Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(6): 1334-44, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046438

RESUMO

Females may display dramatically different behavior depending on their state of ovulation. This is thought to occur through sex-specific hormones acting on behavioral centers in the brain. Whether incoming sensory activity also differs across the ovulation cycle to alter behavior has not been investigated. Here, we show that female mouse vomeronasal sensory neurons (VSNs) are temporarily and specifically rendered "blind" to a subset of male-emitted pheromone ligands during diestrus yet fully detect and respond to the same ligands during estrus. VSN silencing occurs through the action of the female sex-steroid progesterone. Not all VSNs are targeted for silencing; those detecting cat ligands remain continuously active irrespective of the estrous state. We identify the signaling components that account for the capacity of progesterone to target specific subsets of male-pheromone responsive neurons for inactivation. These findings indicate that internal physiology can selectively and directly modulate sensory input to produce state-specific behavior. PAPERCLIP.


Assuntos
Ciclo Estral , Camundongos/fisiologia , Comportamento Sexual Animal , Olfato , Órgão Vomeronasal/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Feromônios/metabolismo , Progesterona/metabolismo , Proteínas/química , Caracteres Sexuais , Órgão Vomeronasal/citologia
2.
Genesis ; 62(2): e23596, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38665067

RESUMO

The vomeronasal organ (VNO) is a part of the accessory olfactory system, which detects pheromones and chemical factors that trigger a spectrum of sexual and social behaviors. The vomeronasal epithelium (VNE) shares several features with the epithelium of the main olfactory epithelium (MOE). However, it is a distinct neuroepithelium populated by chemosensory neurons that differ from the olfactory sensory neurons in cellular structure, receptor expression, and connectivity. The vomeronasal organ of rodents comprises a sensory epithelium (SE) and a thin non-sensory epithelium (NSE) that morphologically resembles the respiratory epithelium. Sox2-positive cells have been previously identified as the stem cell population that gives rise to neuronal progenitors in MOE and VNE. In addition, the MOE also comprises p63 positive horizontal basal cells, a second pool of quiescent stem cells that become active in response to injury. Immunolabeling against the transcription factor p63, Keratin-5 (Krt5), Krt14, NrCAM, and Krt5Cre tracing experiments highlighted the existence of horizontal basal cells distributed along the basal lamina of SE of the VNO. Single cell sequencing and genetic lineage tracing suggest that the vomeronasal horizontal basal cells arise from basal progenitors at the boundary between the SE and NSE proximal to the marginal zones. Moreover, our experiments revealed that the NSE of rodents is, like the respiratory epithelium, a stratified epithelium where the p63/Krt5+ basal progenitor cells self-replicate and give rise to the apical columnar cells facing the lumen of the VNO.


Assuntos
Órgão Vomeronasal , Órgão Vomeronasal/metabolismo , Órgão Vomeronasal/citologia , Animais , Camundongos , Mucosa Olfatória/metabolismo , Mucosa Olfatória/citologia , Queratina-15/metabolismo , Queratina-15/genética , Queratina-5/metabolismo , Queratina-5/genética , Queratina-14/metabolismo , Queratina-14/genética , Transativadores/genética , Transativadores/metabolismo
3.
J Neurosci ; 40(27): 5247-5263, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32503886

RESUMO

The accessory olfactory bulb (AOB), the first neural circuit in the mouse accessory olfactory system, is critical for interpreting social chemosignals. Despite its importance, AOB information processing is poorly understood compared with the main olfactory bulb (MOB). Here, we sought to fill gaps in the understanding of AOB interneuron function. We used 2-photon GCaMP6f Ca2+ imaging in an ex vivo preparation to study chemosensory tuning in AOB external granule cells (EGCs), interneurons hypothesized to broadly inhibit activity in excitatory mitral cells (MCs). In ex vivo preparations from mice of both sexes, we measured MC and EGC tuning to natural chemosignal blends and monomolecular ligands, finding that EGC tuning was sparser, not broader, than upstream MCs. Simultaneous electrophysiological recording and Ca2+ imaging showed no differences in GCaMP6f-to-spiking relationships in these cell types during simulated sensory stimulation, suggesting that measured EGC sparseness was not due to cell type-dependent variability in GCaMP6f performance. Ex vivo patch-clamp recordings revealed that EGC subthreshold responsivity was far broader than indicated by GCaMP6f Ca2+ imaging, and that monomolecular ligands rarely elicited EGC spiking. These results indicate that EGCs are selectively engaged by chemosensory blends, suggesting different roles for EGCs than analogous interneurons in the MOB.SIGNIFICANCE STATEMENT The mouse accessory olfactory system (AOS) interprets social chemosignals, but we poorly understand AOS information processing. Here, we investigate the functional properties of external granule cells (EGCs), a major class of interneurons in the accessory olfactory bulb (AOB). We hypothesized that EGCs, which are densely innervated by excitatory mitral cells (MCs), would show broad chemosensory tuning, suggesting a role in divisive normalization. Using ex vivo GCaMP6f imaging, we found that EGCs were instead more sparsely tuned than MCs. This was not due to weaker GCaMP6f signaling in EGCs than in MCs. Instead, we found that many MC-activating chemosignals caused only subthreshold EGC responses. This indicates a different role for AOB EGCs compared with analogous cells in the main olfactory bulb.


Assuntos
Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Animais , Cálcio/fisiologia , Grânulos Citoplasmáticos , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem , Odorantes , Técnicas de Patch-Clamp , Órgão Vomeronasal/citologia , Órgão Vomeronasal/fisiologia
4.
Chem Senses ; 45(7): 549-561, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32531016

RESUMO

Cancer is often treated with broad-spectrum cytotoxic drugs that not only eradicate cancerous cells but also have detrimental side effects. One of these side effects, disruption of the olfactory system, impedes a patient's ability to smell, perceive flavor, and ultimately may interfere with their nutritional intake and recovery from cancer. Recent studies reported that the chemotherapy drug, cyclophosphamide (CYP), can damage gustatory epithelia and disrupt cell proliferation in olfactory epithelia. In this study, we asked if CYP altered globose and horizontal basal cell proliferation in the murine main olfactory epithelium (MOE) and vomeronasal organ (VNO). We used antibodies for Ki67, a marker strictly associated with cell proliferation, and Keratin 5, a marker for the cytoskeleton of horizontal basal cells. Our results revealed a significant CYP-induced decrease in the number of proliferative cells in both epithelia, especially globose basal cells in the MOE, within the first 1-2 days postinjection. Recovery of cell renewal was apparent 6 days after injection. The immunohistochemical markers showed significantly higher levels of globose and horizontal basal cell proliferation in CYP-injected mice at 14 and 30 days postinjection compared with control mice. The prolonged proliferative activation of globose and horizontal basal cells suggests that, besides altering proliferation of olfactory epithelia, the epithelial substrate needed for successful cell renewal may be adversely affected by CYP.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ciclofosfamida/farmacologia , Animais , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Órgão Vomeronasal/citologia , Órgão Vomeronasal/metabolismo , Órgão Vomeronasal/patologia
5.
J Neurosci ; 38(21): 4957-4976, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29712784

RESUMO

The vomeronasal system (VNS) is a major vertebrate chemosensory system that functions in parallel to the main olfactory system (MOS). Despite many similarities, the two systems dramatically differ in the temporal domain. While MOS responses are governed by breathing and follow a subsecond temporal scale, VNS responses are uncoupled from breathing and evolve over seconds. This suggests that the contribution of response dynamics to stimulus information will differ between these systems. While temporal dynamics in the MOS are widely investigated, similar analyses in the accessory olfactory bulb (AOB) are lacking. Here, we have addressed this issue using controlled stimulus delivery to the vomeronasal organ of male and female mice. We first analyzed the temporal properties of AOB projection neurons and demonstrated that neurons display prolonged, variable, and neuron-specific characteristics. We then analyzed various decoding schemes using AOB population responses. We showed that compared with the simplest scheme (i.e., integration of spike counts over the entire response period), the division of this period into smaller temporal bins actually yields poorer decoding accuracy. However, optimal classification accuracy can be achieved well before the end of the response period by integrating spike counts within temporally defined windows. Since VNS stimulus uptake is variable, we analyzed decoding using limited information about stimulus uptake time, and showed that with enough neurons, such time-invariant decoding is feasible. Finally, we conducted simulations that demonstrated that, unlike the main olfactory bulb, the temporal features of AOB neurons disfavor decoding with high temporal accuracy, and, rather, support decoding without precise knowledge of stimulus uptake time.SIGNIFICANCE STATEMENT A key goal in sensory system research is to identify which metrics of neuronal activity are relevant for decoding stimulus features. Here, we describe the first systematic analysis of temporal coding in the vomeronasal system (VNS), a chemosensory system devoted to socially relevant cues. Compared with the main olfactory system, timescales of VNS function are inherently slower and variable. Using various analyses of real and simulated data, we show that the consideration of response times relative to stimulus uptake can aid the decoding of stimulus information from neuronal activity. However, response properties of accessory olfactory bulb neurons favor decoding schemes that do not rely on the precise timing of stimulus uptake. Such schemes are consistent with the variable nature of VNS stimulus uptake.


Assuntos
Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Simulação por Computador , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Odorantes , Bulbo Olfatório/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Caracteres Sexuais , Especificidade da Espécie , Máquina de Vetores de Suporte , Urina/química , Órgão Vomeronasal/citologia
6.
Dev Biol ; 441(1): 67-82, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29928868

RESUMO

The identity of individual neuronal cell types is defined and maintained by the expression of specific combinations of transcriptional regulators that control cell type-specific genetic programs. The epithelium of the vomeronasal organ of mice contains two major types of vomeronasal sensory neurons (VSNs): 1) the apical VSNs which express vomeronasal 1 receptors (V1r) and the G-protein subunit Gαi2 and; 2) the basal VSNs which express vomeronasal 2 receptors (V2r) and the G-protein subunit Gαo. Both cell types originate from a common pool of progenitors and eventually acquire apical or basal identity through largely unknown mechanisms. The transcription factor AP-2ε, encoded by the Tfap2e gene, plays a role in controlling the development of GABAergic interneurons in the main and accessory olfactory bulb (AOB), moreover AP-2ε has been previously described to be expressed in the basal VSNs. Here we show that AP-2ε is expressed in post-mitotic VSNs after they commit to the basal differentiation program. Loss of AP-2ε function resulted in reduced number of basal VSNs and in an increased number of neurons expressing markers of the apical lineage. Our work suggests that AP-2ε, which is expressed in late phases of differentiation, is not needed to initiate the apical-basal differentiation dichotomy but for maintaining the basal VSNs' identity. In AP-2ε mutants we observed a large number of cells that entered the basal program can express apical genes, our data suggest that differentiated VSNs of mice retain a notable level of plasticity.


Assuntos
Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mucosa Nasal/embriologia , Células Receptoras Sensoriais/metabolismo , Fator de Transcrição AP-2/biossíntese , Órgão Vomeronasal/embriologia , Animais , Diferenciação Celular/fisiologia , Camundongos , Camundongos Transgênicos , Mutação , Mucosa Nasal/citologia , Células Receptoras Sensoriais/citologia , Fator de Transcrição AP-2/genética , Órgão Vomeronasal/citologia
7.
J Biol Chem ; 293(26): 10392-10403, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29769308

RESUMO

Ca2+-activated Cl- currents have been observed in many physiological processes, including sensory transduction in mammalian olfaction. The olfactory vomeronasal (or Jacobson's) organ (VNO) detects molecular cues originating from animals of the same species or from predators. It then triggers innate behaviors such as aggression, mating, or flight. In the VNO, Ca2+-activated Cl- channels (CaCCs) are thought to amplify the initial pheromone-evoked receptor potential by mediating a depolarizing Cl- efflux. Here, we confirmed the co-localization of the Ca2+-activated Cl- channels anoctamin 1 (Ano1, also called TMEM16A) and Ano2 (TMEM16B) in microvilli of apically and basally located vomeronasal sensory neurons (VSNs) and their absence in supporting cells of the VNO. Both channels were expressed as functional isoforms capable of giving rise to Ca2+-activated Cl- currents. Although these currents persisted in the VNOs of mice lacking Ano2, they were undetectable in olfactory neuron-specific Ano1 knockout mice irrespective of the presence of Ano2 The loss of Ca2+-activated Cl- currents resulted in diminished spontaneous and drastically reduced pheromone-evoked spiking of VSNs. Although this indicated an important role of anoctamin channels in VNO signal amplification, the lack of this amplification did not alter VNO-dependent male-male territorial aggression in olfactory Ano1/Ano2 double knockout mice. We conclude that Ano1 mediates the bulk of Ca2+-activated Cl- currents in the VNO and that Ano2 plays only a minor role. Furthermore, vomeronasal signal amplification by CaCCs appears to be dispensable for the detection of male-specific pheromones and for near-normal aggressive behavior in mice.


Assuntos
Agressão , Canais de Cloreto/metabolismo , Fenômenos Eletrofisiológicos , Neurônios/citologia , Órgão Vomeronasal/fisiologia , Animais , Anoctamina-1/metabolismo , Anoctaminas/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Órgão Vomeronasal/citologia , Órgão Vomeronasal/metabolismo
8.
Nature ; 502(7471): 368-71, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24089208

RESUMO

Animals display a repertoire of different social behaviours. Appropriate behavioural responses depend on sensory input received during social interactions. In mice, social behaviour is driven by pheromones, chemical signals that encode information related to age, sex and physiological state. However, although mice show different social behaviours towards adults, juveniles and neonates, sensory cues that enable specific recognition of juvenile mice are unknown. Here we describe a juvenile pheromone produced by young mice before puberty, termed exocrine-gland secreting peptide 22 (ESP22). ESP22 is secreted from the lacrimal gland and released into tears of 2- to 3-week-old mice. Upon detection, ESP22 activates high-affinity sensory neurons in the vomeronasal organ, and downstream limbic neurons in the medial amygdala. Recombinant ESP22, painted on mice, exerts a powerful inhibitory effect on adult male mating behaviour, which is abolished in knockout mice lacking TRPC2, a key signalling component of the vomeronasal organ. Furthermore, knockout of TRPC2 or loss of ESP22 production results in increased sexual behaviour of adult males towards juveniles, and sexual responses towards ESP22-deficient juveniles are suppressed by ESP22 painting. Thus, we describe a pheromone of sexually immature mice that controls an innate social behaviour, a response pathway through the accessory olfactory system and a new role for vomeronasal organ signalling in inhibiting sexual behaviour towards young. These findings provide a molecular framework for understanding how a sensory system can regulate behaviour.


Assuntos
Feromônios/metabolismo , Comportamento Sexual Animal , Maturidade Sexual , Órgão Vomeronasal/metabolismo , Envelhecimento , Tonsila do Cerebelo/citologia , Animais , Feminino , Aparelho Lacrimal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Feromônios/farmacologia , Células Receptoras Sensoriais/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Canais de Cátion TRPC/deficiência , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Lágrimas/metabolismo , Órgão Vomeronasal/citologia
9.
Biosci Biotechnol Biochem ; 83(4): 705-708, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30516446
10.
Chem Senses ; 43(9): 667-695, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256909

RESUMO

In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.


Assuntos
Bulbo Olfatório/fisiologia , Transdução de Sinais , Órgão Vomeronasal/fisiologia , Animais , Axônios , Camundongos , Neurônios/fisiologia , Feromônios/fisiologia , Receptores de Feromônios/fisiologia , Olfato/fisiologia , Órgão Vomeronasal/citologia
11.
Cells Tissues Organs ; 205(2): 85-92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672316

RESUMO

The vomeronasal organ (VNO) is the peripheral receptor organ of the accessory olfactory system, which is responsible for both sexual and innate behaviors. The degree of neuronal differentiation and maturation of the vomeronasal receptor cells together with the verification of the presence of the solitary chemoreceptor cells (SCCs) in the VNO of Corriedale sheep were assessed using immunofluorescence. A protein gene product 9.5 (PGP 9.5), which is a neuronal marker recognized to be expressed in most neurons of vertebrate species, an olfactory marker protein (OMP) that is precise for mature olfactory receptor cells, and lastly phospholipase C-ß2 (PLC-ß2), a marker in the signal transduction pathway of SCCs, were all tested. The cell bodies and dendrites of almost all receptor cells in the sensory epithelium were strongly positive for PGP 9.5 and to a lesser extent for OMP. In the nonsensory wall, all cells were negative for both PGP 9.5 and OMP; however, some positive PGP 9.5 immunoreactive fibers were identified. For PLC-ß2, only 1 basally situated SCC could be identified in the sensory epithelium. A higher number was demonstrated in the nonsensory wall. Corriedale sheep possess matured, fully differentiated vomeronasal receptor cells in their sensory wall, suggesting an appropriate pheromone perception. Additionally, the VNO in sheep may participate in the usual transduction mechanisms, though it is seemingly not a chemoreceptor organ.


Assuntos
Células Quimiorreceptoras/metabolismo , Receptores de Superfície Celular/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Masculino , Proteína de Marcador Olfatório/metabolismo , Fosfolipase C beta/metabolismo , Células Receptoras Sensoriais/metabolismo , Ovinos , Ubiquitina Tiolesterase/metabolismo , Órgão Vomeronasal/citologia
12.
J Biol Chem ; 291(18): 9762-75, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26957543

RESUMO

Formyl peptide receptor 3 (Fpr3, also known as Fpr-rs1) is a G protein-coupled receptor expressed in subsets of sensory neurons of the mouse vomeronasal organ, an olfactory substructure essential for social recognition. Fpr3 has been implicated in the sensing of infection-associated olfactory cues, but its expression pattern and function are incompletely understood. To facilitate visualization of Fpr3-expressing cells, we generated and validated two new anti-Fpr3 antibodies enabling us to analyze acute Fpr3 protein expression. Fpr3 is not only expressed in murine vomeronasal sensory neurons but also in bone marrow cells, the primary source for immune cell renewal, and in mature neutrophils. Consistent with the notion that Fpr3 functions as a pathogen sensor, Fpr3 expression in the immune system is up-regulated after stimulation with a bacterial endotoxin (lipopolysaccharide). These results strongly support a dual role for Fpr3 in both vomeronasal sensory neurons and immune cells. We also identify a large panel of mouse strains with severely altered expression and function of Fpr3, thus establishing the existence of natural Fpr3 knock-out strains. We attribute distinct Fpr3 expression in these strains to the presence or absence of a 12-nucleotide in-frame deletion (Fpr3Δ424-435). In vitro calcium imaging and immunofluorescence analyses demonstrate that the lack of four amino acids leads to an unstable, truncated, and non-functional receptor protein. The genome of at least 19 strains encodes a non-functional Fpr3 variant, whereas at least 13 other strains express an intact receptor. These results provide a foundation for understanding the in vivo function of Fpr3.


Assuntos
Regulação da Expressão Gênica/imunologia , Receptores de Formil Peptídeo/imunologia , Células Receptoras Sensoriais/imunologia , Órgão Vomeronasal/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Receptores de Formil Peptídeo/genética , Células Receptoras Sensoriais/citologia , Especificidade da Espécie , Órgão Vomeronasal/citologia
13.
Chem Senses ; 42(1): 25-35, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27655939

RESUMO

In most mammals, the vomeronasal system detects a variety of (semio)chemicals that mediate olfactory-driven social and sexual behaviors. Vomeronasal chemosensation depends on G protein-coupled receptors (V1R, V2R, and FPR-rs) that operate at remarkably low stimulus concentrations, thus, indicating a highly sensitive and efficient signaling pathway. We identified the PDZ domain-containing protein, Na+/H+ exchanger regulatory factor-1 (NHERF1), as putative molecular organizer of signal transduction in vomeronasal neurons. NHERF1 is a protein that contains 2 PDZ domains and a carboxy-terminal ezrin-binding domain. It localizes to microvilli of vomeronasal sensory neurons and interacts with V1Rs. Furthermore, NHERF1 and Gαi2 are closely colocalized. These findings open up new aspects of the functional organization and regulation of vomeronasal signal transduction by PDZ scaffolding proteins.


Assuntos
Microvilosidades/química , Fosfoproteínas/análise , Células Receptoras Sensoriais/química , Trocadores de Sódio-Hidrogênio/análise , Órgão Vomeronasal/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microvilosidades/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células Receptoras Sensoriais/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
14.
Cell Mol Life Sci ; 73(13): 2467-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26994098

RESUMO

The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain.


Assuntos
Movimento Celular , Bulbo Olfatório/embriologia , Córtex Olfatório/embriologia , Condutos Olfatórios , Roedores/embriologia , Animais , Evolução Biológica , Hipotálamo/citologia , Hipotálamo/embriologia , Neurônios/citologia , Bulbo Olfatório/citologia , Córtex Olfatório/citologia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Olfato , Órgão Vomeronasal/citologia , Órgão Vomeronasal/embriologia
15.
BMC Biol ; 14: 12, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26878847

RESUMO

BACKGROUND: Olfaction is a fundamental sense through which most animals perceive the external world. The olfactory system detects odors via specialized sensory organs such as the main olfactory epithelium and the vomeronasal organ. Sensory neurons in these organs use G-protein coupled receptors to detect chemosensory stimuli. The odorant receptor (OR) family is expressed in sensory neurons of the main olfactory epithelium, while the adult vomeronasal organ is thought to express other types of receptors. RESULTS: Here, we describe Olfr692, a member of the OR gene family identified by next-generation RNA sequencing, which is highly upregulated and non-canonically expressed in the vomeronasal organ. We show that neurons expressing this gene are activated by odors emanating from pups. Surprisingly, activity in Olfr692-positive cells is sexually dimorphic, being very low in females. Our results also show that juvenile odors activate a large number of Olfr692 vomeronasal neurons in virgin males, which is correlated with the display of infanticide behavior. . In contrast, activity substantially decreases in parenting males (fathers), where infanticidal aggressive behavior is not frequently observed. CONCLUSIONS: Our results describe, for the first time, a sensory neural population with a specific molecular identity involved in the detection of pup odors. Moreover, it is one of the first reports of a group of sensory neurons the activity of which is sexually dimorphic and depends on social status. Our data suggest that the Olfr692 population is involved in mediating pup-oriented behaviors in mice.


Assuntos
Odorantes , Receptores Odorantes/genética , Células Receptoras Sensoriais/metabolismo , Olfato , Órgão Vomeronasal/citologia , Agressão , Animais , Animais Recém-Nascidos , Comportamento Animal , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Odorantes/análise , Receptores Odorantes/análise , Caracteres Sexuais , Órgão Vomeronasal/fisiologia
16.
J Neurosci ; 35(9): 4025-39, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740530

RESUMO

The mouse vomeronasal organ (VNO) plays a critical role in semiochemical detection and social communication. Vomeronasal stimuli are typically secreted in various body fluids. Following direct contact with urine deposits or other secretions, a peristaltic vascular pump mediates fluid entry into the recipient's VNO. Therefore, while vomeronasal sensory neurons (VSNs) sample various stimulatory semiochemicals dissolved in the intraluminal mucus, they might also be affected by the general physicochemical properties of the "solvent." Here, we report cycle stage-correlated variations in urinary pH among female mice. Estrus-specific pH decline is observed exclusively in urine samples from sexually experienced females. Moreover, patch-clamp recordings in acute VNO slices reveal that mouse VSNs reliably detect extracellular acidosis. Acid-evoked responses share the biophysical and pharmacological hallmarks of the hyperpolarization-activated current Ih. Mechanistically, VSN acid sensitivity depends on a pH-induced shift in the voltage-dependence of Ih activation that causes the opening of HCN channels at rest, thereby increasing VSN excitability. Together, our results identify extracellular acidification as a potent activator of vomeronasal Ih and suggest HCN channel-dependent vomeronasal gain control of social chemosignaling. Our data thus reveal a potential mechanistic basis for stimulus pH detection in rodent chemosensory communication.


Assuntos
Células Receptoras Sensoriais/fisiologia , Órgão Vomeronasal/citologia , Órgão Vomeronasal/fisiologia , Animais , Estro/fisiologia , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Técnicas de Patch-Clamp , Canais de Cátion TRPC/genética
17.
Cell Tissue Res ; 363(3): 621-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26395637

RESUMO

Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of transcription factors, which is highly expressed in olfactory chemosensory tissues, the main olfactory epithelium and vomeronasal epithelium (VNE) in mice. The vomeronasal sensory neurons in the VNE detect pheromones in order to regulate social behaviors such as mating and aggression; however, the physiological role of ATF5 in the vomeronasal sensory system remains unknown. In this study, we found that the differentiation of mature vomeronasal sensory neurons, assessed by olfactory marker protein expression, was inhibited in ATF5-deficient VNE. In addition, many apoptotic vomeronasal sensory neurons were evident in ATF5-deficient VNE. The vomeronasal sensory neurons consist of two major types of neuron expressing either vomeronasal 1 receptor (V1r)/Gαi2 or vomeronasal 2 receptor (V2r)/Gαo. We demonstrated that the differentiation, survival and axonal projection of V2r/Gαo-type rather than V1r/Gαi2-type vomeronasal sensory neurons were severely inhibited in ATF5-deficient VNE. These results suggest that ATF5 is one of the transcription factors crucial for the vomeronasal sensory formation.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Diferenciação Celular , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Órgão Vomeronasal/citologia , Animais , Apoptose , Proliferação de Células , Sobrevivência Celular , Epitélio/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Bulbo Olfatório/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
18.
Nature ; 466(7302): 118-22, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596023

RESUMO

Various social behaviours in mice are regulated by chemical signals called pheromones that act through the vomeronasal system. Exocrine gland-secreting peptide 1 (ESP1) is a 7-kDa peptide that is released into male tear fluids and stimulates vomeronasal sensory neurons in female mice. Here, we describe the molecular and neural mechanisms that are involved in the decoding of ESP1 signals in the vomeronasal system, which leads to behavioural output in female mice. ESP1 is recognized by a specific vomeronasal receptor, V2Rp5, and the ligand-receptor interaction results in sex-specific signal transmission to the amygdaloid and hypothalamic nuclei via the accessory olfactory bulb. Consequently, ESP1 enhances female sexual receptive behaviour upon male mounting (lordosis), allowing successful copulation. In V2Rp5-deficient mice, ESP1 induces neither neural activation nor sexual behaviour. These findings show that ESP1 is a crucial male pheromone that regulates female reproductive behaviour through a specific receptor in the mouse vomeronasal system.


Assuntos
Feromônios/metabolismo , Proteínas/metabolismo , Receptores Odorantes/metabolismo , Receptores de Feromônios/metabolismo , Comportamento Sexual Animal/fisiologia , Órgão Vomeronasal/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Odorantes/deficiência , Receptores Odorantes/genética , Receptores de Feromônios/deficiência , Receptores de Feromônios/genética , Canais de Cátion TRPC/deficiência , Órgão Vomeronasal/citologia , Órgão Vomeronasal/inervação
19.
J Neurosci ; 34(15): 5121-33, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719092

RESUMO

The mouse vomeronasal organ (VNO) has a pivotal role in chemical communication. The vomeronasal sensory neuroepithelium consists of distinct populations of vomeronasal sensory neurons (VSNs). A subset of VSNs, with cell bodies in the basal part of the basal layer, coexpress Vmn2r G-protein-coupled receptor genes with H2-Mv genes, a family of nine nonclassical class I major histocompatibility complex genes. The in vivo, physiological roles of the H2-Mv gene family remain mysterious more than a decade after the discovery of combinatorial H2-Mv gene expression in VSNs. Here, we have taken a genetic approach and have deleted the 530 kb cluster of H2-Mv genes in the mouse germline by chromosome engineering. Homozygous mutant mice (ΔH2Mv mice) are viable and fertile. There are no major anatomical defects in their VNO and accessory olfactory bulb (AOB). Their VSNs can be stimulated with chemostimuli (peptides and proteins) to the same maximum responses as VSNs of wild-type mice, but require much higher concentrations. This physiological phenotype is displayed at the single-cell level and is cell autonomous: single V2rf2-expressing VSNs, which normally coexpress H2-Mv genes, display a decreased sensitivity to a peptide ligand in ΔH2Mv mice, whereas single V2r1b-expressing VSNs, which do not coexpress H2-Mv genes, show normal sensitivity to a peptide ligand in ΔH2Mv mice. Consistent with the greatly decreased VSN sensitivity, ΔH2Mv mice display pronounced deficits in aggressive and sexual behaviors. Thus, H2-Mv genes are not absolutely essential for the generation of physiological responses, but are required for ultrasensitive chemodetection by a subset of VSNs.


Assuntos
Células Quimiorreceptoras/metabolismo , Genes MHC Classe I/genética , Olfato/genética , Órgão Vomeronasal/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Quimiorreceptoras/fisiologia , Feminino , Deleção de Genes , Mutação em Linhagem Germinativa , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Limiar Sensorial , Comportamento Sexual Animal , Órgão Vomeronasal/citologia , Órgão Vomeronasal/fisiologia
20.
Nature ; 459(7246): 574-7, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19387439

RESUMO

Mammals rely heavily on olfaction to interact adequately with each other and with their environment. They make use of seven-transmembrane G-protein-coupled receptors to identify odorants and pheromones. These receptors are present on dendrites of olfactory sensory neurons located in the main olfactory or vomeronasal sensory epithelia, and pertain to the odorant, trace amine-associated receptor and vomeronasal type 1 (ref. 4) or 2 (refs 5-7) receptor superfamilies. Whether these four sensor classes represent the complete olfactory molecular repertoire used by mammals to make sense of the outside world is unknown. Here we report the expression of formyl peptide receptor-related genes by vomeronasal sensory neurons, in multiple mammalian species. Similar to the four known olfactory receptor gene classes, these genes encode seven-transmembrane proteins, and are characterized by monogenic transcription and a punctate expression pattern in the sensory neuroepithelium. In vitro expression of mouse formyl peptide receptor-like 1, 3, 4, 6 and 7 provides sensitivity to disease/inflammation-related ligands. Establishing an in situ approach that combines whole-mount vomeronasal preparations with dendritic calcium imaging in the intact neuroepithelium, we show neuronal responses to the same molecules, which therefore represent a new class of vomeronasal agonists. Taken together, these results suggest that formyl peptide receptor-like proteins have an olfactory function associated with the identification of pathogens, or of pathogenic states.


Assuntos
Doença , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Receptores de Formil Peptídeo/metabolismo , Olfato/fisiologia , Órgão Vomeronasal/citologia , Animais , Sinalização do Cálcio , Linhagem Celular , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Perfilação da Expressão Gênica , Humanos , Inflamação/patologia , Ligantes , Camundongos , Percepção Olfatória/efeitos dos fármacos , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Especificidade de Órgãos , Receptores de Formil Peptídeo/genética , Olfato/efeitos dos fármacos , Órgão Vomeronasal/efeitos dos fármacos , Órgão Vomeronasal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA