Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35695847

RESUMO

Minutes of the closed meeting of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria held by videoconference, 5 July 2021, followed by online discussion until 31 December 2021, and list of recent species.


Assuntos
Agrobacterium , Rhizobium , Agrobacterium/classificação , Classificação , Humanos , Rhizobium/classificação , Comunicação por Videoconferência
2.
Plant Mol Biol ; 106(3): 239-258, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33826062

RESUMO

KEY MESSAGE: Analysis of 350 Agrobacterium wgs sequences reveals complex evolutionary history of T-DNA regions Virulent Agrobacterium strains transfer one or more plasmid DNA fragments to plant cells during a well-characterized transformation process. The transferred DNA sequences (T-DNA regions) are delimited by 25 nucleotide long conserved border sequences. Until recently, relatively few T-DNA regions were known. However, due to increased whole genome sequencing efforts, about 400 Agrobacterium sequences have now become available, 350 of which contain T-DNA regions. Detailed analysis identified 92 different T-DNA regions and several new T-DNA genes. T-DNA regions can be divided into three groups. I. Typical Agrobacterium rhizogenes T-DNA regions with rol genes. II. A large group of T-DNA regions with iaa and ipt genes, which can be further subdivided into seven subgroups. III. A small group of unusual T-DNA regions. The evolutionary relation between the T-DNA regions could not be completely elucidated, because of the lack of evolutionary intermediates. Several clusters of highly related structures suggest that evolution of T-DNA regions proceeds by slow, progressive evolution of gene sequences, accompanied by rapid changes in overall structure, due to recombination between T-DNA regions of different origins, and insertion of bacterial insertion sequences (IS). Divergence values for T-DNA genes suggest that they were recruited at different times in evolution. An attempt was made to link T-DNA region evolution to plasmid evolution. The present study provides a solid basis for further studies on T-DNA region diversity and evolution.


Assuntos
Agrobacterium/genética , DNA Bacteriano/genética , Transferência Genética Horizontal , Plasmídeos/genética , Agrobacterium/classificação , Evolução Molecular , Filogenia , Sequenciamento Completo do Genoma
3.
BMC Microbiol ; 21(1): 295, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711172

RESUMO

BACKGROUND: The Agrobacterium strain AB2/73 has a unique host range for the induction of crown gall tumors, and contains an exceptionally large, over 500 kbp mega Ti plasmid. We used whole genome sequencing to fully characterize and comparatively analyze the complex genome of strain AB2/73, including its Ti plasmid and virulence factors. RESULTS: We obtained a high-quality, full genomic sequence of AB2/73 by a combination of short-read Illumina sequencing and long-read Nanopore sequencing. The AB2/73 genome has a total size of 7,266,754 bp with 59.5% GC for which 7012 genes (6948 protein coding sequences) are predicted. Phylogenetic and comparative genomics analysis revealed that strain AB2/73 does not belong to the genus Agrobacterium, but to a new species in the genus Rhizobium, which is most related to Rhizobium tropici. In addition to the chromosome, the genome consists of 6 plasmids of which the largest two, of more than 1 Mbp, have chromid-like properties. The mega Ti plasmid is 605 kbp in size and contains two, one of which is incomplete, repABC replication units and thus appears to be a cointegrate consisting of about 175 kbp derived from an unknown Ti plasmid linked to 430 kbp from another large plasmid. In pTiAB2/73 we identified a complete set of virulence genes and two T-DNAs. Besides the previously described T-DNA we found a larger, second T-DNA containing a 6b-like onc gene and the acs gene for agrocinopine synthase. Also we identified two clusters of genes responsible for opine catabolism, including an acc-operon for agrocinopine degradation, and genes putatively involved in ridéopine catabolism. The plasmid also harbours tzs, iaaM and iaaH genes for the biosynthesis of the plant growth regulators cytokinin and auxin. CONCLUSIONS: The comparative genomics analysis of the high quality genome of strain AB2/73 provided insight into the unusual phylogeny and genetic composition of the limited host range Agrobacterium strain AB2/73. The description of its unique genomic composition and of all the virulence determinants in pTiAB2/73 will be an invaluable tool for further studies into the special host range properties of this bacterium.


Assuntos
Genoma Bacteriano/genética , Filogenia , Plasmídeos/genética , Rhizobium/classificação , Rhizobium/genética , Agrobacterium/classificação , Agrobacterium/genética , Agrobacterium/patogenicidade , DNA Bacteriano , Genes Bacterianos , Genômica , Especificidade de Hospedeiro , Tumores de Planta/microbiologia , Replicon , Rhizobium/patogenicidade , Virulência/genética
4.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34870578

RESUMO

Two endophytic strains, coded MOVP5T and MOPV6, were isolated from nodules of Phaseolus vulgaris plants grown on agricultural soil in Southeastern Spain, and were characterized through a polyphasic taxonomy approach. Their 16S rRNA gene sequences showed 99.3 and 99.4 %, 98.9 and 99.6 %, and 99.0 and 98.7% similarity to 'A. deltaense' YIC 4121T, A. radiobacter LGM 140T, and A. pusense NRCPB10T, respectively. Multilocus sequence analysis based on sequences of recA and atpD genes suggested that these two strains could represent a new Agrobacterium species with less than 96.5 % similarity to their closest relatives. PCR amplification of the telA gene, involved in synthesis of protelomerase, confirmed the affiliation of strains MOPV5T and MOPV6 to the genus Agrobacterium. Whole genome average nucleotide identity and digital DNA-DNA hybridization average values were less than 95.1 and 66.7 %, respectively, with respect to its closest related species. Major fatty acids in strain MOPV5T were C18 : 1 ω7c/C18 : 1 ω6c in summed feature 8, C19 : 0 cyclo ω8c, C16 : 0 and C16 : 0 3-OH. Colonies were small to medium, pearl-white coloured on YMA at 28 °C and growth was observed at 10-42 °C, pH 5.0-10.0 and with 0.0-0.5 % (w/v) NaCl. The DNA G+C content was 59.9 mol%. These two strains differ from all other genomovars of Agrobacterium found so far, including those that have not yet given a Latin name. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strain MOPV5T as representing a novel species of Agrobacterium, for which the name Agrobacterium leguminum sp. nov. is proposed. The type strain is MOPV5T (=CECT 30096T=LMG 31779T).


Assuntos
Agrobacterium , Phaseolus , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Agrobacterium/classificação , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Phaseolus/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
5.
Int J Syst Evol Microbiol ; 70(7): 4233-4244, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32568030

RESUMO

Agrobacterium strains are associated with soil, plants and animals, and known mainly by their pathogenicity. We studied 14 strains isolated from nodules of healthy soybean and common bean plants in Brazil, Mexico, Ecuador and Mozambique. Sequence analysis of the 16S rRNA gene positioned the strains as Agrobacterium, but with low phylogenetic resolution. Multilocus sequence analysis (MLSA) of three partial housekeeping genes (glnII, gyrB and recA) positioned the strains in four distinct clades, with Agrobacterium pusense, Agrobacterium deltaense, Agrobacterium radiobacter and Agrobacterium sp. genomospecies G1. Analysis by BOX-PCR revealed high intraspecies diversity. Genomic analysis of representative strains of the three clades indicated that they carry the protelomerase telA gene, and MLSA analysis with six complete housekeeping genes (atpD, glnII, gyrB, recA, rpoB and thrC), as well as average nucleotide identity (less than 90 % with closest species) and digital DNA-DNA hybridization (less than 41 % with closest species) revealed that strain CNPSo 675T and Agrobacterium sp. genomospecies G1 compose a new species. Other phenotypic and genotypic characteristics were determined for the new clade. Although not able to re-nodulate the host, we hypothesize that several strains of Agrobacterium are endophytes in legume nodules, where they might contribute to plant growth. Our data support the description of the CNPSo 675T and Agrobacterium sp. genomospecies G1 strains as a new species, for which the name Agrobacterium fabacearum is proposed. The type strain is CNPSo 675T (=UMR 1457T=LMG 31642T) and is also deposited in other culture collections.


Assuntos
Agrobacterium/classificação , Glycine max/microbiologia , Phaseolus/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , DNA Bacteriano/genética , Equador , Genes Bacterianos , México , Moçambique , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Int J Syst Evol Microbiol ; 70(10): 5512-5519, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32910749

RESUMO

A bacterial strain designated as RZME10T was isolated from a Zea mays L. root collected in Spain. Results of analysis of the 16S rRNA gene sequence showed that this strain belongs to the genus Agrobacterium with Agrobacterium larrymoorei ATCC 51759T being the most closely related species with 99.9 % sequence similarity. The similarity values of the rpoB, recA, gyrB, atpD and glnII genes between strain RZME10T and A. larrymoorei ATCC 51759T were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively. The estimated average nucleotide identity using blast and digital DNA-DNA hybridization values between these two strains were 80.4 and 30.2 %, respectively. The major fatty acids of strain RZME10T are those from summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c) and C16 : 0. Pathogenicity tests on tomato and carrot roots showed that strain RZME10T was not able to induce plant tumours. Based on the results of genomic, chemotaxonomic and phenotypic analyses, we propose that strain RZME10T represents a novel species named Agrobacterium cavarae sp. nov. (type strain RZME10T=CECT 9795T=LMG 31257T).


Assuntos
Agrobacterium/classificação , Filogenia , Raízes de Plantas/microbiologia , Zea mays/microbiologia , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
7.
J Appl Microbiol ; 128(3): 828-839, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31755153

RESUMO

AIMS: Crown gall, a phytobacteriosis characterized by the formation of tumours on plant roots was observed in recently planted vineyards of the Meknes region (Morocco). The objective of this research was to analyse the diversity of pathogenic agrobacteria isolated from grapevine in Morocco. METHODS AND RESULTS: Eighty-two isolates from 11 affected vineyards were characterized by recA sequencing and were found to belong to Agrobacterium tumefaciens genomospecies G1, G4 or G7, Rhizobium rhizogenes, and to Allorhizobium vitis. Only the All. vitis isolates appeared to be pathogenic on tomato and multilocus sequence analysis phylogenetic analyses revealed a weak genetic diversity, with the definition of only four genomic groups. Definition of the All. vitis genomic groups correlated with specific pathogenic traits: indeed, genomic groups differed with respect to the severity of hypersensitive response symptoms on tobacco leaves, the intensity of necrotic response on grapevine explants and opine profiles. Both vitopine and octopine were detected by UHPLC in tumours induced by isolates of three genomic groups, an opine signature scarcely ever reported. CONCLUSIONS: Allorhizobium vitis is the only causative agent of crown gall on grape in Morocco, pathogenic isolates can be separated into four genomic groups. SIGNIFICANCE AND IMPACT OF THE STUDY: This study of recently crown-gall-infested vineyards demonstrated that All. vitis is the only causative agent and revealed the presence of nonpathogenic Agrobacterium strain within tumours. Moreover, as the genetic diversity of the All. vitis isolates is relatively narrow, this study lays the basis for further analyses on the evolution of the disease, on the dissemination of the pTi and more globally on the fate of the different genomic groups in this newly colonized environment.


Assuntos
Agrobacterium/classificação , Agrobacterium/fisiologia , Filogenia , Vitis/microbiologia , Agrobacterium/genética , Agrobacterium/patogenicidade , Arginina/análogos & derivados , Arginina/metabolismo , Proteínas de Bactérias/genética , Variação Genética , Genoma Bacteriano/genética , Glutamina/análogos & derivados , Glutamina/metabolismo , Marrocos , Tumores de Planta/microbiologia
8.
Curr Top Microbiol Immunol ; 418: 1-14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29500562

RESUMO

This chapter presents a historical overview of the development and changes in scientific approaches to classifying members of the Agrobacterium genus. We also describe the changes in the inference of evolutionary relationships among Agrobacterium biovars and Agrobacterium strains from using the 16S rRNA marker to recA genes and to the use of multilocus sequence analysis (MLSA). Further, the impacts of the genomic era enabling low cost and rapid whole genome sequencing on Agrobacterium phylogeny are reviewed with a focus on the use of new and sophisticated bioinformatics approaches to refine phylogenetic inferences. An updated genome-based phylogeny of ninety-seven Agrobacterium tumefaciens complex isolates representing ten known genomic species is presented, providing additional support to the monophyly of the Agrobacterium clade. Additional taxon sampling within Agrobacterium genomovar G3 indicates potential exceptions to interpretation of the concept of bacterial genomics species as ecological species because the genomovar G3 genomic cluster, which initially includes clinical strains, now also includes plant-associated and cave isolates.


Assuntos
Agrobacterium/classificação , Agrobacterium/genética , DNA Bacteriano/genética , Genes Bacterianos/genética , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética
9.
Int J Syst Evol Microbiol ; 69(7): 1852-1863, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31140963

RESUMO

Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.


Assuntos
Agrobacterium/classificação , Rhizobium/classificação , Terminologia como Assunto , Guias como Assunto
10.
Arch Microbiol ; 199(7): 1003-1009, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28386665

RESUMO

A Gram-negative, non-spore-forming, aerobic rods, strain YIC4121T, was isolated from root nodule of Sesbania cannabina grown in Dongying (Yellow River Delta), Shandong Province, PR China. Based on phylogenetic analysis of 16 S rRNA gene sequences, strain YIC4121T was assigned to the genus Agrobacterium with 99.7, 99.3, 99.0, 98.8 and 98.7% sequence similarities to Agrobacterium radiobacter LMG140T, A. pusense NRCPB10T, A. arsenijevicii KFB 330T, A. nepotum 39/7T and A. larrymoorei ATCC51759T. Analysis of the concatenated housekeeping genes (recA-atpD-glnII), showed lower sequence similarities (≤94.6%) between strain YIC4121T and other recognized Agrobacterium species. Strain YIC4121T shared whole-genome average nucleotide identities (ANI) 87.94, 91.27 and 77.42%, with A. pusense NRCPB10T, A. radiobacter LMG140T and A. larrymoorei ATCC51759T. The predominant cellular fatty acids were C19:0 cyclo ω8c, summed feature 2 (C12:0 aldehyde/unknown 10.9525), summed feature 8 (C18:1 ω7c/C18:1 ω6c), C16:0 3 OH and C16:0. The G + C content of strain YIC4121T was 59.80 mol%. Tween 80, lactulose, citric acid, α-ketoglutaric acid, glycyl-L-glutamic acid and 2, 3-butanediol could not be utilized as carbon source, distinguishing strain YIC4121T from the other related species. Based on the distinctly genetic and phenotypic dissimilarity, a novel species Agrobacterium deltaense sp. nov. is proposed with YIC4121T (=HAMBI 3654T = LMG 29283T) as the type strain.


Assuntos
Agrobacterium , Nódulos Radiculares de Plantas/microbiologia , Sesbania/microbiologia , Agrobacterium/classificação , Agrobacterium/genética , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Essenciais/genética , Genoma Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Int J Syst Evol Microbiol ; 67(6): 1906-1911, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28629499

RESUMO

Two Gram-staining-negative, aerobic bacteria (YIC 5082T and YIC4104) isolated from root nodules of Sesbania cannabina grown in a high-salt and alkaline environment were identified as a group in the genus Agrobacterium because they shared 100 and 99.7 % sequence similarities of 16S rRNA and recA+atpD genes, respectively. These two strains showed 99.2/100 % and 93.9/95.4 % 16S rRNA and recA+atpD gene sequence similarities to Agrobacterium radiobacter LMG140T and Agrobacterium. pusense NRCPB10T, respectively. The average nucleotide identities (ANI) of genome sequences were 89.95 % or lower between YIC 5082T and the species of the genus Agrobacterium examined. Moreover, these two test strains formed a unique nifH lineage deeply separated from other rhizobia. Although the nodC gene was not detected in YIC 5082T and YIC4104, they could form effective root nodules on S. cannabina plants. The main cellular fatty acids in YIC 5082T were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), C19 : 0cyclo ω8c, summed feature 2 (C12 : 0 aldehyde/unknown equivalent chain length 10.9525) and C16 : 0. The DNA G+C content of YIC 5082T was 59.3 mol%. The failure to utilize d-sorbitol as a carbon source distinguished YIC 5082T from the type strains of related species. YIC 5082T could grow in presence of 5.0 % (w/v) NaCl and at a pH of up to 10.0. Based on results regarding the genetic and phenotypic properties of YIC 5082T and YIC4104 the name Agrobacterium salinitolerans sp. nov. is proposed and YIC 5082T (=HAMBI 3646T=LMG 29287T) is designed as the type strain.


Assuntos
Agrobacterium/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Sesbania/microbiologia , Agrobacterium/genética , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Mol Plant Microbe Interact ; 29(2): 109-18, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26575143

RESUMO

Agrobacterium vitis nontumorigenic strain F2/5 is able to inhibit crown gall disease on grapevines. The mechanism of grape tumor inhibition (GTI) by F2/5 has not been fully determined. In this study, we demonstrate that two nonribosomal peptide synthetase (NRPS) genes (F-avi3342 and F-avi5730) and one polyketide synthase gene (F-avi4330) are required for GTI. Knockout of any one of them resulted in F/25 losing GTI capacity. We previously reported that F-avi3342 and F-avi4330 but not F-avi5730 are required for induction of grape tissue necrosis and tobacco hypersensitive response. F-avi5730 is predicted to encode a single modular NRPS. It is located in a cluster that is homologous to the siderophore vicibactin biosynthesis locus in Rhizobium species. Individual disruption of F-avi5730 and two immediate downstream genes, F-avi5731 and F-avi5732, all resulted in reduced siderophore production; however, only F-avi5730 was found to be required for GTI. Complemented F-avi5730 mutant (ΔF-avi5730(+)) restored a wild-type level of GTI activity. It was determined that, over time, populations of ΔF-avi4330, ΔF-avi3342, and ΔF-avi5730 at inoculated wound sites on grapevine did not differ from those of ΔF-avi5730(+) indicating that loss of GTI was not due to reduced colonization of wound sites by mutants.


Assuntos
Agrobacterium/classificação , Peptídeo Sintases/metabolismo , Doenças das Plantas/microbiologia , Policetídeo Sintases/metabolismo , Vitis/microbiologia , Agrobacterium/fisiologia , Antibiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Família Multigênica , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Sideróforos
13.
Plant Cell Rep ; 34(1): 133-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326714

RESUMO

KEY MESSAGE: Agroinfiltration is an efficient method to study transgene expression in plant tissue. In this study, sonication followed by vacuum infiltration is shown to increase agroinfiltration-mediated GUS expression in soybean. Agroinfiltration, a valuable tool for rapid analysis of gene function, has been used extensively on leaf tissue of Nicotiana benthamiana and several other plant species. However, the application of this approach for gene functionality studies in soybean has been largely unsuccessful. Improvements in agroinfiltration of many plants have been achieved through a variety of approaches to allow better delivery, penetration and infection of Agrobacterium to interior leaf tissues. In this work, an agroinfiltration approach was developed for transient expression in soybean utilizing sonication followed by vacuum infiltration of intact seedlings. The optimal infiltration buffer, sonication time, and vacuum conditions for agroinfiltration of soybean were evaluated by monitoring expression of an introduced ß-glucuronidase (GUS) reporter gene. The developed method included the use of an infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid sodium salt, 10 mM MgCl2, 100 µM acetosyringone) supplemented with the reducing agent dithiothreitol, with 30 s sonication followed by vacuum infiltration. These techniques were further applied to evaluate five different Agrobacterium strains and six different plant genetic backgrounds. Among the Agrobacterium strains examined, J2 produced the highest levels of GUS activity and 'Peking' was the most responsive genotype.


Assuntos
Agrobacterium/genética , Técnicas de Transferência de Genes , Glucuronidase/genética , Glycine max/genética , Agrobacterium/classificação , Regulação da Expressão Gênica de Plantas , Glucuronidase/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo , Sonicação , Glycine max/metabolismo , Especificidade da Espécie , Fatores de Tempo , Vácuo
14.
J Basic Microbiol ; 55(1): 129-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23828501

RESUMO

A new banana leaf blight was found in Nanning city, China, during a 7-year survey (2003-2009) of the bacterial diseases on banana plants. Eight bacterial strains were isolated from affected banana leaves, and identified as an intraspecific taxon of Agrobacterium vitis based on their 16S rDNA sequence similarities with those of 37 randomly selected bacterial strains registered in GenBank database. The representative strain Ag-1 was virulent on banana leaves and shared similar growth and biochemical reactions with the reference strain IAM14140 of A. vitis. The strains causing banana leaf blight were denominated as A. vitis pv. musae. The traditional A. vitis strains virulent to grapevines were proposed to be revised as A. vitis pv. vitis. This is the first record of a new type of A. vitis causing banana leaf blight in China.


Assuntos
Agrobacterium , Musa/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Agrobacterium/classificação , China , DNA Bacteriano/genética , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Vitis/microbiologia
15.
Mol Phylogenet Evol ; 73: 202-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24440816

RESUMO

Linear chromosomes are atypical in bacteria and likely a secondary trait derived from ancestral circular molecules. Within the Rhizobiaceae family, whose genome contains at least two chromosomes, a particularity of Agrobacterium fabrum (formerly A. tumefaciens) secondary chromosome (chromid) is to be linear and hairpin-ended thanks to the TelA protelomerase. Linear topology and telA distributions within this bacterial family was screened by pulse field gel electrophoresis and PCR. In A. rubi, A. larrymoorei, Rhizobium skierniewicense, A. viscosum, Agrobacterium sp. NCPPB 1650, and every genomospecies of the biovar 1/A. tumefaciens species complex (including R. pusense, A. radiobacter, A. fabrum, R. nepotum plus seven other unnamed genomospecies), linear chromid topologies were retrieved concomitantly with telA presence, whereas the remote species A. vitis, Allorhizobium undicola, Rhizobium rhizogenes and Ensifer meliloti harbored a circular chromid as well as no telA gene. Moreover, the telA phylogeny is congruent with that of recA used as a marker gene of the Agrobacterium phylogeny. Collectively, these findings strongly suggest that single acquisition of telA by an ancestor was the founding event of a large and diverse clade characterized by the presence of a linear chromid. This clade, characterized by unusual genome architecture, appears to be a relevant candidate to serve as a basis for a possible redefinition of the controversial Agrobacterium genus. In this respect, investigating telA in sequenced genomes allows to both ascertain the place of concerned strains into Agrobacterium spp. and their actual assignation to species/genomospecies in this genus.


Assuntos
Agrobacterium/enzimologia , Agrobacterium/genética , Cromossomos Bacterianos/genética , Evolução Molecular , Especiação Genética , Filogenia , Rhizobium/enzimologia , Rhizobium/genética , Telomerase/genética , Agrobacterium/classificação , Sequência de Bases , Genoma Bacteriano/genética , Rhizobium/classificação
16.
Can J Microbiol ; 60(1): 53-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24392926

RESUMO

Production of the commercially available polysaccharide curdlan by Agrobacterium sp. strain ECP-1, isolated as a mutant strain from ATCC 31749, on a medium containing a hydrolysate of the plant prairie cordgrass with selected ammonium phosphate concentrations was investigated for a period of 144 h. Although several ammonium phosphate concentrations supported curdlan production by the strain, the optimal concentration after 120 or 144 h was 3.3 mmol·L⁻¹. Only ammonium phosphate concentrations of 1.1 or 8.7 mmol·L⁻¹ failed to support curdlan production by the strain after 120 or 144 h. Biomass production by strain ECP-1 on the hydrolysate-containing medium after 120 or 144 h was comparable, independent of the ammonium phosphate concentration present. The curdlan yield from the cordgrass hydrolysate indicated that the grass was an effective plant biomass substrate for polysaccharide production.


Assuntos
Agrobacterium/metabolismo , Microbiologia Industrial , Polissacarídeos Bacterianos/metabolismo , beta-Glucanas/metabolismo , Agrobacterium/classificação , Agrobacterium/crescimento & desenvolvimento , Biomassa , Poaceae/metabolismo
17.
Mol Plant Microbe Interact ; 26(7): 823-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23581821

RESUMO

To evaluate the chromosomal background of different Agrobacterium strains on floral dip transformation frequency, eight wild-type Agrobacterium strains, provided by Laboratorium voor Microbiologie Gent (LMG) and classified in different genomic groups, were compared with the commonly used Agrobacterium strains C58C1 Rif(r) (pMP90) and LBA4404 in Arabidopsis thaliana Columbia (Col-0) and C24 ecotypes. The C58C1 Rif(r) chromosomal background in combination with the pMP90 virulence plasmid showed high Col-0 floral dip transformation frequencies (0.76 to 1.57%). LMG201, which is genetically close to the Agrobacterium C58 strain, with the same virulence plasmid showed comparable or even higher transformation frequencies (1.22 to 2.28%), whereas the LBA4404 strain displayed reproducibly lower transformation frequencies (<0.2%). All other tested LMG Agrobacterium chromosomal backgrounds had transformation frequencies between those of the C58C1 Rif(r) (pMP90) and LBA4404 reference strains. None of the strains could transform the C24 ecotype with a frequency higher than 0.1%. Strikingly, all Arabidopsis Col-0 floral dip transformation experiments showed a high transformation variability from plant to plant (even more than 50-fold) within and across the performed biological repeats for all analyzed Agrobacterium strains. Therefore, the physiology of the plant and, probably, the availability of competent flowers to be transformed determine, to a large extent, floral dip transformation frequencies.


Assuntos
Agrobacterium/genética , Arabidopsis/fisiologia , Flores/fisiologia , Transformação Genética , Agrobacterium/classificação , Arabidopsis/genética , Arabidopsis/microbiologia , DNA Bacteriano , Ecótipo , Flores/genética , Flores/microbiologia , Técnicas de Transferência de Genes , Plantas Geneticamente Modificadas , Plasmídeos , Especificidade da Espécie
18.
World J Microbiol Biotechnol ; 29(3): 421-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23090845

RESUMO

This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P < 0.05). Both A. rhizogenes strain AR12 and A13 were able to induce hairy root at 6 days of co-cultivation, which were the fastest among those tested. However, the transformation frequencies of all five strains were below 30 %, with A. rhizogenes strain A4 and A13 showing the highest, which were 21.41 ± 10.60 % and 21.43 ± 8.13 % respectively. Subsequently, the cultures for five different hairy root lines generated by five different strains of bacteria were established. However, different hairy root lines showed different growth index under the same culture condition, with the hairy root lines induced by A. rhizogenes strain ATCC 31798 exhibited largest increase in fresh biomass at 45 days of culture under 16 h light/8 h dark photoperiod in half-strength MS medium. The slowest growing hairy root line, which was previously induced by A. rhizogenes strain A13, when cultured in optimized half-strength MS medium containing 1.5 times the standard amount of ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium.


Assuntos
Agrobacterium/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solanum/microbiologia , Transformação Genética , Agrobacterium/classificação , Biomassa , Biotecnologia/métodos , Meios de Cultura , Solanum/crescimento & desenvolvimento
19.
J Ind Microbiol Biotechnol ; 38(9): 1305-10, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21113643

RESUMO

Three novel strains capable of heterotrophic nitrification-aerobic denitrification were isolated from the landfill leachate treatment system. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as Agrobacterium sp. LAD9, Achromobacter sp. GAD3 and Comamonas sp. GAD4, respectively. Batch tests were carried out to evaluate the growth and the ammonia removal patterns. The maximum growth rates as determined from the growth curve were 0.286, 0.228, and 0.433 h(-1) for LAD9, GAD3 and GAD4, respectively. The maximum aerobic nitrification-denitrification rate was achieved by the strain GAD4 of 0.381 mmol/l h, followed by LAD9 of 0.374 mmol/l h and GAD3 of 0.346 mmol/l h. Moreover, hydroxylamine oxidase and periplasmic nitrate reductase were successfully expressed in all the isolates. The relationship between the enzyme activities and the aerobic nitrification-denitrification rates revealed that hydroxylamine oxidation may be the rate-limiting step in the heterotrophic nitrification-aerobic denitrification process. The study results are of great significance to the wastewater treatment systems where simultaneous removal of carbon and nitrogen is desired.


Assuntos
Bactérias Aeróbias/enzimologia , Desnitrificação , Nitrificação , Achromobacter/classificação , Achromobacter/enzimologia , Achromobacter/isolamento & purificação , Agrobacterium/classificação , Agrobacterium/enzimologia , Agrobacterium/isolamento & purificação , Amônia/metabolismo , Bactérias Aeróbias/classificação , Bactérias Aeróbias/isolamento & purificação , Reatores Biológicos/microbiologia , Comamonas/classificação , Comamonas/enzimologia , Comamonas/isolamento & purificação , Processos Heterotróficos , Hidroxilamina/metabolismo , Filogenia , Eliminação de Resíduos Líquidos
20.
Rev Argent Microbiol ; 43(4): 278-86, 2011.
Artigo em Espanhol | MEDLINE | ID: mdl-22274826

RESUMO

The genus Agrobacterium includes phytopathogenic bacteria that induce the development of root crown galls and/or aerial galls at the base of the stem or hairy roots on more than 600 species of plants belonging to 90 dicotyledonous families and non-pathogenic species. These bacteria being natural soil inhabitants are particularly difficult to eradicate, which is a problem in nurseries where more than 80% of infections occur. Since early detection is crucial to avoid the inadvertent spread of the disease, the aim of this work was to develop sensitive and precise identification techniques by using a set of semi-selective and differential culture media in combination with a specific PCR to amplify a partial sequence derived from the virC operon, as well as a multiplex PCR on the basis of 23SrDNA sequences, and biological assays to identify and differentiate species and biovars of Agrobacterium obtained either from soil, water or plant samples. The combination of the different assays allowed us to reduce the number of false positive and negative results from bacteria isolated from any of the three types of samples. Therefore, the combination of multiplex PCR, specific PCR, isolations in semi-selective D1, D1-M and YEM-RCT media combined with bioassays on cut leaves of Kalanchoe and seedlings of California Wonder pepper cultivar constitute an accurate tool to detect species and biovars of Agrobacterium for diagnostic purposes.


Assuntos
Agrobacterium/isolamento & purificação , Técnicas Bacteriológicas , Plantas/microbiologia , Microbiologia do Solo , Microbiologia da Água , Agrobacterium/classificação , Agrobacterium/enzimologia , Agrobacterium/genética , Agrobacterium/patogenicidade , Proteínas de Bactérias/análise , Bioensaio , Meios de Cultura , DNA Bacteriano/genética , Kalanchoe/microbiologia , Lactose/análogos & derivados , Lactose/análise , Tumores de Planta/microbiologia , Reação em Cadeia da Polimerase , Especificidade da Espécie , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA