Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.913
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579712

RESUMO

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Assuntos
Células Epiteliais Alveolares , Pulmão , Células-Tronco , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/citologia , Diferenciação Celular , Linhagem da Célula , Pulmão/citologia , Pulmão/metabolismo , Pulmão/fisiologia , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Receptores Notch/metabolismo , Regeneração , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/citologia
2.
Cell ; 180(1): 20-22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31951518

RESUMO

Idiopathic pulmonary fibrosis is a fatal disease involving destruction of the lung alveolar structure. In this issue of Cell, Wu et al. (2020) show that impaired alveolar (AT2) stem cells produce mechanical tension that leads to spatially regulated fibrosis, initiating a new chapter in understanding what underlies the periphery to center progression of this lung disease.


Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar , Humanos , Alvéolos Pulmonares , Células-Tronco , Estresse Mecânico
3.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31866069

RESUMO

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Assuntos
Células-Tronco Adultas/metabolismo , Fibrose Pulmonar Idiopática/etiologia , Alvéolos Pulmonares/metabolismo , Células-Tronco Adultas/patologia , Idoso , Células Epiteliais Alveolares/patologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Fibrose/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Alvéolos Pulmonares/patologia , Regeneração , Transdução de Sinais , Células-Tronco/patologia , Estresse Mecânico , Estresse Fisiológico/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
4.
Cell ; 183(1): 110-125.e11, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888431

RESUMO

During respiration, humans breathe in more than 10,000 liters of non-sterile air daily, allowing some pathogens access to alveoli. Interestingly, alveoli outnumber alveolar macrophages (AMs), which favors alveoli devoid of AMs. If AMs, like most tissue macrophages, are sessile, then this numerical advantage would be exploited by pathogens unless neutrophils from the blood stream intervened. However, this would translate to omnipresent persistent inflammation. Developing in vivo real-time intravital imaging of alveoli revealed AMs crawling in and between alveoli using the pores of Kohn. Importantly, these macrophages sensed, chemotaxed, and, with high efficiency, phagocytosed inhaled bacterial pathogens such as P. aeruginosa and S. aureus, cloaking the bacteria from neutrophils. Impairing AM chemotaxis toward bacteria induced superfluous neutrophil recruitment, leading to inappropriate inflammation and injury. In a disease context, influenza A virus infection impaired AM crawling via the type II interferon signaling pathway, and this greatly increased secondary bacterial co-infection.


Assuntos
Bactérias/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Animais , Feminino , Homeostase , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/imunologia , Fagocitose/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Alvéolos Pulmonares , Transdução de Sinais , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
5.
Cell ; 170(6): 1149-1163.e12, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886383

RESUMO

The diversity of mesenchymal cell types in the lung that influence epithelial homeostasis and regeneration is poorly defined. We used genetic lineage tracing, single-cell RNA sequencing, and organoid culture approaches to show that Lgr5 and Lgr6, well-known markers of stem cells in epithelial tissues, are markers of mesenchymal cells in the adult lung. Lgr6+ cells comprise a subpopulation of smooth muscle cells surrounding airway epithelia and promote airway differentiation of epithelial progenitors via Wnt-Fgf10 cooperation. Genetic ablation of Lgr6+ cells impairs airway injury repair in vivo. Distinct Lgr5+ cells are located in alveolar compartments and are sufficient to promote alveolar differentiation of epithelial progenitors through Wnt activation. Modulating Wnt activity altered differentiation outcomes specified by mesenchymal cells. This identification of region- and lineage-specific crosstalk between epithelium and their neighboring mesenchymal partners provides new understanding of how different cell types are maintained in the adult lung.


Assuntos
Pulmão/citologia , Mesoderma/citologia , Animais , Homeostase , Pulmão/fisiologia , Camundongos , Organoides/citologia , Alvéolos Pulmonares/citologia , Receptores Acoplados a Proteínas G/análise , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica
6.
Cell ; 165(1): 139-152, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27015311

RESUMO

A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers' susceptibility to tuberculosis.


Assuntos
Suscetibilidade a Doenças , Lisossomos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/patologia , Animais , Granuloma/metabolismo , Macrófagos/citologia , Macrófagos Alveolares/imunologia , Mycobacterium marinum , Alvéolos Pulmonares/imunologia , Fumar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vesículas Transportadoras/metabolismo , Tuberculose/imunologia , Tuberculose/patologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Nature ; 631(8021): 627-634, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987592

RESUMO

Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.


Assuntos
Lesão Pulmonar Aguda , Linhagem da Célula , Fibroblastos , Pneumonia , Alvéolos Pulmonares , Fibrose Pulmonar , Animais , Feminino , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Diferenciação Celular , Fibroblastos/patologia , Fibroblastos/metabolismo , Homeostase , Pneumonia/patologia , Pneumonia/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia , Fator de Crescimento Transformador beta/metabolismo
8.
Cell ; 156(3): 440-55, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24485453

RESUMO

Lung stem cells are instructed to produce lineage-specific progeny through unknown factors in their microenvironment. We used clonal 3D cocultures of endothelial cells and distal lung stem cells, bronchioalveolar stem cells (BASCs), to probe the instructive mechanisms. Single BASCs had bronchiolar and alveolar differentiation potential in lung endothelial cell cocultures. Gain- and loss-of-function experiments showed that BMP4-Bmpr1a signaling triggers calcineurin/NFATc1-dependent expression of thrombospondin-1 (Tsp1) in lung endothelial cells to drive alveolar lineage-specific BASC differentiation. Tsp1 null mice exhibited defective alveolar injury repair, confirming a crucial role for the BMP4-NFATc1-TSP1 axis in lung epithelial differentiation and regeneration in vivo. Discovery of this pathway points to methods to direct the derivation of specific lung epithelial lineages from multipotent cells. These findings elucidate a pathway that may be a critical target in lung diseases and provide tools to understand the mechanisms of respiratory diseases at the single-cell level.


Assuntos
Bronquíolos/citologia , Diferenciação Celular , Células Endoteliais/metabolismo , Alvéolos Pulmonares/citologia , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Bronquíolos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Camundongos , Fatores de Transcrição NFATC/metabolismo , Alvéolos Pulmonares/metabolismo , Células-Tronco/citologia , Trombospondina 1/genética , Trombospondina 1/metabolismo
9.
Nature ; 621(7980): 813-820, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587341

RESUMO

Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.


Assuntos
Células Endoteliais , Pulmão , Infecções por Orthomyxoviridae , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Camundongos , Apelina/metabolismo , Dieta , Células Endoteliais/metabolismo , Endotélio/citologia , Endotélio/metabolismo , Células Epiteliais/metabolismo , Eritrócitos/metabolismo , Influenza Humana/imunologia , Influenza Humana/metabolismo , Intestinos/metabolismo , Leucócitos/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
10.
Nature ; 604(7904): 120-126, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355013

RESUMO

The human lung differs substantially from its mouse counterpart, resulting in a distinct distal airway architecture affected by disease pathology in chronic obstructive pulmonary disease. In humans, the distal branches of the airway interweave with the alveolar gas-exchange niche, forming an anatomical structure known as the respiratory bronchioles. Owing to the lack of a counterpart in mouse, the cellular and molecular mechanisms that govern respiratory bronchioles in the human lung remain uncharacterized. Here we show that human respiratory bronchioles contain a unique secretory cell population that is distinct from cells in larger proximal airways. Organoid modelling reveals that these respiratory airway secretory (RAS) cells act as unidirectional progenitors for alveolar type 2 cells, which are essential for maintaining and regenerating the alveolar niche. RAS cell lineage differentiation into alveolar type 2 cells is regulated by Notch and Wnt signalling. In chronic obstructive pulmonary disease, RAS cells are altered transcriptionally, corresponding to abnormal alveolar type 2 cell states, which are associated with smoking exposure in both humans and ferrets. These data identify a distinct progenitor in a region of the human lung that is not found in mouse that has a critical role in maintaining the gas-exchange compartment and is altered in chronic lung disease.


Assuntos
Bronquíolos , Furões , Células-Tronco Multipotentes , Alvéolos Pulmonares , Animais , Bronquíolos/citologia , Linhagem da Célula , Humanos , Pulmão/patologia , Camundongos , Células-Tronco Multipotentes/citologia , Alvéolos Pulmonares/citologia , Doença Pulmonar Obstrutiva Crônica
11.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602485

RESUMO

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Assuntos
Diferenciação Celular , Via de Sinalização Hippo , Morfogênese , Miofibroblastos , Proteínas Serina-Treonina Quinases , Alvéolos Pulmonares , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Morfogênese/genética , Mesoderma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Pulmão/metabolismo , Organogênese/genética , Regulação da Expressão Gênica no Desenvolvimento
12.
Nat Immunol ; 16(1): 36-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25521683

RESUMO

Gas exchange is the vital function of the lungs. It occurs in the alveoli, where oxygen and carbon dioxide diffuse across the alveolar epithelium and the capillary endothelium surrounding the alveoli, separated only by a fused basement membrane 0.2-0.5 µm in thickness. This tenuous barrier is exposed to dangerous or innocuous particles, toxins, allergens and infectious agents inhaled with the air or carried in the blood. The lung immune system has evolved to ward off pathogens and restrain inflammation-mediated damage to maintain gas exchange. Lung-resident macrophages and dendritic cells are located in close proximity to the epithelial surface of the respiratory system and the capillaries to sample and examine the air-borne and blood-borne material. In communication with alveolar epithelial cells, they set the threshold and the quality of the immune response.


Assuntos
Células Dendríticas/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Alvéolos Pulmonares/imunologia , Mucosa Respiratória/imunologia , Animais , Citocinas/imunologia , Células Dendríticas/citologia , Humanos , Pulmão/citologia , Macrófagos Alveolares/citologia , Alvéolos Pulmonares/citologia , Mucosa Respiratória/citologia , Infecções Respiratórias/imunologia
13.
Nat Immunol ; 21(10): 1146-1151, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32855555

Assuntos
Angioedema/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/metabolismo , Pneumonia Viral/imunologia , Angioedema/sangue , Angioedema/patologia , Angioedema/virologia , Enzima de Conversão de Angiotensina 2 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Biomarcadores/sangue , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Congressos como Assunto , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/virologia , Citocinas/antagonistas & inibidores , Citocinas/sangue , Citocinas/imunologia , Humanos , Internet , Sistema Calicreína-Cinina/efeitos dos fármacos , Sistema Calicreína-Cinina/imunologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , SARS-CoV-2 , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Fatores de Tempo , Tempo para o Tratamento , Tratamento Farmacológico da COVID-19
14.
Nature ; 595(7865): 107-113, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915569

RESUMO

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


Assuntos
COVID-19/patologia , COVID-19/virologia , Rim/patologia , Fígado/patologia , Pulmão/patologia , Miocárdio/patologia , SARS-CoV-2/patogenicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Atlas como Assunto , Autopsia , Bancos de Espécimes Biológicos , COVID-19/genética , COVID-19/imunologia , Células Endoteliais , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Fibroblastos , Estudo de Associação Genômica Ampla , Coração/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Rim/virologia , Fígado/virologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Fagócitos , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , RNA Viral/análise , Regeneração , SARS-CoV-2/imunologia , Análise de Célula Única , Carga Viral
15.
Cell ; 147(3): 525-38, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22036562

RESUMO

The extent of lung regeneration following catastrophic damage and the potential role of adult stem cells in such a process remains obscure. Sublethal infection of mice with an H1N1 influenza virus related to that of the 1918 pandemic triggers massive airway damage followed by apparent regeneration. We show here that p63-expressing stem cells in the bronchiolar epithelium undergo rapid proliferation after infection and radiate to interbronchiolar regions of alveolar ablation. Once there, these cells assemble into discrete, Krt5+ pods and initiate expression of markers typical of alveoli. Gene expression profiles of these pods suggest that they are intermediates in the reconstitution of the alveolar-capillary network eradicated by viral infection. The dynamics of this p63-expressing stem cell in lung regeneration mirrors our parallel finding that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease.


Assuntos
Brônquios/citologia , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/patologia , Pulmão/fisiologia , Alvéolos Pulmonares/citologia , Síndrome do Desconforto Respiratório/patologia , Células-Tronco/citologia , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Pulmão/citologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/virologia , Ratos , Fatores de Transcrição/genética , Cicatrização
16.
Cell ; 147(2): 293-305, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000010

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the most common causes of death worldwide. We report in an emphysema model of mice chronically exposed to tobacco smoke that pulmonary vascular dysfunction, vascular remodeling, and pulmonary hypertension (PH) precede development of alveolar destruction. We provide evidence for a causative role of inducible nitric oxide synthase (iNOS) and peroxynitrite in this context. Mice lacking iNOS were protected against emphysema and PH. Treatment of wild-type mice with the iNOS inhibitor N(6)-(1-iminoethyl)-L-lysine (L-NIL) prevented structural and functional alterations of both the lung vasculature and alveoli and also reversed established disease. In chimeric mice lacking iNOS in bone marrow (BM)-derived cells, PH was dependent on iNOS from BM-derived cells, whereas emphysema development was dependent on iNOS from non-BM-derived cells. Similar regulatory and structural alterations as seen in mouse lungs were found in lung tissue from humans with end-stage COPD.


Assuntos
Modelos Animais de Doenças , Pulmão/patologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar/patologia , Animais , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/fisiopatologia , Lisina/análogos & derivados , Lisina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/patologia , Enfisema Pulmonar/fisiopatologia
17.
Cell ; 147(3): 539-53, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22036563

RESUMO

To identify pathways involved in adult lung regeneration, we employ a unilateral pneumonectomy (PNX) model that promotes regenerative alveolarization in the remaining intact lung. We show that PNX stimulates pulmonary capillary endothelial cells (PCECs) to produce angiocrine growth factors that induce proliferation of epithelial progenitor cells supporting alveologenesis. Endothelial cells trigger expansion of cocultured epithelial cells, forming three-dimensional angiospheres reminiscent of alveolar-capillary sacs. After PNX, endothelial-specific inducible genetic ablation of Vegfr2 and Fgfr1 in mice inhibits production of MMP14, impairing alveolarization. MMP14 promotes expansion of epithelial progenitor cells by unmasking cryptic EGF-like ectodomains that activate the EGF receptor (EGFR). Consistent with this, neutralization of MMP14 impairs EGFR-mediated alveolar regeneration, whereas administration of EGF or intravascular transplantation of MMP14(+) PCECs into pneumonectomized Vegfr2/Fgfr1-deficient mice restores alveologenesis and lung inspiratory volume and compliance function. VEGFR2 and FGFR1 activation in PCECs therefore increases MMP14-dependent bioavailability of EGFR ligands to initiate and sustain alveologenesis.


Assuntos
Fatores de Crescimento Endotelial/metabolismo , Pulmão/citologia , Pulmão/fisiologia , Alvéolos Pulmonares/citologia , Animais , Células Endoteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Neovascularização Fisiológica , Pneumonectomia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Regeneração , Células-Tronco/metabolismo , Técnicas de Cultura de Tecidos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Nature ; 586(7831): 785-789, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057196

RESUMO

In the mammalian lung, an apparently homogenous mesh of capillary vessels surrounds each alveolus, forming the vast respiratory surface across which oxygen transfers to the blood1. Here we use single-cell analysis to elucidate the cell types, development, renewal and evolution of the alveolar capillary endothelium. We show that alveolar capillaries are mosaics; similar to the epithelium that lines the alveolus, the alveolar endothelium is made up of two intermingled cell types, with complex 'Swiss-cheese'-like morphologies and distinct functions. The first cell type, which we term the 'aerocyte', is specialized for gas exchange and the trafficking of leukocytes, and is unique to the lung. The other cell type, termed gCap ('general' capillary), is specialized to regulate vasomotor tone, and functions as a stem/progenitor cell in capillary homeostasis and repair. The two cell types develop from bipotent progenitors, mature gradually and are affected differently in disease and during ageing. This cell-type specialization is conserved between mouse and human lungs but is not found in alligator or turtle lungs, suggesting it arose during the evolution of the mammalian lung. The discovery of cell type specialization in alveolar capillaries transforms our understanding of the structure, function, regulation and maintenance of the air-blood barrier and gas exchange in health, disease and evolution.


Assuntos
Capilares/citologia , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/citologia , Troca Gasosa Pulmonar , Envelhecimento , Jacarés e Crocodilos/anatomia & histologia , Animais , Evolução Biológica , Capilares/metabolismo , Divisão Celular , Autorrenovação Celular , Senescência Celular , Humanos , Masculino , Camundongos , Alvéolos Pulmonares/metabolismo , Células-Tronco/classificação , Células-Tronco/citologia , Tartarugas/anatomia & histologia
19.
Bioessays ; 46(1): e2300083, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010492

RESUMO

Recent studies support a model in which the progeny of SOX9+ epithelial progenitors at the distal tip of lung branches undergo cell allocation and differentiation sequentially along the distal-to-proximal axis. Concomitant with the elongation and ramification of lung branches, the descendants of the distal SOX9+ progenitors are distributed proximally, express SOX2, and differentiate into cell types in the conducting airways. Amid subsequent sacculation, the distal SOX9+ progenitors generate alveolar epithelial cells to form alveoli. Sequential cell allocation and differentiation are integrated with the branching process to generate a functional branching organ. This review focuses on the roles of SOX9+ cells as precursors for new branches, as the source of various cell types in the conducting airways, and as progenitors of the alveolar epithelium. All of these processes are controlled by multiple signaling pathways. Many mouse mutants with defective lung branching contain underlying defects in one or more steps of cell allocation and differentiation of SOX9+ progenitors. This model provides a framework to understand the molecular basis of lung phenotypes and to elucidate the molecular mechanisms of lung patterning. It builds a foundation on which comparing and contrasting the mechanisms employed by different branching organs in diverse species can be made.


Assuntos
Pulmão , Alvéolos Pulmonares , Camundongos , Animais , Pulmão/metabolismo , Diferenciação Celular , Transdução de Sinais
20.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35302583

RESUMO

The mesenchyme consists of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling, but are poorly defined morphologically and molecularly. Leveraging single-cell RNA-sequencing, 3D imaging and lineage tracing, we classify the mouse lung mesenchyme into three proximal-distal axes that are associated with the endothelium, epithelium and interstitium, respectively. From proximal to distal: the vascular axis includes vascular smooth muscle cells and pericytes that transition as arterioles and venules ramify into capillaries; the epithelial axis includes airway smooth muscle cells and two populations of myofibroblasts - ductal myofibroblasts, surrounding alveolar ducts and marked by CDH4, HHIP and LGR6, which persist post-alveologenesis, and alveolar myofibroblasts, surrounding alveoli and marked by high expression of PDGFRA, which undergo developmental apoptosis; and the interstitial axis, residing between the epithelial and vascular trees and sharing the marker MEOX2, includes fibroblasts in the bronchovascular bundle and the alveolar interstitium, which are marked by IL33/DNER/PI16 and Wnt2, respectively. Single-cell imaging reveals a distinct morphology of mesenchymal cell populations. This classification provides a conceptual and experimental framework applicable to other organs.


Assuntos
Células-Tronco Mesenquimais , Miofibroblastos , Animais , Pulmão , Mesoderma/metabolismo , Camundongos , Alvéolos Pulmonares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA