Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 602: 105-112, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35259588

RESUMO

Amygdalin is a natural compound from Bitter Apricot Seed which is reported to have anti-inflammatory activity. Acetaminophen (APAP) resulted in drug-induced liver injury is the main cause of acute liver failure (ALI) worldwide and only N-acetylcysteine is the accepted detoxification drug. However, there is no effective medicine to perfect the hepatocyte death and secondary inflammation injury. In this study, we aim to investigate the protective effect of Amygdalin in the APAP-induced acute liver failure mice model. We establish the ALI model via intraperitoneal APAP injection and mice were treated with Amygdalin with intraperitoneal injection. We detected liver enzyme and histological change to evaluate the liver injury. We measured oxidative damage markers and inflammatory cell infiltration of liver tissues. At last, we investigated the mechanism of Amygdalin on protecting hepatocytes. Results showed that Amygdalin reduced ALT/AST level and decreased necrotic area of liver tissue. In addition, Amygdalin reduced the count of MPO+(neutrophils) and F4/80+(macrophages) of the liver and inhibited IL-6, TNF-a, and IL-1b expression. Amygdalin reduced liver SOD and MDA levels and increased Nrf2/NQO1/HO1 protein expression. Moreover, Amygdalin reduced TUNEL+ and P-MLKL + staining cells in liver tissue. Mechanically, Amygdalin promoted phosphorylation of AKT and suppressed JNK/RIP3/MLKL signaling.


Assuntos
Amigdalina , Doença Hepática Induzida por Substâncias e Drogas , Falência Hepática Aguda , Acetaminofen/efeitos adversos , Amigdalina/metabolismo , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Hepatócitos/metabolismo , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/prevenção & controle , Camundongos , Estresse Oxidativo
2.
Environ Toxicol ; 35(4): 528-537, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31821727

RESUMO

Cancer is the major cause of death and many factors that lead to its occurrences, such as environmental pollution and pesticides and other factors. Ehrlich carcinoma development depends on many things associated with the environment, nutrition, personal habits, and family history. The present study aimed to evaluate the potential protective effects of vitamin B17 (VB17) against Ehrlich ascites carcinoma (EAC) that induced kidney toxicity in female mice. The mice were divided into five groups (first group, control group; second group, VB17 group; third group, EAC group; fourth group, pretreated EAC with VB17; fifth group, cotreated EAC with VB17). Results showed the VB17 in pretreated (G4) and cotreated (G5) groups lead to an improvement in DNA damage and cytological examination, in addition significantly (P < .05) increase in Na+ , red blood cell, hemoglobin, hematocrit value, mean corpuscular hemoglobin (MCH), and MCH concentration, whereas significantly (P < .05) decrease in urea, creatinine, K+ , platelets, and white blood cells while insignificant (P < .05) changes in mean corpuscular volume when compared to the EAC group. Many histopathological changes were observed in kidney sections in EAC as marked damage and degenerated, glomerular atrophy, the Malpighian corpuscles that lost their characteristic configuration. On the other hand, a moderate improvement and arrangement in the kidney histological structure in pretreated VB17 + EAC, while a mild enhancement and arrangement of the kidney structure in cotreated EAC + VB17. In addition, depletion in renal P53 and PCNA protein expression compared with the EAC group. It could be concluded that VB17 has a potential renal protective effect against EAC cells induced kidney injury.


Assuntos
Amigdalina/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Ehrlich/tratamento farmacológico , Rim/efeitos dos fármacos , Amigdalina/uso terapêutico , Animais , Carcinoma de Ehrlich/sangue , Carcinoma de Ehrlich/patologia , Dano ao DNA/efeitos dos fármacos , Feminino , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Camundongos , Proteína Supressora de Tumor p53/biossíntese
3.
Immunopharmacol Immunotoxicol ; 40(3): 212-218, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29486614

RESUMO

Amygdalin, named as 'laetrile' and 'vitamin B-17' was initially supposed to be a safe drug for cancer treatment and was recognized by followers of natural medicine since it has been considered to be hydrolyzed only in cancer cells releasing toxic hydrogen cyanide (HCN), and thus destroying them. Unfortunately, current studies have shown that HCN is also released in normal cells, therefore it may not be safe for human organism. However, there have still been research works conducted on anti-cancer properties of this compound. In vitro experiments have shown induction of apoptosis by amygdalin as a result of increased expression of Bax protein and caspase-3 and reduced expression of antiapoptotic BcL-2protein. Amygdalin has also been shown to inhibit the adhesion of breast cancer cells, lung cancer cells and bladder cancer cells by decreased expression of integrin's, reduction of catenin levels and inhibition of the Akt-mTOR pathway, which may consequently lead to inhibition of metastases of cancer cells. It has also been revealed that amygdalin in renal cancer cells increased expression of p19 protein resulting in inhibition of cell transfer from G1-phase to S-phase, and thus inhibited cell proliferation. Other studies have indicated that amygdalin inhibits NF-kß and NLRP3 signaling pathways, and consequently has anti-inflammatory effect due to reducing the expression of proinflammatory cytokines such as pro-IL-1ß. Moreover, the effect of amygdalin on TGFß/CTGF pathway, anti-fibrous activity and expression of follistatin resulting in activation of muscle cells growth has been reported. This compound might be applicable in the treatment of various cancer cell types.


Assuntos
Amigdalina/uso terapêutico , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Neoplasias , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Amigdalina/farmacocinética , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
4.
Acta Pharmacol Sin ; 37(6): 783-93, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27133300

RESUMO

AIM: Chinese medicine CGA formula consists of polysaccharide from Cordyceps sinensis mycelia (CS-PS), gypenosides and amygdalin, which is derived from Fuzheng Huayu (FZHY) capsule for treating liver fibrosis. In this study we attempted to confirm the therapeutic effects of CGA formula in dimethylnitrosamine (DMN)-induced liver fibrosis in rats, and to identify the mechanisms of anti-fibrotic actions. METHODS: Rats were injected with DMN (10 mg·kg(-1)·d(-1), ip) for 3 consecutive days per week over a 4-week period. The rats then were orally administered with CGA formula (CS-PS 60 mg·kg(-1)·d(-1), gypenosides 50 mg·kg(-1)·d(-1) and amygdalin 80 mg·kg(-1)·d(-1)) daily in the next 2 weeks. CS-PS, gypenosides or amygdalin alone were administered as individual component controls, whereas colchicine and FZHY were used as positive controls. Serum biomarkers were measured. Hepatic injury, collagen deposition and stellate cell activation were examined. The MMP activities, expression of TIMP protein and proteins involved in the TGF-ß1/Smad signaling pathways in liver tissues were assayed. RESULTS: In DMN-treated rats, administration of CGA formula significantly decreased serum ALT, AST and total bilirubin and hepatic hydroxyproline levels, increased serum albumin level, and attenuated liver fibrosis as shown by histological examination. Furthermore, these effects were comparable to those caused by administration of FZHY, and superior to those caused by administration of colchicine or the individual components of CGA formula. Moreover, administration of CGA formula significantly decreased the protein levels of α-SMA, TGF-ß1, TGF-ß1 receptor (TßR-I), p-TßR-I, p-TßR-II, p-Smad2, p-Smad3, TIMP1 and TIMP2, as well as MMP2 and MMP9 activities in liver tissues of DMN-treated rats. CONCLUSION: Chinese medicine CGA formula ameliorates DMN-induced liver fibrosis in rats, and this effect was likely associated with the down-regulation of MMP2/9 activities, TIMP1/2 protein expression and the TGF-ß1/Smad signaling pathways in the liver.


Assuntos
Amigdalina/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Fígado/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Amigdalina/química , Animais , Cordyceps/química , Dimetilnitrosamina , Medicamentos de Ervas Chinesas/química , Gynostemma/química , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Proteínas Smad/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Bull Exp Biol Med ; 160(5): 712-4, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27021084

RESUMO

The effects of amygdaline from apricot kernel added to fodder on the growth of transplanted LYO-1 and Ehrlich carcinoma were studied in mice. Apricot kernels inhibited the growth of both tumors. Apricot kernels, raw and after thermal processing, given 2 days before transplantation produced a pronounced antitumor effect. Heat-processed apricot kernels given in 3 days after transplantation modified the tumor growth and prolonged animal lifespan. Thermal treatment did not considerably reduce the antitumor effect of apricot kernels. It was hypothesized that the antitumor effect of amygdaline on Ehrlich carcinoma and LYO-1 lymphosarcoma was associated with the presence of bacterial genome in the tumor.


Assuntos
Amigdalina/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Ehrlich/tratamento farmacológico , Linfoma não Hodgkin/tratamento farmacológico , Prunus armeniaca/metabolismo , Animais , Camundongos , Transplante de Neoplasias , Preparações de Plantas/uso terapêutico
6.
Cochrane Database Syst Rev ; (4): CD005476, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25918920

RESUMO

BACKGROUND: Laetrile is the name for a semi-synthetic compound which is chemically related to amygdalin, a cyanogenic glycoside from the kernels of apricots and various other species of the genus Prunus. Laetrile and amygdalin are promoted under various names for the treatment of cancer although there is no evidence for its efficacy. Due to possible cyanide poisoning, laetrile can be dangerous. OBJECTIVES: To assess the alleged anti-cancer effect and possible adverse effects of laetrile and amygdalin. SEARCH METHODS: We searched the following databases: CENTRAL (2014, Issue 9); MEDLINE (1951-2014); EMBASE (1980-2014); AMED; Scirus; CINAHL (all from 1982-2015); CAMbase (from 1998-2015); the MetaRegister; the National Research Register; and our own files. We examined reference lists of included studies and review articles and we contacted experts in the field for knowledge of additional studies. We did not impose any restrictions of timer or language. SELECTION CRITERIA: Randomized controlled trials (RCTs) and quasi-RCTs. DATA COLLECTION AND ANALYSIS: We searched eight databases and two registers for studies testing laetrile or amygdalin for the treatment of cancer. Two review authors screened and assessed articles for inclusion criteria. MAIN RESULTS: We located over 200 references, 63 were evaluated in the original review, 6 in the 2011 and none in this update. However, we did not identify any studies that met our inclusion criteria. AUTHORS' CONCLUSIONS: The claims that laetrile or amygdalin have beneficial effects for cancer patients are not currently supported by sound clinical data. There is a considerable risk of serious adverse effects from cyanide poisoning after laetrile or amygdalin, especially after oral ingestion. The risk-benefit balance of laetrile or amygdalin as a treatment for cancer is therefore unambiguously negative.


Assuntos
Amigdalina/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/tratamento farmacológico , Amigdalina/efeitos adversos , Antineoplásicos Fitogênicos/efeitos adversos , Humanos
7.
Pol Merkur Lekarski ; 38(227): 300-3, 2015 May.
Artigo em Polonês | MEDLINE | ID: mdl-26039028

RESUMO

In this publication we described amygdalin. It was isolated for the first time in the 19th century. Amygdalin is called interchangeably vitamin B17 or laetrile. Since more than a hundred years, there has been reports about its unique anticancer properties. We tried to introduce the present knowledge about therapeutic efficacy of laetrile. Most of these studies has been made in the in vitro environment. The lack of appropriate studies forced scientists to examine the positive influence of amygdalin on many diseases like: bladder cancer, prostate cancer, cervical cancer, colon cancer, promyelocytic leukemia, chronic kidney disease, psoriasis and other.


Assuntos
Amigdalina/química , Amigdalina/uso terapêutico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Humanos , Falência Renal Crônica/tratamento farmacológico , Estrutura Molecular , Neoplasias/tratamento farmacológico , Psoríase/tratamento farmacológico
8.
Emerg Med Australas ; 36(4): 650-651, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38807508

RESUMO

OBJECTIVE: Vitamin B17 tablets are sold (online) as an alternative cancer therapy medication. Its use however is not benign, given that it is metabolised into hydrogen cyanide. We aimed to measure the number of calls received by the New South Wales Poisons Information Centre (NSW PIC) regarding Amygdalin exposures. METHODS: A retrospective review of all amygdalin/cyanogenic glycoside product ingestion exposure calls to NSW PIC between 2015 and 2022. RESULTS: There were 120 unique exposure calls. Eighty-two (68%) were regarding minor exposures, with the remaining 38 (32%) of calls involving patients who had either a signifcant history or symptoms to prompt referral to hospital or were already seeking advice from a treating hospital clinican. CONCLUSION: There is a significant burden of concern generated from the misuse of cyanogenic glycoside products for cancer prevention and treatment, which can result in hospital admission carrying significant health risk and expenditure.


Assuntos
Amigdalina , Neoplasias , Humanos , Estudos Retrospectivos , New South Wales/epidemiologia , Masculino , Amigdalina/uso terapêutico , Amigdalina/farmacologia , Feminino , Adulto , Pessoa de Meia-Idade , Centros de Controle de Intoxicações/estatística & dados numéricos , Idoso , Adolescente , Criança , Glicosídeos/uso terapêutico , Glicosídeos/farmacologia
9.
Anticancer Agents Med Chem ; 23(8): 894-899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36424774

RESUMO

The current study demonstrates amygdalin's (vitamin B17) postulated mechanism of action on cancer cells where it kills cells by selective toxicity, promotes apoptosis via cell cycle arrest, induces apoptosis via intrinsic cell death pathway (the mitochondria-initiated pathway), and enhances immunity. Thus, amygdalin can be considered a valuable natural cancer therapeutic agent. The toxicity of Amygdalin was reviewed. Moreover, solutions to avoid the cyanide poisoning have been proposed.


Assuntos
Amigdalina , Neoplasias , Humanos , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Neoplasias/tratamento farmacológico , Apoptose , Pontos de Checagem do Ciclo Celular
10.
BMC Complement Med Ther ; 23(1): 162, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210478

RESUMO

INTRODUCTION: Breast cancer (BC) cells often develop multiple mechanisms of chemo- and radio-resistance during tumor progression, which is the major reason for the failure of breast cancer therapy. Targeted nanomedicines have tremendous therapeutic potential in BC treatment over their free drug counterparts. Searching for chemo- and radio-sensitizers to overcome such resistance is therefore urgently required. The goal of this study is to evaluate and compare the radio-sensitizer efficacy of amygdalin-folic acid nanoparticles (Amy-F) on MCF-7 and MDA-MB-231 cells. MATERIALS AND METHODS: The effects of Amy-F on MCF-7 and MDA-MB-231 cell proliferation and IC50 were assessed using MTT assay. The expression of proteins involved in several mechanisms induced by Amy-F in MCF-7 and MDA-MB-231 cells, including growth inhibition, apoptosis, tumor growth regulators, immuno-modulators, and radio-sensitizing activities were evaluated via flow cytometry and ELISA assay. RESULTS: Nanoparticles demonstrated sustained Amy-F release properties and apparent selectivity towards BC cells. Cell-based assays revealed that Amy-F markedly suppresses cancer cell growth and improves radiotherapy (RT) through inducing cell cycle arrest (G1 and sub-G1), and increases apoptosis as well as reduces the proliferation of BC by down-regulating mitogen-activated protein kinases (MAPK/P38), iron level (Fe), nitric oxide (NO), and up-regulating the reactive oxygen species level (ROS). Amy-F has also been shown to suppress the expression of the cluster of differentiation (CD4 and CD80), and interfere with the Transforming growth factor beta (TGF- ß)/Interferon-gamma (INF-g)/Interleukin-2 (IL-2)/Interleukin-6 (IL-6)/Vascular endothelial growth factor (VEGF) induced suppression in its signaling hub, while up-regulating natural killer group 2D receptor (NKG2D) and CD8 expression. CONCLUSIONS: Collectively, the novel Amy-F either alone or in combination with RT abrogated BC proliferation.


Assuntos
Amigdalina , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Proliferação de Células
11.
Chin J Integr Med ; 29(4): 316-324, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34816365

RESUMO

OBJECTIVE: To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro. METHODS: Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor ß (TGF-ß)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-ß1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed. RESULTS: High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFß R1, TGFß R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01). CONCLUSIONS: Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-ß/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.


Assuntos
Amigdalina , Fator de Crescimento Transformador beta , Ratos , Masculino , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Células Endoteliais/metabolismo , Azeite de Oliva/metabolismo , Azeite de Oliva/farmacologia , Azeite de Oliva/uso terapêutico , Ratos Wistar , Proteínas Smad/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado , Fator de Crescimento Transformador beta1/metabolismo , Transdução de Sinais , Colágeno Tipo I/metabolismo , Tetracloreto de Carbono , Células Estreladas do Fígado
12.
Chem Biol Interact ; 369: 110235, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36457260

RESUMO

OBJECTIVE: Transforming growth factor-beta TGF-ß-induced epithelial-mesenchymal transition (EMT) in bronchial epithelial cells contributes to airway wall remodeling in asthma. This study aims to explore the role of amygdalin, an active ingredient in bitter almonds, in TGF-ß-induced EMT in bronchial epithelial cells and to elucidate the possible mechanisms underlying its biological effects. METHODS: An asthmatic mouse model was established through ovalbumin induction. Primary mouse bronchial epithelial cells and a human bronchial epithelial cell line were incubated with transforming growth factor-beta (TGF-ß) to induce EMT, whose phenotype of cells was evaluated by the expressions of EMT markers [alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin] and cell migration capacity. A co-immunoprecipitation assay was performed to assess the ubiquitination of heparanase (HPSE). RESULTS: In asthmatic model mice, amygdalin treatment relieved airway wall remodeling and decreased expressions of EMT markers (α-SMA and vimentin). In TGF-ß-treated bronchial epithelial cells, amygdalin treatment decreased the mRNA and protein levels of EMT markers (α-SMA, vimentin, and fibronectin) without impairing cell viability. Through the Swiss Target Prediction database, HPSE was screened as a candidate downstream target for amygdalin. HPSE overexpression further promoted TGF-ß-induced EMT while the HPSE inhibitor suppressed TGF-ß-induced EMT in bronchial epithelial cells. In addition, HPSE overexpression reversed the inhibitory effect of amygdalin on TGF-ß-induced EMT in bronchial epithelial cells. The following mechanism exploration revealed that amygdalin downregulated HPSE expression by enhancing ubiquitination. CONCLUSION: Our study showed that amygdalin inhibited TGF-ß-induced EMT in bronchial epithelial cells and found that the anti-EMT activity of amygdalin might be related to its regulatory effect on HPSE expression.


Assuntos
Amigdalina , Asma , Humanos , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Vimentina/genética , Vimentina/metabolismo , Fibronectinas/metabolismo , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Amigdalina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Transição Epitelial-Mesenquimal , Asma/tratamento farmacológico , Asma/metabolismo , Células Epiteliais/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
13.
Iran J Allergy Asthma Immunol ; 22(5): 430-439, 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-38085145

RESUMO

Asthma, characterized by persistent inflammation and increased sensitivity of the airway, is the most common chronic condition among children. Novel, safe, and reliable treatment strategies are the focus of current research on pediatric asthma. Amygdalin, mainly present in bitter almonds, has anti-inflammatory and immunoregulatory potential, but its effect on asthma remains uninvestigated. Here, the impact of amygdalin on the thymic stromal lymphopoietin (TSLP)-dendritic cell (DC)-OX40L axis was investigated. A BALB/c mouse model for allergic asthma was established using the ovalbumin-sensitization method. Amygdalin treatment was administered between days 21 and 27 of the protocol. Cell numbers and hematoxylin and eosin (H&E) staining in bronchoalveolar lavage fluid (BALF) were used to observe the impact of amygdalin on airway inflammation. TSLP, IL-4, IL-5, IL-13, and IFN-γ concentrations were determined via Enzyme-linked immunosorbent assay (ELISA). TSLP, GATA-3, and T-bet proteins were measured using western blotting. Cell-surface receptor expression on DCs (MHC II, CD80, and CD86) was assessed via flow cytometry. OX40L mRNA and protein levels were detected using western blotting and qRT-PCR, respectively. Amygdalin treatment attenuated airway inflammation decreased BALF TSLP levels, inhibited DC maturation, restrained TSLP-induced DC surface marker expression (MHCII, CD80, and CD86), and further decreased OX40L levels in activated DCs. This occurred together with decreased Th2 cytokine levels (IL-4, IL-5, and IL-13) and GATA3 expression, whereas Th1 cytokine (IFN-γ) levels and T-bet expression increased. Amygdalin thus regulates the Th1/Th2 balance through the TSLP-DC-OX40L axis to participate in inflammation development in the airways, providing a basis for potential allergic asthma treatments.


Assuntos
Amigdalina , Asma , Camundongos , Animais , Criança , Humanos , Linfopoietina do Estroma do Timo , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Amigdalina/metabolismo , Ligante OX40/metabolismo , Ligante OX40/farmacologia , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Citocinas/metabolismo , Asma/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Células Th2/metabolismo , Células Dendríticas/metabolismo , Camundongos Endogâmicos BALB C
14.
Biomed Res Int ; 2022: 4767621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637752

RESUMO

Cancer of the prostate is an indicated type that is often recorded as a kind of cancer in men and the second critical cause of mortality through cancer cases. Many pharmacological investigations have shown that numerous herbal substances possess anticancer action. Amygdalin (AMD) has antitumour capabilities and works as an antioxidant, antibacterial, anti-inflammatory, and immune-regulating characteristics. The anticancer effects of amygdalin and its metabolizing enzymes, rhodanese (RHD) and betaglucosidase (BGD), were examined in vivo, as well as their antitumour processes. Novel, effective combination agents are necessary to increase existing cancer treatment rates. This research was aimed at determining the anticarcinogenic impact of amygdalin (AMD) in vivo. This research was aimed at determining the RHD and BGD on the anticarcinogenic impact of AMD in vivo. Subcutaneously, PC3 prostate cancer cell lines were implanted into nude mice. Mice were treated every day with 0.5 ml of 50 mg/ml (AMD), AMD+ (RHD 0.1 mg/ml), AMD+(BGD 0.1 mg/ml), and doxorubicin (DOX 50 mg/ml). Mice were normalized for negative control with untreated mice. In in vivo, morphopathological alterations in the tumour tissue were analyzed by histopathological staining methods. After 35 days of therapy, tumour growth and size inhibition were evident, indicating a function for the metabolic enzymes BGD and RHD in regulating AMD's anticancer effect in vivo. We concluded the critical role of metabolic enzymes BGD and RHD in elevating the antigrowth of PC3 cancer cell lines in Balb/c nude mice treated with AMD.


Assuntos
Adenocarcinoma , Amigdalina , Neoplasias da Próstata , Adenocarcinoma/tratamento farmacológico , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Animais , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Nus , Próstata/patologia , Neoplasias da Próstata/patologia
15.
Biomolecules ; 12(10)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291723

RESUMO

Bioactive amygdalin, found in high concentrations in bitter almonds, has been recognized as a symbol of the cyanogenic glycoside chemical organic substance, which was initially developed as a pharmaceutical for treating cancer after being hydrolyzed to hydrogen cyanide (HCN). Regrettably, research has shown that HCN can also damage normal cells, rendering it non-toxic to the human body. Extreme controversy surrounds both in vivo and in vitro studies, making its use risky. This review provides an extensive update on characteristics, antioxidant potential, gastrointestinal microbiota intervention, anticancer therapeutic, mechanisms, toxicity, and encapsulation of amygdalin. Antioxidant, anti-tumor, anti-fibrotic, antiatherosclerosis, anti-inflammatory, immunomodulatory, and analgesic characteristics, and the ability to improve digestive and reproductive systems, neurodegeneration, and cardiac hypertrophy are just some of the benefits of amygdalin. Studies verified the HCN-produced amygdalin to be harmful orally, but only at very high doses. Although intravenous treatment was less effective than the oral method, the oral route has a dose range of 0.6 to 1 g daily. Amygdalin's toxicity depends heavily on the variety of bacteria in the digestive tract. Unfortunately, there is currently no foolproof method for determining the microbial consortium and providing a safe oral dosage for every patient. Amygdalin encapsulation in alginate-chitosan nanoparticles (ACNPs) is a relatively new area of research. Amygdalin has an enhanced cytotoxic effect on malignant cells, and ACNPs can be employed as an active drug-delivery system to release this compound in a regulated, sustained manner without causing any harm to healthy cells or tissues. In conclusion, a large area of research for a substance that might be the next step in cancer therapy is opened up due to unverified and conflicting data.


Assuntos
Amigdalina , Quitosana , Microbioma Gastrointestinal , Neoplasias , Humanos , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Amigdalina/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cianeto de Hidrogênio , Quitosana/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Preparações Farmacêuticas , Alginatos
16.
Am J Chin Med ; 50(5): 1361-1386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35681261

RESUMO

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death worldwide. Amygdalin, a natural compound commonly distributed in plants of the Rosaceae species, owns anticancer activity, less side effects, wide source, and relatively low price. Although the apoptosis is a central process activated by amygdalin in cancer cells, the underlying molecular mechanisms through which amygdalin induces the apoptosis of lung cancer cells remain poorly understood. In this research work, amygdalin could suppress the proliferation of lung cancer A549 and PC9 cells by CCK8 assay. Amygdalin significantly promoted the apoptosis of lung cancer A549 and PC9 cells stained with Annexin V-FITC/PI by flow cytometry assay. Furthermore, amygdalin dose-dependently decreased the mitochondrial membrane potential (MMP) with JC-1 dye by flow cytometry. To investigate the underlying molecular mechanisms through which amygdalin induced mitochondria-mediated apoptosis of cancer cells, the differentially-expressed genes with a fold change >2.0 and p < 0.05 were acquired from the cDNA microarray analysis. The results of qRT-PCR further confirmed that the differentially-expressed level of the NF[Formula: see text]B-1 gene was most obviously enhanced in lung cancer cells treated with amygdalin. The results of immunofluorescence staining, Western blotting and siRNA knockdown indicated that amygdalin induced mitochondria-mediated apoptosis of lung cancer cells via enhancing the expression of NF[Formula: see text]B-1 and inactivating NF[Formula: see text]B signaling cascade and further changing the expressions of proteins (Bax, Bcl-2, cytochrome C, caspase 9, caspase 3 and PARP) related to apoptosis, which were further checked by in vivo study of the lung cancer cell xenograft mice model accompanying with immunohistochemical staining and TUNEL staining. Our results indicated that amygdalin might be a potential activator of NF[Formula: see text]B-1, which sheds more light on the molecular mechanism of anticancer effects of amygdalin. These results highlighted amygdalin as a potential therapeutic anticancer agent, which warrants its development as a therapy for lung cancer.


Assuntos
Amigdalina , Neoplasias Pulmonares , Amigdalina/metabolismo , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo
17.
Biochem Biophys Res Commun ; 411(3): 523-9, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21756879

RESUMO

OBJECTIVE: Regulatory T cells (Tregs) play a critical role in the regulation of T cell-mediated immune responses in atherosclerosis, a chronic autoimmune-like disease. Therefore, in this study, we aimed to investigate the therapeutic effect of amygdalin on atherosclerosis of apolipoprotein E deficient (ApoE(-/-)) mice, and to explore its immune regulatory function by stimulation of Tregs. METHODS AND RESULTS: To evaluate the anti-atherosclerotic effect of amygdalin and for in vivo Treg expansion/activation analysis, ApoE(-/-) mice received intraperitoneal injections of amygdalin, and this therapy resulted in a comparatively 2-fold decrease in triglyceride (TG), 1.5-fold decrease in total cholesterol (TC) and low density lipoprotein (LDL). By comparing the vessel areas, lumen areas, plaque areas, and aortic plaque coverage percentage, the effects of amygdalin on pre-existing lesions were assessed. Studies on IL-10 and TGF-ß indicated that mice treated with amygdalin had increased expression of Treg-related cytokines. Meanwhile, flow cytometry and real-time PCR data showed that mice treated with amygdalin had higher percentage of CD4(+)CD25(+)Foxp3(+) T cells than untreated mice and increased expression of forkhead box P3 (FOXP3) gene. CONCLUSION: Our data showed amygdalin could attenuate the development of atherosclerosis by suppressing inflammatory responses and promoting the immunomodulation function of Tregs. The effects of amygdalin ultimately resulted in the enlarged lumen area and the loss of atherosclerotic plaque. All these data indicated the therapeutic potential of amygdalin in preventing and/or treating of atherosclerosis.


Assuntos
Amigdalina/uso terapêutico , Aterosclerose/tratamento farmacológico , Ativação Linfocitária , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Apolipoproteínas E/genética , Apoptose/efeitos dos fármacos , Aterosclerose/imunologia , Aterosclerose/patologia , Fatores de Transcrição Forkhead/imunologia , Lipídeos/sangue , Masculino , Camundongos , Camundongos Mutantes , Linfócitos T Reguladores/imunologia
18.
Cochrane Database Syst Rev ; (11): CD005476, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22071824

RESUMO

BACKGROUND: Laetrile is the name for a semi-synthetic compound which is chemically related to amygdalin, a cyanogenic glycoside from the kernels of apricots and various other species of the genus Prunus. Laetrile and amygdalin are promoted under various names for the treatment of cancer although there is no evidence for its efficacy. Due to possible cyanide poisoning, laetrile can be dangerous. OBJECTIVES: To assess the alleged anti-cancer effect and possible adverse effects of laetrile and amygdalin. SEARCH METHODS: We searched the following databases: CENTRAL (2011, Issue 1); MEDLINE (1951-2011); EMBASE (1980-2011); AMED; Scirus; CancerLit; CINAHL (all from 1982-2011); CAMbase (from 1998-2011); the MetaRegister; the National Research Register; and our own files. We examined reference lists of included studies and review articles and we contacted experts in the field for knowledge of additional studies. We did not impose any restrictions of timer or language. SELECTION CRITERIA: Randomized controlled trials (RCTs) and quasi-RCTs. DATA COLLECTION AND ANALYSIS: We searched eight databases and two registers for studies testing laetrile or amygdalin for the treatment of cancer. Two review authors screened and assessed articles for inclusion criteria. MAIN RESULTS: We located over 200 references, 63 were evaluated in the original review and an additional 6 in this update. However, we did not identify any studies that met our inclusion criteria. AUTHORS' CONCLUSIONS: The claims that laetrile or amygdalin have beneficial effects for cancer patients are not currently supported by sound clinical data. There is a considerable risk of serious adverse effects from cyanide poisoning after laetrile or amygdalin, especially after oral ingestion. The risk-benefit balance of laetrile or amygdalin as a treatment for cancer is therefore unambiguously negative.


Assuntos
Amigdalina/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/tratamento farmacológico , Amigdalina/efeitos adversos , Antineoplásicos Fitogênicos/efeitos adversos , Humanos
19.
Life Sci ; 285: 119961, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536497

RESUMO

AIM: Hepatocellular carcinoma (HCC) is a potentially life-threatening cancer. In the current study, anti-HCC efficacy of amygdalin, or metformin alone or in combination in comparison to doxorubicin was studied. MAIN METHODS: Both in-vitro and in-vivo based models. HepG-2 and Huh-7 cell lines as established in-vitro model for HCC were treated with different concentrations of indicated drugs to evaluate the cytotoxicity and determine IC50 for 24, 48 and 72 h. Moreover, the effect of different treatments on apoptosis and cell cycle using flow cytometric analysis were studied. Hepatocellular carcinoma induced in rats by diethyl-nitrosamine and carbon tetrachloride was established, to further investigate the efficacy of indicated drugs. Aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase were measured by spectrophotometer, alpha-fetoprotein, cytochrome-c, caspase-3 and malondialdehyde were measured by ELISA, and liver biopsies were also evaluated histopathologically. KEY FINDINGS: In-vitro results showed that the combination has a promising effect when compared to amygdalin or metformin alone as it is more cytotoxic and have higher ability for induction of apoptosis and arresting cell cycle. In-vivo doxorubicin has a good effect for treating HCC. Also, the combination showed a promising prognostic effect depending on the cytotoxic activity and tumor marker when compared to amygdalin or metformin alone. SIGNIFICANCE: Based on the current data, it was hypothesized that amygdalin and metformin especially when used in combination will be a promising approach with low side effects for enhancement of HCC.


Assuntos
Amigdalina/uso terapêutico , Antibióticos Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos Antineoplásicos , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Metformina/uso terapêutico , Animais , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/patologia , Dietilnitrosamina , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Masculino , Prognóstico , Ratos , Ratos Wistar , alfa-Fetoproteínas/análise
20.
J Ethnopharmacol ; 254: 112717, 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32114166

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Amygdalin is commonly distributed in plants of the Rosaceae, such as peach, plum, loquat, apple and bayberry, but most notably in the seeds (kernels) of apricot almonds. As a naturally aromatic cyanogenic compound, it has long been used in Asia, Europe and other regions for the treatment of various diseases including cough, asthma, nausea, leprosy and leukoderma. Importantly, in recent years, an increasing attention has been paid to its antitumor effect. AIM OF THE STUDY: The paper aims to review the pharmacological activities and toxicological effects of amygdalin and provide a reference and perspective for its further investigation. METHODS: Electronic databases including the Web of Science, Cochrane Library, PubMed, EMBASE, the Chinese Biological Medicine Database, China National Knowledge Infrastructure, Wanfang database and VIP information database were searched up to November 2019 to identify eligible studies. A meticulous review was performed, an in-depth analysis on the pharmacological activity and toxicology of amygdalin was conducted, and perspectives for future research were also discussed. RESULTS: A total of 110 papers about in vitro/in vivo studies on amygdalin have been reviewed. Analysis on the data suggested that this compound presented pharmacological activities of anti-tumor, anti-fibrotic, anti-inflammatory, analgesic, immunomodulatory, anti-atherosclerosis, ameliorating digestive system and reproductive system, improving neurodegeneration and myocardial hypertrophy, as well as reducing blood glucose. In addition, studies revealed that amygdalin's toxicity was caused by its poisonous decomposite product of benzaldehyde and hydrogen cyanide after oral ingestion, toxicity of intravenous administration route was far less than the oral route, and it can be avoidable with an oral dose ranging from 0.6 to 1 g per day. CONCLUSION: This paper has systematically reviewed the pharmacology and toxicology of amygdalin and provided comprehensive information on this compound. We hope this review highlights some perspectives for the future research and development of amygdalin.


Assuntos
Amigdalina , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Amigdalina/toxicidade , Animais , Humanos , Medicina Tradicional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA