Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 547
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 317, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654169

RESUMO

BACKGROUND: Fennel essential oils are fragrance compounds used in food and pharmaceutical sectors. One of the major impediments to expansion of fennel farming in Egypt's reclamation areas is saline water. Titanium dioxide (TiO2) or TiO2 nano particles (TiO2NP) can be utilized to boost the yield of aromatic plants cultivated under saline irrigation water. Saline water, particularly which contains sodium chloride can harm fennel plant; consequently, it was predicted that fennel production would fail in Egypt's reclaimed area, where the primary source of irrigation is groundwater consisting sodium chloride. This study sought to help fennel respond to sodium chloride by applying Ti forms to their leaves in order to reduce the detrimental effects of sodium chloride on them for expanding their production in the newly reclamation areas as a natural source of essential oil. Ti forms were applied as foliar application at 0, 0.1, 0.2 TiO2, 0.1 TiO2NP, and 0.2 TiO2NP, mM under irrigation with fresh water (0.4 dS m-1), or saline water (51.3 mM or 4.7 dS m-1). RESULTS: Plants exposed to 0.1 mM TiO2NP under fresh water resulted in the maximum values of morphological characters, estragole, oxygenated monoterpenes and photosynthetic pigments; while those subjected to 0.1 mM TiO2NP under saline water gave the greatest values of essential oil, proline, antioxidant enzymes and phenols. The greatest amounts of soluble sugars were recorded with 0.2 mM TiO2NP irrigated with saline water. Plants subjected to 0 mM TiO2 under saline water produced the greatest values of flavonoids, hydrogen peroxide and malondialdehyde. CONCLUSION: To mitigate the negative effects of salty irrigation water on fennel plant production, TiO2NP application is suggested as a potential strategy.


Assuntos
Irrigação Agrícola , Foeniculum , Folhas de Planta , Titânio , Irrigação Agrícola/métodos , Folhas de Planta/efeitos dos fármacos , Foeniculum/química , Nanopartículas , Águas Salinas , Óleos Voláteis
2.
Plant Physiol ; 191(3): 1913-1933, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36508356

RESUMO

Plant responses to salinity are becoming increasingly understood, however, salt priming mechanisms remain unclear, especially in perennial fruit trees. Herein, we showed that low-salt pre-exposure primes olive (Olea europaea) plants against high salinity stress. We then performed a proteogenomic study to characterize priming responses in olive roots and leaves. Integration of transcriptomic and proteomic data along with metabolic data revealed robust salinity changes that exhibit distinct or overlapping patterns in olive tissues, among which we focused on sugar regulation. Using the multi-crossed -omics data set, we showed that major differences between primed and nonprimed tissues are mainly associated with hormone signaling and defense-related interactions. We identified multiple genes and proteins, including known and putative regulators, that reported significant proteomic and transcriptomic changes between primed and nonprimed plants. Evidence also supported the notion that protein post-translational modifications, notably phosphorylations, carbonylations and S-nitrosylations, promote salt priming. The proteome and transcriptome abundance atlas uncovered alterations between mRNA and protein quantities within tissues and salinity conditions. Proteogenomic-driven causal model discovery also unveiled key interaction networks involved in salt priming. Data generated in this study are important resources for understanding salt priming in olive tree and facilitating proteogenomic research in plant physiology.


Assuntos
Modelos Genéticos , Olea , Tolerância ao Sal , Olea/efeitos dos fármacos , Olea/genética , Tolerância ao Sal/genética , Raízes de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Estresse Salino/genética , Proteômica , Transcriptoma/efeitos dos fármacos , Águas Salinas/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
3.
Environ Sci Technol ; 58(2): 1131-1141, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38169368

RESUMO

Hydrogen gas evolution using an impure or saline water feed is a promising strategy to reduce overall energy consumption and investment costs for on-site, large-scale production using renewable energy sources. The chlorine evolution reaction is one of the biggest concerns in hydrogen evolution with impure water feeds. The "alkaline design criterion" in impure water electrolysis was examined here because water oxidation catalysts can exhibit a larger kinetic overpotential without interfering chlorine chemistry under alkaline conditions. Here, we demonstrated that relatively inexpensive thin-film composite (TFC) membranes, currently used for high-pressure reverse osmosis (RO) desalination applications, can have much higher rejection of Cl- (total crossover of 2.9 ± 0.9 mmol) than an anion-exchange membrane (AEM) (51.8 ± 2.3 mmol) with electrolytes of 0.5 M KOH for the anolyte and 0.5 M NaCl for the catholyte with a constant current (100 mA/cm2 for 20 h). The membrane resistances, which were similar for the TFC membrane and the AEM based on electrochemical impedance spectroscopy (EIS) and Ohm's law methods, could be further reduced by increasing the electrolyte concentration or removal of the structural polyester supporting layer (TFC-no PET). TFC membranes could enable pressurized gas production, as this membrane was demonstrated to be mechanically stable with no change in permeate flux at 35 bar. These results show that TFC membranes provide a novel pathway for producing green hydrogen with a saline water feed at elevated pressures compared to systems using AEMs or porous diaphragms.


Assuntos
Cloro , Hidrogênio , Metacrilatos , Osmose , Membranas Artificiais , Águas Salinas , Cloretos
4.
Environ Sci Technol ; 58(29): 13120-13130, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38985512

RESUMO

While flow-electrode capacitive deionization (FCDI) is recognized as an attractive desalination technology, its practical implementation has been hindered by the ease of scaling and energy-intensive nature of the single-cell FCDI system, particularly when treating brackish water with elevated levels of naturally coexisting SO42- and Ca2+. To overcome these obstacles, we propose and design an innovative ion-selective metathesis FCDI (ISM-FCDI) system, consisting of a two-stage tailored cell design. Results indicate that the specific energy consumption per unit volume of water for the ISM-FCDI is lower (by up to ∼50%) than that of a conventional single-stage FCDI due to the parallel circuit structure of the ISM-FCDI. Additionally, the ISM-FCDI benefits from a conspicuous disparity in the selective removal of ions at each stage. The separate storage of Ca2+ and SO42- by the metathesis process in the ISM-FCDI (46.25% Ca2+, 14.25% SO42- in electrode 1 and 4.75% Ca2+, 35.25% SO42- in electrode 2) can effectively prevent scaling. Furthermore, configuration-performance analysis on the ion-selective migration suggests that the properties of the ion exchange membrane, rather than the carbon species, govern the selectivity of ion removal. This work introduces system-level enhancements aimed at enhancing energy conservation and scaling prevention, providing critical optimization of the FCDI for brackish water softening.


Assuntos
Eletrodos , Águas Salinas , Purificação da Água , Purificação da Água/métodos , Águas Salinas/química , Íons , Abrandamento da Água
5.
Environ Res ; 241: 117654, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980990

RESUMO

Water is a fundamental requirement for the survival of human beings. Although water is abundantly available across the globe, access to freshwater still remains a major concern. Most of the water available is saline or brackish, which is not fit for human consumption. Desalination is the optimum solution for production of potable water from saline water. A major shortcoming of conventional desalination technologies is their dependence on fossil fuel that results in environmental degradation, global warming, etc. Therefore, sustainable desalination technology has evolved as a need of hour. Among all renewable energy resources, solar energy is abundantly available and can be potentially harvested. Therefore, solar energy can be used to drive sustainable desalination technologies. A solar still converts saline water into freshwater in a single step using solar energy. But the major drawbacks of solar still are relatively lower efficiency and lower yield. Nanofluids are widely used to overcome these limitations due to their extraordinary and unique properties. This paper critically reviews the recent research performed on the application of nanofluids in solar desalination systems. Methods of nanofluid preparation, their types and properties are also discussed in detail. Application of nanofluids in solar desalination systems is discussed with special attention on performance enhancement of solar stills. Combinations of nanofluids with various other performance enhancement techniques are also considered. The effectiveness of nanofluids in solar stills is found to be dependent majorly on the nature and concentration of the nanofluid used.


Assuntos
Energia Solar , Humanos , Combustíveis Fósseis , Água Doce , Aquecimento Global , Águas Salinas
6.
BMC Vet Res ; 20(1): 219, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778406

RESUMO

The study aimed to assess the effects of water salinity on the sperm parameters, levels of cortisol, LH, FSH, testosterone and antioxidants as well as the testes' histopathology in Barki rams. Fifteen healthy Barki rams (1-1.5 years) were divided into three equal depending on the type of drinking water for nine months. The rams in the tap water group (TW, water that contained 350 ppm of total dissolved salts (TDS). Males in the high saline water group (HSW) were permitted to consume high saline water with 8,934 ppm TDS, whereas those in the second group were permitted to have moderately saline water (MSW, 4,557 ppm TDS). High salt concentration in drinking water had adverse effect on sperm viability, morphology and sperm cell concertation. Nitric oxide and malondialdehyde concentrations in blood were significantly higher in the MSW and HSW groups than in TW. There was a significant decrease in glutathione concentration as well as superoxide dismutase activity in TDS and HSW. Cortisol was most highly concentrated in the HSW, next in the MSW, and least in TW. The testosterone, LH, and FSH concentrations in the HSW and MSW groups were significantly lower than in TW. As the salt concentration in drinking water increases, damage to testicular tissue. The MSW group demonstrating vacuolation of lining epithelial cells with pyknotic nuclei in the epididymis and necrosis and desquamation of spermatogenic cells in seminiferous tubules while HSW group displaying desquamated necrotic cells and giant cell formation in the epididymis, as well as damage to some of the seminiferous tubules and showed congestion, vacuolation of spermatogenic epithelium of seminiferous tubules, and desquamated necrotic spermatogenic epithelium. In conclusion, the salinity of the water has detrimental impacts on the sperm morphology, viability and concentration, hormones and antioxidant levels in Barki rams.


Assuntos
Antioxidantes , Espermatozoides , Testículo , Testosterona , Masculino , Animais , Testículo/efeitos dos fármacos , Testículo/patologia , Antioxidantes/metabolismo , Espermatozoides/efeitos dos fármacos , Ovinos , Testosterona/sangue , Hormônio Foliculoestimulante/sangue , Hidrocortisona/sangue , Águas Salinas , Hormônio Luteinizante/sangue
7.
J Environ Manage ; 352: 120087, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215592

RESUMO

Saline water has proven to be one of the alternative sources of freshwater for agricultural irrigation in water-scarce areas. However, the changes in farmland ecology caused by saline water irrigation remain unclear. In this study, six irrigation water salinities (CK: 1.3 dS m-1, S1: 3.4 dS m-1, S2: 7.1 dS m-1, S3: 10.6 dS m-1, S4: 14.1 dS m-1, S5: 17.7 dS m-1) were set in a three-year (2019, 2021-2022) experiment to investigate their effects on soil environment and greenhouse gas emissions in cotton fields under long-term saline water irrigation. Results show that soil salinity in the same layer increased as increasing water salinity. Soil moisture of S3-S5 increased significantly by 4.99-12.94%. There was no significant difference in soil organic matter content between CK and S1. Saline water irrigation increased soil ammonium nitrogen content by 0.57-49.26%, while decreasing nitrate nitrogen content by 1.43-32.03%. Soil CO2 and N2O emissions and CH4 uptake were lower in S1-S5 than in CK at different cotton growth stages. In addition, saline water irrigation reduced the global warming potential by 6.93-53.86%. A structural equation model was developed to show that soil salinity, moisture, and ammonium nitrogen content were negatively correlated with global warming potential, while organic matter and nitrate nitrogen had positive effects on global warming potential. Considering the comprehensive perspectives of gas emissions and cotton yield, irrigation water with salinity less than 10.6 dS m-1 could effectively reduce greenhouse gas emissions from cotton fields while maintaining stable cotton yields in the experimental area and similar region.


Assuntos
Compostos de Amônio , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Nitratos , Óxido Nitroso/análise , Solo/química , Irrigação Agrícola/métodos , China , Águas Salinas , Nitrogênio , Agricultura , Fertilizantes/análise , Metano/análise
8.
Environ Monit Assess ; 196(6): 501, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698138

RESUMO

Brackish waters and estuaries at the lower reaches of rivers accumulate organic matter and nutrients from various sources in the watershed. Sufficient light and shallow water depth stimulate phytoplankton growth, resulting in a more diversified ecosystem with higher trophic levels. For effective watershed management, it is crucial to characterize the water quality of all rivers, including small and medium-sized ones. Our field survey assessed water quality parameters in 26 inflow rivers surrounding Lakes Shinji and Nakaumi, two consolidated brackish lakes in Japan. The parameters included water temperature, salinity, chlorophyll-a, and nutrients. The study used hierarchical clustering. The Silhouette Index was used to assess clustering outcomes and identify any difficulties in dispersion across clusters. The 26 rivers surrounding Lakes Shinji and Nakaumi were classified into six groups based on their water quality characteristics. This classification distinguishes itself from earlier subjective methods that relied on geographical factors. The new approach identifies a need for improved management of river water quality. The results of the cluster analysis provide valuable insights for future management initiatives. It is important to consider these findings alongside established watershed criteria.


Assuntos
Monitoramento Ambiental , Lagos , Rios , Qualidade da Água , Lagos/química , Monitoramento Ambiental/métodos , Rios/química , Análise por Conglomerados , Japão , Poluentes Químicos da Água/análise , Salinidade , Clorofila A/análise , Águas Salinas , Clorofila/análise , Fitoplâncton/classificação , Fitoplâncton/crescimento & desenvolvimento
9.
BMC Plant Biol ; 23(1): 382, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550615

RESUMO

BACKGROUND: Currently, using unconventional water sources in agriculture has become necessary to face overpopulation worldwide. Therefore, a pot experiment was carried out to evaluate the effects of irrigation with saline water in the presence of co-applied wood chips biochar (WCB) with chemical fertilizers on physicochemical properties and nutrient availability as well as growth parameters, and yield of red radish (Raphanus sativus L.) grown in the saline sandy soil. METHODS: The WCB was added to the saline sandy soil at levels of 0 (control), 2.5, and 5% w/w. Then, this soil was cultivated by red radish plants and irrigated with saline water (5 dS m- 1). This experiment was performed in a randomized complete block design with three replicates. RESULTS: Compared with the control treatment, WCB treatments increased significantly soil water holding capacity by 34.8% and 73.2% for levels of 2.5 and 5%, respectively. Soil pH decreased significantly in all WCB treatments. The relative increase in the total available nitrogen over the control was 30.1 and 103.5% for 2.5 and 5% wood chips biochar, respectively. Compared to the control, applying WCB at 2.5% led to an increase in the fresh root weight of red radish plants by 142.7%, while 5% caused a decrease in the fresh root weight of red radish plants by 29.4%. CONCLUSION: Recently, WCB represents an interesting approach to the rehabilitation of saline soils and the management of using saline water sources. It is recommended that combined application of WCB at a level of 2.5% with chemical fertilizers in order to improve red radish growth and nutrient retention in the saline sandy soil which preserves the ecosystem as well as increases productivity leading to the reduction of costs.


Assuntos
Raphanus , Solo , Carvão Vegetal , Ecossistema , Fertilizantes , Águas Salinas , Areia , Solo/química , Madeira
10.
Artigo em Inglês | MEDLINE | ID: mdl-37486346

RESUMO

An isolation effort focused on sporogenous Actinomycetota from the Tagus estuary in Alcochete, Portugal, yielded a novel actinomycetal strain, designated MTZ3.1T, which was subjected to a polyphasic taxonomic study. MTZ3.1T is characterised by morphology typical of members of the genus Streptomyces, with light beige coloured substrate mycelium, which does not release pigments to the culture medium and with helicoidal aerial hyphae that differentiate into spores with a light-grey colour. The phylogeny of MTZ3.1T, based on the full 16S rRNA gene sequence, indicated that its closest relatives were Streptomyces alkaliterrae OF1T (98.48 %), Streptomyces chumphonensis KK1-2T (98.41 %), Streptomyces albofaciens JCM 4342T (98.34 %), Streoptomyces paromomycinus NBRC 15454T (98.34 %) and Streptomyces chrestomyceticus NRBC 13444T (98.34 %). Moreover, average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridisation (dDDH) are below the species cutoff values (ANI 67.70 and 68.35 %, AAI 77.06 and 76.71 % and dDDH 22.10 and 21.50 % for S. alkaliterrae OF1T and S. chumphonensis KK1-2T, respectively). Whole genome sequencing revealed that MTZ3.1T has a genome of 5 644 485 bp with a DNA G+C content of 71.29 mol% and 5044 coding sequences. Physiologically, MTZ3.1T is strictly aerobic, able to grow at 15-37 °C, optimally at 25 °C and between pH5 and 8 and showed high salinity tolerance, growing with 0-10 %(w/v) NaCl. Major cellular fatty acids are C15 : 0, iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. Furthermore, it was able to utilise a variety of nitrogen and carbon sources. Antimicrobial screening indicated that MTZ3.1T has potent anti-Staphylococcus aureus activity. On the basis of the polyphasic data, MTZ3.1T is proposed to represent a novel species, Streptomyces meridianus sp. nov. (= CECT 30416T = DSM 114037T=LMG 32463T).


Assuntos
Ácidos Graxos , Streptomyces , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Portugal , Estuários , Análise de Sequência de DNA , Filogenia , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácido Diaminopimélico/química , Águas Salinas , Fosfolipídeos/química
11.
Int Microbiol ; 26(3): 591-600, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36609954

RESUMO

This study evaluated the potential pathogenicity and antimicrobial resistance (AMR) of Vibrio species isolated from inland saline shrimp culture farms. Out of 200 Vibrio isolates obtained from 166 shrimp/water samples, 105 isolates were identified as V. parahaemolyticus and 31 isolates were identified as V. alginolyticus and V. cholerae, respectively. During PCR screening of virulence-associated genes, the presence of the tlh gene was confirmed in 70 and 19 isolates of V. parahaemolyticus and V. alginolyticus, respectively. Besides, 10 isolates of V. parahaemolyticus were also found positive for trh gene. During antibiotic susceptibility testing (AST), very high resistance to cefotaxime (93.0%), amoxiclav (90.3%), ampicillin (88.2%), and ceftazidime (73.7%) was observed in all Vibrio species. Multiple antibiotic resistance (MAR) index values of Vibrio isolates ranged from 0.00 to 0.75, with 90.1% of isolates showing resistance to ≥ 3 antibiotics. The AST and MAR patterns did not significantly vary sample-wise or Vibrio species-wise. During the minimum inhibitory concentration (MIC) testing of various antibiotics against Vibrio isolates, the highest MIC values were recorded for amoxiclav followed by kanamycin. These results indicated that multi-drug resistant Vibrio species could act as the reservoirs of antibiotic resistance genes in the shrimp culture environment. The limited host range of 12 previously isolated V. parahaemolyticus phages against V. parahaemolyticus isolates from this study indicated that multiple strains of V. parahaemolyticus were prevalent in inland saline shrimp culture farms. The findings of the current study emphasize that routine monitoring of emerging aquaculture areas is critical for AMR pathogen risk assessment.


Assuntos
Vibrio cholerae , Vibrio parahaemolyticus , Antibacterianos/farmacologia , Prevalência , Farmacorresistência Bacteriana/genética , Inocuidade dos Alimentos , Águas Salinas
12.
J Basic Microbiol ; 63(8): 855-867, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078839

RESUMO

Water salinity causes less production of agricultural productivity, low economic returns, soil destructions, less sustainability, and reduction in the germination rate. The current study was aimed to understand the combined potential of halophilic bacteria and rice husk in treating water salinity. In total, 10 halophilic bacterial isolates were isolated from Khewra Mines, Pakistan. Bacterial isolates were characterized by biochemical tests. 16S rRNA gene sequencing identified the isolate SO 1 as Bacillus safensis (accession number ON203008) being the promising halophilic bacteria tolerating upto 3 M NaCl concentration. Next, rice husk was used as carbon source for bacterial biofilm formation, growth and propagation. For saline water treatment, the experimental setting comprising glass wool, rice husk and artificial sea water (3 M) was set. B. safensis biofilm was developed in test samples to desaline the saline water containing 3 M NaCl concentration. Following NaCl decline, flame photometric analysis was used to check the desalination extent of treated saline water. Results showed decreased sodium level in sea water in the presence of rice husk and glass wool. The eluted water used for the germination of Zea mays seeds showed improved growth performance. Also, decreased photosynthetic pigments (chlorophyll "a" = 18.99, and chlorophyll "b" = 10.65), sugar contents (0.7593), and increased carotenoid (1526.91), protein contents (0.4521) were noted compared to control. This eco-friendly approach for bioremediation of salt-affected soils to optimize crop yields under stress through halophilic bacteria and rice husk may overcome the problem of the reduced yield of cash crops/agriculture and water shortage by salinity.


Assuntos
Oryza , Cloreto de Sódio/metabolismo , RNA Ribossômico 16S/genética , Archaea/genética , Clorofila/metabolismo , Solo/química , Águas Salinas , Biofilmes , Salinidade
13.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674925

RESUMO

Capacitive deionization (CDI) is a promising and cost-effective technology that is currently being widely explored for removing dissolved ions from saline water. This research developed materials based on activated carbon (AC) materials modified with zinc oxide (ZnO) nanorods and used them as high-performance CDI electrodes for water desalination. The as-prepared electrodes were characterized by cyclic voltammetry, and their physical properties were studied through SEM and XRD. ZnO-coated AC electrodes revealed a better specific absorption capacity (SAC) and an average salt adsorption rate (ASAR) compared to pristine AC, specifically with values of 123.66 mg/g and 5.06 mg/g/min, respectively. The desalination process was conducted using a 0.4 M sodium chloride (NaCl) solution with flow rates from 45 mL/min to 105 mL/min under an applied potential of 1.2 V. Furthermore, the energy efficiency of the desalination process, the specific energy consumption (SEC), and the maximum and minimum of the effluent solution concentration were quantified using thermodynamic energy efficiency (TEE). Finally, this work suggested that AC/ZnO material has the potential to be utilized as a CDI electrode for the desalination of saline water.


Assuntos
Purificação da Água , Óxido de Zinco , Carvão Vegetal , Cloreto de Sódio , Águas Salinas , Eletrodos
14.
Water Sci Technol ; 88(11): 2849-2861, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096073

RESUMO

Capacitive deionization (CDI) is considered a promising technology for desalination of sea or brackish water. In this study, a ZnS/g-C3N4 composite was synthesized through a one-step high-temperature method and used as the main material to fabricate CDI electrodes. The results of SEM and TEM showed that spherical-like nanoparticles of ZnS were uniformly distributed on the g-C3N4 sheet. The g-C3N4 phase facilitates the ZnS particles precipitate and restrain their agglomeration, which contributes to a high specific surface area of ZnS. Furthermore, the electrochemical test results indicated that ZnS/g-C3N4 composite had a good capacitance characteristic, low resistance, and high electrochemical stability. Finally, the desalinization performance of the ZnS/g-C3N4 composite electrodes was tested in traditional mode and membrane capacitive deionization (MCDI) mode. The results showed that ZnS/g-C3N4//ZnS/g-C3N4 (MCDI) exhibited an optimal desalination capacity. The adsorption amount was 27.65, 50.26, and 65.34 mg/g for NaCl initial concentration of 200, 400, and 600 mg/L, respectively, with the voltage of 1.2 V and flow rate of 5 mL/min. Increasing initial concentration enhanced the conductivity and ion migration rate so as to increase the NaCl adsorption amount. ZnS/g-C3N4 composite can be used as potential electrode material for high performance of MCDI.


Assuntos
Cloreto de Sódio , Purificação da Água , Purificação da Água/métodos , Condutividade Elétrica , Águas Salinas , Eletrodos
15.
Environ Geochem Health ; 45(9): 6807-6822, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36445536

RESUMO

Owing to their widespread distribution and high bioaccumulation, microplastics (MPs) and mercury (Hg) are considered major threats to the ocean. MP interacts with Hg because of its high adsorption properties. However, their toxicological interactions with marine organisms, especially combined effects at the molecular level, are poorly understood. This study investigated the single and combined effects of MP and Hg on the metabolic profile of the brackish water flea Diaphanosoma celebensis. A total of 238 metabolites were significantly affected by MP, Hg, or MP + Hg. Metabolite perturbation patterns showed that toxicity of Hg and MP + Hg was similar and that of MP was not significant. Among the 223 metabolites affected by Hg, profiles of 32 unannotated metabolites were significantly different from those of MP + Hg, and combined effects of MP + Hg decreased the effect of Hg on 25 of these metabolites. Only 11 annotated metabolites were significantly affected by Hg or MP + Hg and were related to carbohydrate, lipid, vitamin, and ecdysteroid metabolism. Ten metabolites were decreased by Hg and MP + Hg and were not significantly different between the exposure groups. Enrichment analysis showed that galactose, starch, and sucrose metabolism were the most affected pathways. These findings suggest that MP has negligible toxic effect, and Hg can induce energy depletion, membrane damage, and disruption of growth, development, and reproduction. Although the impact of MP was negligible, the combined effects of MP + Hg could be metabolite specific. This study provides better understanding of the combined effects of MP and Hg on marine organisms.


Assuntos
Cladocera , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Mercúrio/análise , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Microplásticos/toxicidade , Plásticos , Águas Salinas , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
16.
Environ Monit Assess ; 195(4): 467, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917357

RESUMO

Soil application of pyrolyzed biomass (biochar) has been proposed as an effective strategy for managing degraded land, but its limitations as a sole nutrient supplier discourage its widespread application as a soil amendment. Excessive use of saline water for irrigation leads to buildup of salts and other toxic ions, which cause a decline in the availability of essential nutrients due to negative effects on the mineralization process. Therefore, a long-term incubation experiment was conducted for 52 weeks to study the individual or combined impact of pyrolyzed [biochar derived from rice residue (RB)] and unpyrolyzed organic materials [rice residue (RR) and animal manure (AM)] on nitrogen (N) dynamics in soil irrigated with water of varying electrical conductivity (EC) (EC0.3 [non-saline canal water), EC10, and EC15 dS m-1 (saline)]. Increasing salinity had an adverse effect on N mineralization, reducing it by 20-70% during the incubation period. Irrespective of the EC, soil amended with AM showed greater and faster N mineralization than unamended control, while individual application of RB or RR showed immobilization of N during the early period of incubation. However, conjoint application of pyrolyzed (RB) and unpyrolyzed organic materials (RR or AM) showed enhanced mineralized N content (26-96%) compared with the sole biochar-amended soil irrigated with water of different EC levels. It was most likely due to the synergic effect of unpyrolyzed materials on the mineralization rate of biochar. On the other hand, the high cation exchange capacity, large surface area, and greater total porosity of the biochar may cause stronger adsorption of free NH4+-N released from the labile organic amendments, thereby moderating the N mineralization process under saline conditions. Therefore, it is recommended that biochar be used in conjunction with AM or RR to ensure the prolonged availability of N in a saline environment.


Assuntos
Nitrogênio , Solo , Animais , Solo/química , Nitrogênio/análise , Monitoramento Ambiental , Carvão Vegetal/química , Águas Salinas , Esterco
17.
Trop Anim Health Prod ; 55(1): 59, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723688

RESUMO

Consuming saline water causes animals salinity stress, which leads to many adapting metabolic changes that could negatively affect its performance and the quality of the derived products. Therefore, this study aimed to evaluate the impact of increasing diet protein level on the productive performance of growing lambs drinking natural saline water in Egyptian semi-arid region. Twenty-four growing Barki lambs (4-5 months old) with an initial body weight of 20.7 ± 0.25 kg were randomly distributed into four similar groups for 150 days. Two diets were formulated: low protein and high protein levels (concentrate feed mixture containing 14% and 20% crude protein (CP) on dry matter basis, respectively). Within each level of CP, natural saline water was represented by low saline (LS) and high saline (HS) water, containing 658 and 2100 mg/L of total dissolved solids, respectively. Results showed that the HS water increased (p = 0.02) water intake by about 18% and had adverse effect (p < 0.001) on dry matter intake, nutrient digestibility, and growth performance. The ruminal pH values, total volatile fatty acids, and ammonia-N concentrations were not affected by drinking the HS water. However, the protein supplementation enhanced the HS lambs' nutrients digestion and showed greater growth performance. The HS water decreased (p < 0.001) the serum concentrations of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and increased (p = 0.03) the urea-N by about 9%. The protein supplementation amended the serum ALT and AST concentrations of HS lambs. It is concluded that the dietary protein supply was affective sustainable management strategy against the deleterious effect of drinking high saline water on growing lambs.


Assuntos
Ração Animal , Digestão , Animais , Ração Animal/análise , Dieta/veterinária , Ingestão de Líquidos , Rúmen/metabolismo , Ovinos , Carneiro Doméstico , Águas Salinas/farmacologia
18.
BMC Microbiol ; 22(1): 11, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991470

RESUMO

BACKGROUND: The saline-alkali soil area accounts for over 1/4-1/5 of the land area in Gansu Province of China, which are mainly distributed in the north of Hexi corridor and Jingtai basin. The unique ecological environment contains unique and diverse microbial resources. The investigation of microbial diversity in saline environment is vital to comprehend the biological mechanisms of saline adaption, develop and utilize microbial resources. RESULTS: The Illumina MiSeq sequencing method was practiced to investigate the bacterial diversity and composition in the 5 subtypes and 13 genera of saline-alkali soil in Gansu Province, China. The results from this study show that Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Gemmatimonadetes were the dominant bacterial groups in 13 saline soil. Proteobacteria had the greatest abundance in sulfate-type meadow solonchaks and orthic solonchaks, chloride-type orthic solonchaks and bog solonchaks, sulfate-chloride-type, chloride-sulfate-type, and sulfate-type dry solonchaks. Halobacteria was the dominant bacterial class in soil samples except for sulfate-type meadow solonchaks and orthic solonchaks, chloride-type orthic solonchaks and bog solonchaks. The richness estimators of Ace and Chao 1 and the diversity indices of Shannon and Simpson revealed the least diversity in bacterial community in sulfate-chloride-type orthic solonchaks. CONCLUSIONS: The sulfate anion was the most important driving force for bacterial composition (17.7%), and the second most influencing factor was pH value (11.7%).


Assuntos
Clima Desértico , Microbiota , Microbiologia do Solo , Solo/química , Álcalis/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Cloretos/análise , Águas Salinas/análise , Sulfatos/análise
19.
Mol Phylogenet Evol ; 171: 107457, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351635

RESUMO

The biogeography and molecular phylogeny of invertebrate zooplankton populations from inland saline waters remains under-explored in the Eastern Palearctic, especially the Qinghai-Tibetan Plateau. Here, we surveyed the diversity of the Brachionus plicatilis Müller, 1786 species complex from inland saline waters across China. We compared morphometrics with DNA taxonomy (using two genetic markers: the mitochondrial cytochrome c oxidase subunit I (COI) gene and the nuclear internal transcribed spacer (ITS-1)). Our phylogenies based on the sequences of ITS-1 recognized two distinct clades (i.e. two species: B. plicatilis sensu stricto (s.s.) and B. asplanchnoidis) in China. We detected two mitochondrial clades within B. plicatilis s.s and one within B. asplanchnoidis across China, consistent with the three morphogroups present. One of these three clades was novel and restricted to the Qinghai-Tibetan Plateau, where it exhibited evidence of recent expansion across the region. The new mitochondrial clade fell within B. plicatilis s.s. but was sister to all other mitochondrial sequences of that species, suggesting a period of isolation from other populations. Moreover, significant morphological differences were identified: B. plicatilis s.s. from the Qinghai-Tibetan Plateau had a larger lorica length and width than did members of this species from lowland China. Our data demonstrate the successful adaptation of this species complex to the harsh environment of the Qinghai-Tibetan Plateau.


Assuntos
Rotíferos , Animais , China , DNA Mitocondrial/genética , Variação Genética , Filogenia , Rotíferos/genética , Águas Salinas , Tibet
20.
Artigo em Inglês | MEDLINE | ID: mdl-35076362

RESUMO

Two Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and non-motile strains (LM13ST and JZCK2T) were isolated from hypersaline lakes in China. The colonies of both strains were yellow-pigmented and convex. Both strains could grow at 4-34 °C, pH 6.5-9.0 and with 1.0-13.0 % (w/v) NaCl. Comparisons based on 16S rRNA gene sequences showed that strains LM13ST and JZCK2T share less than 98.3 % similarity with species of the genus Salegentibacter. The phylogenetic tree reconstructed based on 16S rRNA gene sequences also showed that Salegentibacter species are the most closely related neighbours of strains LM13ST and JZCK2T. The sequenced draft genome sizes of strains LM13ST and JZCK2T are 4.06 and 4.22 Mbp with G+C contents of 37.0 and 37.8 mol%, respectively. The phylogenomic tree reconstructed using the Up-to-date Bacterial Core Gene set pipeline also demonstrated that both strains belong to the genus Salegentibacter. The calculated pairwise average nucleotide identity values and digital DNA-DNA hybridization values between strains LM13ST and JZCK2T and Salegentibacter species were less than 86.4 and 32.0 %, respectively. The respiratory quinone in both strains was MK-6. Their major fatty acids were iso-C12 : 0, iso-C14 : 0, C15 : 1 ω10c, iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and C17 : 1 ω10c. Their major polar lipids included phosphatidylethanolamine, one unidentified lipid and one unidentified aminolipid, but strain LM13ST also contained one more unidentified aminolipid, one more unidentified lipid and one unidentified phospholipid. Combining the above descriptions, strains LM13ST and JZCK2T should represent two independent novel species of the genus Salegentibacter, for which the names Salegentibacter lacus sp. nov. (type strain LM13ST=GDMCC 1.2643T=KCTC 82861T) and Salegentibacter tibetensis sp. nov. (type strain JZCK2T=GDMCC 1.2621T=KCTC 82862T) are proposed.


Assuntos
Ácidos Graxos , Flavobacteriaceae/classificação , Lagos , Filogenia , Águas Salinas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Lagos/microbiologia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA