Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO Rep ; 25(8): 3547-3573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009832

RESUMO

The COVID-19 pandemic reminded us of the urgent need for new antivirals to control emerging infectious diseases and potential future pandemics. Immunotherapy has revolutionized oncology and could complement the use of antivirals, but its application to infectious diseases remains largely unexplored. Nucleoside analogs are a class of agents widely used as antiviral and anti-neoplastic drugs. Their antiviral activity is generally based on interference with viral nucleic acid replication or transcription. Based on our previous work and computer modeling, we hypothesize that antiviral adenosine analogs, like remdesivir, have previously unrecognized immunomodulatory properties which contribute to their therapeutic activity. In the case of remdesivir, we here show that these properties are due to its metabolite, GS-441524, acting as an Adenosine A2A Receptor antagonist. Our findings support a new rationale for the design of next-generation antiviral agents with dual - immunomodulatory and intrinsic - antiviral properties. These compounds could represent game-changing therapies to control emerging viral diseases and future pandemics.


Assuntos
Monofosfato de Adenosina , Adenosina , Alanina , Antivirais , COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/química , Humanos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/química , COVID-19/imunologia , COVID-19/virologia , Animais , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Pandemias , Tratamento Farmacológico da COVID-19 , Chlorocebus aethiops , Replicação Viral/efeitos dos fármacos , Células Vero , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Receptor A2A de Adenosina/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia
2.
Nano Lett ; 24(31): 9494-9504, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058893

RESUMO

Chronic diabetic wound patients usually show high glucose levels and systemic immune disorder, resulting in high reactive oxygen species (ROS) levels and immune cell dysfunction, prolonged inflammation, and delayed wound healing. Herein, we prepared an antioxidant and immunomodulatory polymer vesicle for diabetic wound treatment. This vesicle is self-assembled from poly(ε-caprolactone)36-block-poly[lysine4-stat-(lysine-mannose)22-stat-tyrosine)16] ([PCL36-b-P[Lys4-stat-(Lys-Man)22-stat-Tyr16]). Polytyrosine is an antioxidant polypeptide that can scavenge ROS. d-Mannose was introduced to afford immunomodulatory functions by promoting macrophage transformation and Treg cell activation through inhibitory cytokines. The mice treated with polymer vesicles showed 23.7% higher Treg cell levels and a 91.3% higher M2/M1 ratio than those treated with PBS. Animal tests confirmed this vesicle accelerated healing and achieved complete healing of S. aureus-infected diabetic wounds within 8 days. Overall, this is the first antioxidant and immunomodulatory vesicle for diabetic wound healing by scavenging ROS and regulating immune homeostasis, opening new avenues for effective diabetic wound healing.


Assuntos
Antioxidantes , Espécies Reativas de Oxigênio , Cicatrização , Animais , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos , Camundongos , Antioxidantes/química , Antioxidantes/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Polímeros/química , Polímeros/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Humanos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Staphylococcus aureus/efeitos dos fármacos , Manose/química , Manose/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia
3.
Chembiochem ; 25(12): e202400089, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38658319

RESUMO

Endogenous antimicrobial-immunomodulatory molecules (EAIMs) are essential to immune-mediated human health and evolution. Conventionally, antimicrobial peptides (AMPs) have been regarded as the dominant endogenous antimicrobial molecule; however, AMPs are not sufficient to account for the full spectrum of antimicrobial-immunomodulatory duality occurring within the human body. The threat posed by pathogenic microbes is pervasive with the capacity for widespread impact across many organ systems and multiple biochemical pathways; accordingly, the host needs the capacity to react with an equally diverse response. This can be attained by having EAIMs that traverse the full range of molecular size (small to large molecules) and structural diversity (including molecules other than peptides). This review identifies multiple molecules (peptide/protein, lipid, carbohydrate, nucleic acid, small organic molecule, and metallic cation) as EAIMs and discusses the possibility of cooperative, additive effects amongst the various EAIM classes during the host response to a microbial assault. This comprehensive consideration of the full molecular diversity of EAIMs enables the conclusion that EAIMs constitute a previously uncatalogued structurally diverse and collectively underappreciated immuno-active group of integrated molecular responders within the innate immune system's first line of defence.


Assuntos
Imunidade Inata , Imunidade Inata/efeitos dos fármacos , Humanos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/imunologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Animais , Carboidratos/química , Carboidratos/imunologia
4.
Photochem Photobiol Sci ; 23(5): 987-996, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38662174

RESUMO

Pycnoporus sanguineus is a fungus of the phylum Basidiomycota that has many applications in traditional medicine, modern pharmaceuticals, and agricultural industries. Light plays an essential role in the metabolism, growth, and development of fungi. This study evaluated the mycelial growth and antioxidant and anti-inflammatory activities in P. sanguineus fermentation broth (PFB) cultured under different wavelengths of LED irradiation or in the dark. Compared to the dark cultures, the dry weight of mycelia in red- and yellow-light cultures decreased by 37 and 35% and the yields of pigments increased by 30.92 ± 2.18 mg and 31.75 ± 3.06 mg, respectively. Compared with the dark culture, the DPPH free radical scavenging ability, ABTS+ free radical scavenging capacity, and reducing power of yellow-light cultures increased significantly, and their total phenolic content peaked at 180.0 ± 8.34 µg/mL. However, the reducing power in blue-light cultures was significantly reduced, though the total phenol content did not vary with that of dark cultures. In LPS- and IFN-γ-stimulated RAW 264.7 cells, nitrite release was significantly reduced in the red and yellow light-irradiated PFB compared with the dark culture. In the dark, yellow-, and green-light cultures, TNF-α production in the inflamed RAW 264.7 cells was inhibited by 62, 46, and 14%, respectively. With red-, blue-, and white-light irradiation, TNF-α production was significantly enhanced. Based on these results, we propose that by adjusting the wavelength of the light source during culture, one can effectively modulate the growth, development, and metabolism of P. sanguineus.


Assuntos
Antioxidantes , Luz , Pycnoporus , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Células RAW 264.7 , Pycnoporus/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Picratos/antagonistas & inibidores , Picratos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia
5.
Fish Shellfish Immunol ; 152: 109787, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047924

RESUMO

Bacterial extracellular vesicles (BEVs) are natural nanocarriers that have shown great potential for biomedical applications such as biomarkers, cancer therapy, immunomodulators, vaccines, wound healing, tissue engineering, and drug carriers. In the present study, BEVs were isolated from the gram-negative bacterium, Aeromonas hydrophila using the ultracentrifugation method and denoted as AhEVs. Using transmission electron microscopy imaging, we confirmed the ultrastructure and spherical shape morphology of AhEVs. Nanoparticle-tracking analysis results showed a mean particle size of 105.5 ± 2.0 nm for AhEVs. Moreover, the particle concentration of AhEVs was 2.34 ± 0.12 × 1011 particles/mL of bacterial supernatant. AhEV-treated fathead minnow (FHM) cells did not show cytotoxicity effects up to 50 µg/mL with no significant decrease in cells. Moreover, no mortality was observed in larval zebrafish up to 50 µg/mL which indicates that the AhEVs are biocompatible at this concentration. Furthermore, fluorescent-labeled AhEVs were internalized into FHM cells. Results of qRT-PCR analysis in FHM cells revealed that cellular pro-inflammatory cytokines such as nuclear factor (NF)-κB, interferon (Ifn), Irf7, interleukin (Il) 8, and Il11 were upregulated while downregulating the expression of anti-inflammatory Il10 in a concentration-dependent manner. AhEV-treated adult zebrafish (5 µg/fish) induced toll-like receptor (tlr) 2 and tlr4; tumor necrosis factor-alpha (tnfα); heat shock protein (hsp) 70; and il10, il6, and il1ß in kidney. Protein expression of NF-κB p65 and Tnfα presented amplified levels in the spleen of AhEVs-treated zebrafish. Based on the collective findings, we conclude that AhEVs exhibited morphological and physicochemical characteristics to known EVs of gram (-)ve bacteria. At biocompatible concentrations, the immunomodulatory activity of AhEVs was demonstrated by inducing different immune response genes in FHM cells and zebrafish. Hence, we suggest that AhEVs could be a novel vaccine candidate in fish medicine due to their ability to elicit strong immune responses.


Assuntos
Aeromonas hydrophila , Vesículas Extracelulares , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Peixe-Zebra , Animais , Aeromonas hydrophila/fisiologia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/química , Doenças dos Peixes/imunologia , Peixe-Zebra/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Cyprinidae/imunologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Linhagem Celular , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia
6.
Fish Shellfish Immunol ; 152: 109772, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019125

RESUMO

Aquaculture is a prosperous economic sector threatened by viral infections. Among the viruses threatening fish culture, Betanodavirus (NNV) is extremely important in the Mediterranean Sea affecting to highly traded species as European sea bass. In this context, application of antimicrobial peptides (AMPs) has arisen as a potential biotechnological tool. The aim of this work was to evaluate the therapeutic application of two European sea bass-derived AMPs, NK-lysin (Nkl) and dicentracin (Dic), against NNV infections. Synthetic Dic peptide was able to significantly reduce NNV-induced mortalities while Nkl failed to do so. Although neither Dic nor Nkl peptides were able to alter the transcriptional levels of NNV and the number of infected cells, Nkl seemed to increase the viral load per cell. Interestingly, both Nkl and Dic peptides showed immunomodulatory roles. For instance, our data revealed an interplay among different AMPs, at both gene and protein levels. Otherwise, Nkl and Dic peptides provoked an anti-inflammatory balance upon NNV infection, as well as the recruitment of macrophages and B cells to the target site of the infection, the brain. In conclusion, Dic can be proposed as a therapeutic candidate to combat NNV.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Nodaviridae/fisiologia , Animais , Bass/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/tratamento farmacológico , Proteolipídeos/farmacologia , Proteolipídeos/imunologia , Proteínas de Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Proteínas de Peixes/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química
7.
J Biochem Mol Toxicol ; 38(7): e23765, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967724

RESUMO

Mangiferin is a naturally occurring glucosylxanthone that has shown promising immunomodulatory effects. It is generally isolated from the leaves, peels, bark, and kernels of Mangifera indica Linn. Mangiferin is like a miraculous natural bioactive molecule that has an immunomodulatory function that makes it a potential therapeutic candidate for the treatment of rheumatoid arthritis (RA) and cancer. The anticancer activity of mangiferin acts by blocking NF-κB, as well as regulating the ß-catenin, EMT, MMP9, MMP2, LDH, ROS, and NO, and also by the activation of macrophages. It has no cytotoxic effect on grown chondrocytes and lowers matrix metalloproteinase levels. Additionally, it has a potent proapoptotic impact on synoviocytes. The precise molecular mechanism of action of mangiferin on RA and malignancies is still unknown. This comprehensive review elaborates on the immunomodulatory effect of mangiferin and its anticancer and anti-RA activity. This also explained the total synthesis of mangiferin and its in vitro and in vivo screening models.


Assuntos
Artrite Reumatoide , Neoplasias , Xantonas , Xantonas/farmacologia , Xantonas/uso terapêutico , Xantonas/química , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química
8.
Adv Exp Med Biol ; 1451: 337-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801589

RESUMO

Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.


Assuntos
Antivirais , Infecções por Poxviridae , Poxviridae , Humanos , Infecções por Poxviridae/tratamento farmacológico , Infecções por Poxviridae/virologia , Infecções por Poxviridae/imunologia , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Poxviridae/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Agentes de Imunomodulação/química , Terapias Complementares/métodos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química
9.
Mar Drugs ; 22(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057413

RESUMO

From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential. This renewed interest in marine drugs is propelled by a burgeoning research field investigating the molecular mechanisms by which newly identified compounds intervene in the pathophysiology of human diseases. Of great clinical relevance are molecules endowed with anti-inflammatory and immunomodulatory properties with emerging applications in the management of chronic inflammatory disorders, autoimmune diseases, and cancer. Here, we review the historical development of marine pharmacology in the Eastern and Western worlds and describe the status of marine drug discovery. Finally, we discuss the importance of conducting sustainable exploitation of marine resources through biotechnology.


Assuntos
Organismos Aquáticos , Descoberta de Drogas , Humanos , Animais , Descoberta de Drogas/métodos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Farmacopeias como Assunto , Oceanos e Mares , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química
10.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791191

RESUMO

Cancer immunotherapy relies on the insight that the immune system can be used to defend against malignant cells. The aim of cancer immunotherapy is to utilize, modulate, activate, and train the immune system to amplify antitumor T-cell immunity. In parallel, the immune system response to damaged tissue is also crucial in determining the success or failure of an implant. Due to their extracellular matrix mimetics and tunable chemical or physical performance, hydrogels are promising platforms for building immunomodulatory microenvironments for realizing cancer therapy and tissue regeneration. However, submicron or nanosized pore structures within hydrogels are not favorable for modulating immune cell function, such as cell invasion, migration, and immunophenotype. In contrast, hydrogels with a porous structure not only allow for nutrient transportation and metabolite discharge but also offer more space for realizing cell function. In this review, the design strategies and influencing factors of porous hydrogels for cancer therapy and tissue regeneration are first discussed. Second, the immunomodulatory effects and therapeutic outcomes of different porous hydrogels for cancer immunotherapy and tissue regeneration are highlighted. Beyond that, this review highlights the effects of pore size on immune function and potential signal transduction. Finally, the remaining challenges and perspectives of immunomodulatory porous hydrogels are discussed.


Assuntos
Hidrogéis , Neoplasias , Hidrogéis/química , Humanos , Porosidade , Animais , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Imunomodulação/efeitos dos fármacos , Engenharia Tecidual/métodos , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Microambiente Tumoral/imunologia
11.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791372

RESUMO

Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.


Assuntos
Morus , Extratos Vegetais , Morus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Folhas de Planta/química
12.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000321

RESUMO

In the postantibiotic era, the pathogenicity and resistance of pathogens have increased, leading to an increase in intestinal inflammatory disease. Bacterial infections remain the leading cause of animal mortality. With increasing resistance to antibiotics, there has been a significant decrease in resistance to both inflammation and disease in animals, thus decreasing production efficiency and increasing production costs. These side effects have serious consequences and have detracted from the development of China's pig industry. Microcin C7 (McC7) demonstrates potent antibacterial activity against a broad spectrum of pathogens, stable physicochemical properties, and low toxicity, reducing the likelihood of resistance development. Thus, McC7 has received increasing attention as a potential clinical antibacterial and immunomodulatory agent. McC7 has the potential to serve as a new generation of antibiotic substitutes; however, its commercial applications in the livestock and poultry industry have been limited. In this review, we summarize and discuss the biosynthesis, biochemical properties, structural characteristics, mechanism of action, and immune strategies of McC7. We also describe the ability of McC7 to improve intestinal health. Our aim in this study was to provide a theoretical basis for the application of McC7 as a new feed additive or new veterinary drug in the livestock and poultry breeding industry, thus providing a new strategy for alleviating resistance through feed and mitigating drug resistance. Furthermore, this review provides insight into the new functions and anti-infection mechanisms of bacteriocin peptides and proposes crucial ideas for the research, product development, and application of bacteriocin peptides in different fields, such as the food and medical industries.


Assuntos
Antibacterianos , Bacteriocinas , Bacteriocinas/farmacologia , Bacteriocinas/química , Bacteriocinas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Animais , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/uso terapêutico , Suínos , Humanos
13.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731500

RESUMO

A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.


Assuntos
Compostos Fitoquímicos , Plantas Medicinais , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , África , Animais
14.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930835

RESUMO

Ginseng (Panax ginseng C.A. Mey) is known for its rich saponin compounds and tonic effects. To better utilize the medicinal value of ginseng, this study investigated the extraction process, components, free radical scavenging ability, and immunomodulatory activity of total saponins of ginseng fibrous roots. The response surface methodology was employed to optimize the extraction process of total saponins, and Q-Orbitrap high-resolution liquid chromatography-mass spectrometry (LC-MS) was used to identify the chemical constituents in the total saponins extract of ginseng fibrous roots (GRS). The results showed that the optimal extraction process was achieved with an ethanol concentration of 68%, a material-solvent ratio of 1:25 mL/g, and an extraction time of 20 min, yielding a total saponin content of 6.34% under these conditions. The extract contained four terpenoid compounds and four polyphenolic compounds. GRS exhibited considerable scavenging activity against DPPH and ABTS radicals, with IC50 values of 0.893 and 0.210 mg/mL, respectively. Moreover, GRS restored immune suppression in mice by increasing white blood cell, red blood cell, and neutrophil counts, and improving the lymphocyte. It also promoted immune system recovery, as evidenced by elevated serum levels of IL-2, IFN-γ, TNF-α, and IL-1ß in mice. GRS is a natural compound with promising potential for developing antioxidants and immunomodulatory foods.


Assuntos
Sequestradores de Radicais Livres , Panax , Extratos Vegetais , Raízes de Plantas , Saponinas , Panax/química , Saponinas/farmacologia , Saponinas/química , Saponinas/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Raízes de Plantas/química , Animais , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Antioxidantes/farmacologia , Antioxidantes/química
15.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731567

RESUMO

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Assuntos
Macrófagos , Fagocitose , Polygonatum , Polissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Polygonatum/química , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Fagocitose/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Células RAW 264.7 , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/isolamento & purificação , Peso Molecular
16.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125036

RESUMO

Fomitiporia species have aroused the interest of numerous investigations that reveal their biological activity and medicinal potential. The present investigation shows the antioxidant, anticancer, and immunomodulatory activity of acidic polysaccharides obtained from the fungus Fomitiporia chilensis. The acidic polysaccharides were obtained for acidic precipitation with 2% O-N-cetylpyridinium bromide. Chemical analysis was performed using FT-IR and GC-MS methods. The antioxidant capacity of acidic polysaccharides from F. chilensis was evaluated by scavenging free radicals with an ABTS assay. Macrophage proliferation and cytokine production assays were used to determine the immunomodulatory capacity of the polysaccharides. Anti-tumor and cytotoxicity activity was evaluated with an MTT assay in the U-937, HTC-116, and HGF-1 cell lines. The effect of polysaccharides on the cell cycle of the HCT-116 cell line was determined for flow cytometry. Fourier Transform-infrared characterization revealed characteristic absorption peaks for polysaccharides, whereas the GC-MS analysis detected three peaks corresponding to D-galactose, galacturonic acid, and D-glucose. The secreted TNF-α concentration was increased when the cell was treated with 2 mg mL-1 polysaccharides, whereas the IL-6 concentration was increased with all of the evaluated polysaccharide concentrations. A cell cycle analysis of HTC-116 treated with polysaccharides evidenced that the acidic polysaccharides from F. chilensis induce an increase in the G0/G1 cell cycle phase, increasing the apoptotic cell percentage. Results from a proteomic analysis suggest that some of the molecular mechanisms involved in their antioxidant and cellular detoxifying effects and justify their traditional use in heart diseases. Proteomic data are available through ProteomeXchange under identifier PXD048361. The study on acidic polysaccharides from F. chilensis has unveiled their diverse biological activities, including antioxidant, anticancer, and immunomodulatory effects. These findings underscore the promising therapeutic applications of acidic polysaccharides from F. chilensis, warranting further pharmaceutical and medicinal research exploration.


Assuntos
Antineoplásicos , Antioxidantes , Polissacarídeos Fúngicos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Animais , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Células HCT116 , Citocinas/metabolismo , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Espectroscopia de Infravermelho com Transformada de Fourier , Apoptose/efeitos dos fármacos
17.
Molecules ; 29(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675613

RESUMO

Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.


Assuntos
Acne Vulgar , Antibacterianos , Anti-Inflamatórios , Antioxidantes , Saponinas , Humanos , Acne Vulgar/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Saponinas/farmacologia , Saponinas/química , Saponinas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Fatores Imunológicos/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/uso terapêutico , Agentes de Imunomodulação/isolamento & purificação , Melanthiaceae/química , Liliaceae/química
18.
Angew Chem Int Ed Engl ; 63(31): e202400632, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679861

RESUMO

Bacterial synthesis of vitamin B2 generates a by-product, 5-(2-oxopropylideneamino)-d-ribityl-aminouracil (5-OP-RU), with potent immunological properties in mammals, but it is rapidly degraded in water. This natural product covalently bonds to the key immunological protein MR1 in the endoplasmic reticulum of antigen presenting cells (APCs), enabling MR1 refolding and trafficking to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we strategically modify this natural product to understand the molecular basis of its recognition by MR1. This culminated in the discovery of new water-stable compounds with extremely powerful and distinctive immunological functions. We report their capacity to bind MR1 inside APCs, triggering its expression on the cell surface (EC50 17 nM), and their potent activation (EC50 56 pM) or inhibition (IC50 80 nM) of interacting MAIT cells. We further derivatize compounds with diazirine-alkyne, biotin, or fluorophore (Cy5 or AF647) labels for detecting, monitoring, and studying cellular MR1. Computer modeling casts new light on the molecular mechanism of activation, revealing that potent activators are first captured in a tyrosine- and serine-lined cleft in MR1 via specific pi-interactions and H-bonds, before more tightly attaching via a covalent bond to Lys43 in MR1. This chemical study advances our molecular understanding of how bacterial metabolites are captured by MR1, influence cell surface expression of MR1, interact with T cells to induce immunity, and offers novel clues for developing new vaccine adjuvants, immunotherapeutics, and anticancer drugs.


Assuntos
Riboflavina , Humanos , Riboflavina/metabolismo , Riboflavina/química , Riboflavina/farmacologia , Riboflavina/biossíntese , Riboflavina/análogos & derivados , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/imunologia , Ribitol/análogos & derivados , Uracila/análogos & derivados
19.
Int Immunopharmacol ; 135: 112251, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781608

RESUMO

Nowadays, Nanoparticle-based immunotherapeutic research has invoked global interest due to their unique properties. The immune system is a shielding structure that defends living things from external threats. Before the use of any materials in drug design, it is essential to study the immunological response to avoid triggering undesirable immune responses in the body. This review tries to summarize the properties, various applications, and immunotherapeutic aspects of NP-induced immunomodulation relating to therapeutic development and toxicity in human health. The role of NPs in the immune system and their modulatory functions, resulting in immunosuppression or immunostimulation, exerts benefits or dangers depending on their compositions, sizes, surface chemistry, and so forth. After NPs enter into the body, they can interact with body fluid exposing, them to different body proteins to form protein corona particles and other bio-molecules (DNA, RNA, sugars, etc.), which may alter their bioactivity. Phagocytes are the first immune cells that can interact with foreign materials including nanoparticles. Immunostimulation and immunosuppression operate in two distinct manners. Overall, functionalized nanocarriers optimized various therapeutic implications by stimulating the host immune system and regulating the tranquility of the host immune system. Among others, toxicity and bio-clearance of nanomaterials are always prime concerns at the preclinical and clinical stages before final approval. The interaction of nanoparticles with immune cells causes direct cell damage via apoptosis and necroses as well as immune signaling pathways also become influenced.


Assuntos
Imunomodulação , Nanopartículas , Humanos , Nanopartículas/química , Animais , Imunoterapia/métodos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/uso terapêutico , Sistema Imunitário/efeitos dos fármacos
20.
Nucl Med Biol ; 132-133: 108908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599145

RESUMO

INTRODUCTION: Site-specific immunomodulators (SSIs) are a novel class of therapeutics made from inactivated bacterial species designed to regulate the innate immune system in targeted organs. QBECO is a gut-targeted SSI that is being advanced clinically to treat and/or prevent inflammatory bowel disease, cancer, and serious infections of the gastrointestinal (GI) tract and proximal organs, and QBKPN is a lung-targeted SSI that is in clinical development for the treatment and/or prevention of chronic inflammatory lung disease, lung cancers and respiratory tract infections. While these SSIs have demonstrated both safety and proof-of-concept in preclinical and clinical studies, detailed understanding of their trafficking and biodistribution is yet to be fully characterized. METHODS: QBECO and QBKPN were radiolabeled with [89Zr] and injected subcutaneously into healthy mice. The mice underwent Positron Emission Tomography (PET) imaging every day for eight days to track biodistribution of the SSIs. Tissue from the site of injection was collected and immunohistologically probed for immune cell infiltration. RESULTS: Differential biodistribution of the two SSIs was seen, adhering to their site-specific targeting. QBKPN appeared to migrate from the site of injection (abdomen) to the cervical lymph nodes which are nearer to the respiratory tract and lungs. QBECO remained in the abdominal region, with lymphatic trafficking to the inguinal lymph nodes, which are nearer to GI-proximal tissues/organs. Immune infiltration at the site of injection comprised of neutrophils for both SSIs, and macrophages for only QBKPN. CONCLUSION: Radiolabeling of SSIs allows for longitudinal in vivo imaging of biodistribution and trafficking. PET imaging revealed differential biodistribution of the SSIs based on the organotropism of the bacteria from which the SSI is derived. Trafficking from the site of injection to the targeted site is in part mediated via the lymphatics and involves macrophages and neutrophils.


Assuntos
Tomografia por Emissão de Pósitrons , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Bactérias , Feminino , Agentes de Imunomodulação/química , Fatores Imunológicos/farmacocinética , Fatores Imunológicos/química , Radioisótopos , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA