively), and positivity for more than three markers showed the highest accuracy for inconclusive cases (92.0 %). A classification tree using K-ras mutation, Ki-67, S100P, and SMAD4 showed high diagnostic performance, with only two misclassifications in inconclusive cases. CONCLUSIONS: K-ras mutation detection via peptide nucleic acid-clamping polymerase chain reaction is a stable and accurate method for distinguishing between pancreatic ductal adenocarcinoma and non-pancreatic ductal adenocarcinoma lesions. A classification tree using K-ras mutation, Ki-67, S100P, and SMAD4 helps increase the diagnostic accuracy of cases that are histologically difficult to diagnose.


Assuntos
Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Antígeno Ki-67 , Mutação , Neoplasias Pancreáticas , Proteína Smad4 , Humanos , Proteína Smad4/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Antígeno Ki-67/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Reação em Cadeia da Polimerase/métodos , Adulto , Proteínas Proto-Oncogênicas p21(ras)/genética , Ácidos Nucleicos Peptídicos , Imuno-Histoquímica , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética
15.
Biomacromolecules ; 25(8): 4891-4897, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39017713

RESUMO

We demonstrate that the attachment of 30-170 bp dsDNA oligomers to ssDNA viral genomes gives a significant additional mobility shift in micelle-tagging electrophoresis (MTE). In MTE, a modified peptide nucleic acid amphiphile is attached to the viral genome to bind drag-inducing micelles present in capillary electrophoresis running buffers. Further attachment of 30-170 bp dsDNA oligomers drastically shifts the mobility of the 5.1 kB ssDNA genome of mouse minute virus (MMV), providing a new mechanism to improve resolution in CE-based analysis of kilobase nucleic acids. A model based on biased-reptation electrophoresis, end-labeled free-solution electrophoresis, and Ferguson gel-filtration theory is presented to describe the observed mobility shifts.


Assuntos
DNA , Genoma Viral , Micelas , Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , DNA/química , Eletroforese Capilar , DNA Viral/genética , DNA Viral/química , DNA de Cadeia Simples/química
16.
Org Biomol Chem ; 22(28): 5759-5767, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-38920402

RESUMO

Peptide nucleic acid (PNA) is a prominent artificial nucleic acid mimetic and modifications at the γ-position of the peptidic backbone are known to further enhance the desirable properties of PNA in terms of duplex stability. Here, we leveraged a propargyl ether modification at this position for late stage functionalization of PNA to obtain positively charged (cationic amino and guanidinium groups), negatively charged (anionic carboxylate and alkyl phosphonate groups) and neutral (PEG) PNAs to assess the impact of these charges on DNA : PNA and PNA : PNA duplex formation. Thermal stability analysis findings concurred with prior studies showing PNA : DNA duplexes are moderately more stable with cationic PNAs than anionic PNAs at physiological salt concentrations. We show that this effect is derived predominantly from differences in the association kinetics. For PNA : PNA duplexes, anionic PNAs were found to form the most stable duplexes, more stable than neutral PNA : PNA duplexes.


Assuntos
DNA , Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Cinética , DNA/química , Hibridização de Ácido Nucleico , Temperatura
17.
J Pept Sci ; 30(7): e3573, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38471735

RESUMO

Advantages like biocompatibility, biodegradability and tunability allowed the exploitation of peptides and peptidomimetics as versatile therapeutic or diagnostic agents. Because of their selectivity towards transmembrane receptors or cell membranes, peptides have also been identified as suitable molecules able to deliver in vivo macromolecules, proteins or nucleic acids. However, after the identification of the homodimer diphenylalanine (FF) as an aggregative motif inside the Aß1-42 polypeptide, short and ultrashort peptides have been studied as building blocks for the fabrication of supramolecular, ordered nanostructures for applications in biotechnological, biomedical and industrial fields. In this perspective, many hybrid molecules that combine FF with other chemical entities have been synthesized and characterized. Two novel hybrid derivatives (tFaF and cFgF), in which the FF homodimer is alternated with the peptide-nucleic acid (PNA) heterodimer "g-c" (guanine-cytosine) or "a-t" (adenine-thymine) and their dimeric forms (tFaF)2 and (cFgF)2 were synthesized. The structural characterization performed by circular dichroism (CD), Fourier transform infrared (FTIR) and fluorescence spectroscopies highlighted the capability of all the FF-PNA derivatives to self-assemble into ß-sheet structures. As a consequence of this supramolecular organization, the resulting aggregates also exhibit optoelectronic properties already reported for other similar nanostructures. This photoemissive behavior is promising for their potential applications in bioimaging.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/síntese química , Peptídeos/química , Peptídeos/síntese química , Fenilalanina/química , Fenilalanina/análogos & derivados , Dicroísmo Circular , Dipeptídeos/química , Dipeptídeos/síntese química
18.
Methods ; 218: 210-223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604247

RESUMO

While natural oligonucleotides (ONs) are increasingly used as therapeutic and diagnostic tools, they still face certain challenges such as low resistance to enzymatic degradation, potential immunogenicity, and delivery issues, which can limit their applications. Peptide Nucleic Acids (PNAs) are promising alternatives due to their high affinity for DNA and RNA, the high resistance to enzymatic degradation, and the easy introduction of a wide range of potential modifications. Chemical modifications that enable the covalent targeting of specific DNA and RNA strands offer additional advantages, including enhanced potency. The current study focuses on the utilization of furan-PNAs as pro-reactive probe systems and their applications to DNA and RNA targeting. Specifically, in this methodological paper, we provide practical insights into the design, synthesis, and application of furan-containing PNA probes for achieving efficient PNA-DNA and PNA-RNA interstrand crosslinking (ICL), as well as ON-templated PNA-PNA ligation systems. Furthermore, we discuss the applications of these probes in targeting DNA secondary structures, such as G-quadruplexes and i-motifs, target pull-down assays, and on-surface detection.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , RNA , Oligonucleotídeos , Furanos
19.
Clin Lab ; 70(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345980

RESUMO

BACKGROUND: Bacterial persisters are non- or slow-growing phenotypic variants that may be responsible for recalcitrance and relapse of persistent infections and antibiotic failure. In Escherichia coli, mqsRA is a well-known type II toxin-antitoxin system associated with persister cell formation. This study aimed to investigate the efficiency of an antisense peptide nucleic acid (PNA) targeting mqsRA in eliminating E. coli persisters. METHODS: The study included 600 non-duplicated urine samples from adult patients with suspected urinary tract infections. The isolates were subjected to antimicrobial susceptibility testing and bacterial persister cells assay. The presence of mqsRA in the isolates was evaluated by polymerase chain reaction. Finally, expression of the mqsR and mqsA genes was assessed after exposure to normal conditions, stress, and different concentrations of mqsR-PNA (1 - 35 µM). RESULTS: The mqsR gene was significantly overexpressed under stress conditions, which was compensated by the PNA treatment. Complete inhibition of E. coli persister cells was achieved after overnight treatment with the anti-mqsR-PNA at concentrations ≥ 15 µM. CONCLUSIONS: The growth of E. coli persister cells can be inhibited by the anti-mqsR-PNA. Further studies are required to evaluate the effectiveness of this antisense PNA in both preclinical and clinical settings.


Assuntos
Proteínas de Escherichia coli , Ácidos Nucleicos Peptídicos , Humanos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/metabolismo , Bactérias , Antibacterianos/farmacologia
20.
Nucleic Acids Res ; 50(10): e59, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35235944

RESUMO

Despite the rapid and broad implementation of CRISPR-Cas9-based technologies, convenient tools to modulate dose, timing, and precision remain limited. Building on methods using synthetic peptide nucleic acids (PNAs) to bind RNA with unusually high affinity, we describe guide RNA (gRNA) spacer-targeted, or 'antispacer', PNAs as a tool to modulate Cas9 binding and activity in cells in a sequence-specific manner. We demonstrate that PNAs rapidly and efficiently target complexed gRNA spacer sequences at low doses and without design restriction for sequence-selective Cas9 inhibition. We further show that short PAM-proximal antispacer PNAs achieve potent cleavage inhibition (over 2000-fold reduction) and that PAM-distal PNAs modify gRNA affinity to promote on-target specificity. Finally, we apply antispacer PNAs for temporal regulation of two dCas9-fusion systems. These results present a novel rational approach to nucleoprotein engineering and describe a rapidly implementable antisense platform for CRISPR-Cas9 modulation to improve spatiotemporal versatility and safety across applications.


Assuntos
Ácidos Nucleicos Peptídicos , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas , Edição de Genes/métodos , Ácidos Nucleicos Peptídicos/farmacologia , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA