Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.060
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
N Engl J Med ; 389(17): 1553-1565, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37888916

RESUMO

BACKGROUND: Transthyretin amyloidosis, also called ATTR amyloidosis, is associated with accumulation of ATTR amyloid deposits in the heart and commonly manifests as progressive cardiomyopathy. Patisiran, an RNA interference therapeutic agent, inhibits the production of hepatic transthyretin. METHODS: In this phase 3, double-blind, randomized trial, we assigned patients with hereditary, also known as variant, or wild-type ATTR cardiac amyloidosis, in a 1:1 ratio, to receive patisiran (0.3 mg per kilogram of body weight) or placebo once every 3 weeks for 12 months. A hierarchical procedure was used to test the primary and three secondary end points. The primary end point was the change from baseline in the distance covered on the 6-minute walk test at 12 months. The first secondary end point was the change from baseline to month 12 in the Kansas City Cardiomyopathy Questionnaire-Overall Summary (KCCQ-OS) score (with higher scores indicating better health status). The second secondary end point was a composite of death from any cause, cardiovascular events, and change from baseline in the 6-minute walk test distance over 12 months. The third secondary end point was a composite of death from any cause, hospitalizations for any cause, and urgent heart failure visits over 12 months. RESULTS: A total of 360 patients were randomly assigned to receive patisiran (181 patients) or placebo (179 patients). At month 12, the decline in the 6-minute walk distance was lower in the patisiran group than in the placebo group (Hodges-Lehmann estimate of median difference, 14.69 m; 95% confidence interval [CI], 0.69 to 28.69; P = 0.02); the KCCQ-OS score increased in the patisiran group and declined in the placebo group (least-squares mean difference, 3.7 points; 95% CI, 0.2 to 7.2; P = 0.04). Significant benefits were not observed for the second secondary end point. Infusion-related reactions, arthralgia, and muscle spasms occurred more often among patients in the patisiran group than among those in the placebo group. CONCLUSIONS: In this trial, administration of patisiran over a period of 12 months resulted in preserved functional capacity in patients with ATTR cardiac amyloidosis. (Funded by Alnylam Pharmaceuticals; APOLLO-B ClinicalTrials.gov number, NCT03997383.).


Assuntos
Amiloidose , Cardiomiopatias , Pré-Albumina , RNA Interferente Pequeno , Humanos , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Pré-Albumina/genética , Pré-Albumina/metabolismo , RNA Interferente Pequeno/uso terapêutico , Amiloidose Familiar/complicações , Amiloidose Familiar/tratamento farmacológico , Amiloidose Familiar/genética , Fígado/metabolismo , Método Duplo-Cego , Amiloidose/complicações , Amiloidose/tratamento farmacológico , Amiloidose/genética
2.
Hum Genomics ; 18(1): 31, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523305

RESUMO

PURPOSE: Coding mutations in the Transthyretin (TTR) gene cause a hereditary form of amyloidosis characterized by a complex genotype-phenotype correlation with limited information regarding differences among worldwide populations. METHODS: We compared 676 diverse individuals carrying TTR amyloidogenic mutations (rs138065384, Phe44Leu; rs730881165, Ala81Thr; rs121918074, His90Asn; rs76992529, Val122Ile) to 12,430 non-carriers matched by age, sex, and genetically-inferred ancestry to assess their clinical presentations across 1,693 outcomes derived from electronic health records in UK biobank. RESULTS: In individuals of African descent (AFR), Val122Ile mutation was linked to multiple outcomes related to the circulatory system (fold-enrichment = 2.96, p = 0.002) with the strongest associations being cardiac congenital anomalies (phecode 747.1, p = 0.003), endocarditis (phecode 420.3, p = 0.006), and cardiomyopathy (phecode 425, p = 0.007). In individuals of Central-South Asian descent (CSA), His90Asn mutation was associated with dermatologic outcomes (fold-enrichment = 28, p = 0.001). The same TTR mutation was linked to neoplasms in European-descent individuals (EUR, fold-enrichment = 3.09, p = 0.003). In EUR, Ala81Thr showed multiple associations with respiratory outcomes related (fold-enrichment = 3.61, p = 0.002), but the strongest association was with atrioventricular block (phecode 426.2, p = 2.81 × 10- 4). Additionally, the same mutation in East Asians (EAS) showed associations with endocrine-metabolic traits (fold-enrichment = 4.47, p = 0.003). In the cross-ancestry meta-analysis, Val122Ile mutation was associated with peripheral nerve disorders (phecode 351, p = 0.004) in addition to cardiac congenital anomalies (fold-enrichment = 6.94, p = 0.003). CONCLUSIONS: Overall, these findings highlight that TTR amyloidogenic mutations present ancestry-specific and ancestry-convergent associations related to a range of health domains. This supports the need to increase awareness regarding the range of outcomes associated with TTR mutations across worldwide populations to reduce misdiagnosis and delayed diagnosis of TTR-related amyloidosis.


Assuntos
Amiloidose , Pré-Albumina , Humanos , Pré-Albumina/genética , Mutação , Amiloidose/diagnóstico , Amiloidose/genética , Fenótipo , Genética Populacional
3.
Nat Rev Mol Cell Biol ; 14(10): 617-29, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24061228

RESUMO

Protein quality control within the cell requires the interplay of many molecular chaperones and proteases. When this quality control system is disrupted, polypeptides follow pathways leading to misfolding, inactivity and aggregation. Among the repertoire of molecular chaperones are remarkable proteins that forcibly untangle protein aggregates, called disaggregases. Structural and biochemical studies have led to new insights into how these proteins collaborate with co-chaperones and utilize ATP to power protein disaggregation. Understanding how energy-dependent protein disaggregating machines function is universally important and clinically relevant, as protein aggregation is linked to medical conditions such as Alzheimer's disease, Parkinson's disease, amyloidosis and prion diseases.


Assuntos
Chaperonas Moleculares/genética , Peptídeo Hidrolases/metabolismo , Doenças Priônicas/genética , Proteínas/química , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloidose/genética , Amiloidose/patologia , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doenças Priônicas/patologia , Conformação Proteica , Dobramento de Proteína , Desdobramento de Proteína , Proteínas/genética , Proteínas/metabolismo , Controle de Qualidade
4.
Proc Natl Acad Sci U S A ; 119(22): e2200468119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35613051

RESUMO

Aggregation of initially stably structured proteins is involved in more than 20 human amyloid diseases. Despite intense research, however, how this class of proteins assembles into amyloid fibrils remains poorly understood, principally because of the complex effects of amino acid substitutions on protein stability, solubility, and aggregation propensity. We address this question using ß2-microglobulin (ß2m) as a model system, focusing on D76N-ß2m that is involved in hereditary amyloidosis. This amino acid substitution causes the aggregation-resilient wild-type protein to become highly aggregation prone in vitro, although the mechanism by which this occurs remained elusive. Here, we identify the residues key to protecting ß2m from aggregation by coupling aggregation with antibiotic resistance in E. coli using a tripartite ß-lactamase assay (TPBLA). By performing saturation mutagenesis at three different sites (D53X-, D76X-, and D98X-ß2m) we show that residue 76 has a unique ability to drive ß2m aggregation in vivo and in vitro. Using a randomly mutated D76N-ß2m variant library, we show that all of the mutations found to improve protein behavior involve residues in a single aggregation-prone region (APR) (residues 60 to 66). Surprisingly, no correlation was found between protein stability and protein aggregation rate or yield, with several mutations in the APR decreasing aggregation without affecting stability. Together, the results demonstrate the power of the TPBLA to develop proteins that are resilient to aggregation and suggest a model for D76N-ß2m aggregation involving the formation of long-range couplings between the APR and Asn76 in a nonnative state.


Assuntos
Amiloidose , Agregação Patológica de Proteínas , Microglobulina beta-2 , Substituição de Aminoácidos , Proteínas Amiloidogênicas/genética , Amiloidose/genética , Ensaios Enzimáticos , Escherichia coli , Humanos , Mutação Puntual , Agregação Patológica de Proteínas/genética , Dobramento de Proteína , Microglobulina beta-2/química , Microglobulina beta-2/genética , beta-Lactamases
5.
J Biol Chem ; 299(1): 102751, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436561

RESUMO

The Apolipoprotein E-ε4 allele (APOE-ε4) is the strongest genetic risk factor for late onset Alzheimer disease (AD). ApoE plays a critical role in amyloid-ß (Aß) accumulation in AD, and genetic deletion of the murine ApoE gene in mouse models results in a decrease or inhibition of Aß deposition. The association between the presence of ApoE and amyloid in amyloidoses suggests a more general role for ApoE in the fibrillogenesis process. However, whether decreasing levels of ApoE would attenuate amyloid pathology in different amyloidoses has not been directly addressed. Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease characterized by the presence of widespread parenchymal and vascular Danish amyloid (ADan) deposition and neurofibrillary tangles. A transgenic mouse model for FDD (Tg-FDD) is characterized by parenchymal and vascular ADan deposition. To determine the effect of decreasing ApoE levels on ADan accumulation in vivo, we generated a mouse model by crossing Tg-FDD mice with ApoE KO mice (Tg-FDD+/-/ApoE-/-). Lack of ApoE results in inhibition of ADan deposition up to 18 months of age. Additionally, our results from a genetic screen of Tg-FDD+/-/ApoE-/- mice emphasize the significant role for ApoE in neurodegeneration in FDD via glial-mediated mechanisms. Taken together, our findings suggest that the interaction between ApoE and ADan plays a key role in FDD pathogenesis, in addition to the known role for ApoE in amyloid plaque formation in AD.


Assuntos
Doença de Alzheimer , Amiloidose , Doenças Neurodegenerativas , Camundongos , Animais , Glicoproteínas de Membrana/metabolismo , Doença de Alzheimer/genética , Camundongos Transgênicos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Amiloidose/genética , Amiloidose/patologia , Amiloide , Apolipoproteínas E/genética , Encéfalo/metabolismo
6.
Kidney Int ; 105(4): 666-669, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519232

RESUMO

Amyloidosis is a rare cause of inherited kidney disease, with most variants responsible for prominent glomerular involvement. In this issue, Kmochová et al. reported the first description of autosomal dominant medullary amyloidosis due to apolipoprotein A4 variants, resulting in slowly progressive chronic kidney disease with minimal proteinuria. Combining next-generation sequencing with histopathological studies incorporating Congo red staining and mass spectrometry should be considered in the diagnostic workup of hereditary tubulointerstitial disorders not identified after routine genetic testing.


Assuntos
Amiloidose , Nefrite Intersticial , Insuficiência Renal Crônica , Humanos , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/genética , Nefrite Intersticial/complicações , Amiloidose/diagnóstico , Amiloidose/genética , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Testes Genéticos
7.
Mol Genet Genomics ; 299(1): 25, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451362

RESUMO

Renal amyloid-associated (AA) amyloidosis is a harmful complication of familial Mediterranean fever (FMF). Its occurrence involves polymorphisms and mutations in the Serum Amyloid A1 (SAA1) and Mediterranean Fever (MEFV) genes, respectively. In Algeria, the association between SAA1 variants and FMF-related amyloidosis was not investigated, hence the aim of this case-control study. It included 60 healthy controls and 60 unrelated FMF patients (39 with amyloidosis, and 21 without amyloidosis). All were genotyped for the SAA1 alleles (SAA1.1, SAA1.5, and SAA1.3), and a subset of them for the - 13 C/T polymorphism by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Comparisons between genotype and allele frequencies were performed using Chi-square and Fisher tests. The SAA1.1/1.1 genotype was predominant in amyloid FMF patients, compared to non-amyloid FMF patients (p = 0.001) and controls (p < 0.0001). SAA1.1/1.5 was higher in non-amyloid patients (p = 0.0069) and in controls (p = 0.0082) than in patients with amyloidosis. Bivariate logistic regression revealed an increased risk of AA amyloidosis with three genotypes, SAA1.1/1.1 [odds ratio 7.589 (OR); 95% confidence interval (CI): 2.130-27.041] (p = 0.0018), SAA1.1/1.3 [OR 5.700; 95% CI: 1.435-22.644] (p = 0.0134), and M694I/M694I [OR 4.6; 95% CI: 1.400-15.117] (p = 0.0119). The SAA1.1/1.5 genotype [OR 0.152; 95% CI: 0.040-0.587] (p = 0.0062) was protective against amyloidosis. In all groups, the - 13 C/C genotype predominated, and was not related to renal complication [OR 0.88; 95% CI: 0.07-10.43] (p = 0.915). In conclusion, in contrast to the - 13 C/T polymorphism, the SAA1.1/1.1, SAA1.1/1.3 and M694I/M694I genotypes may increase the risk of developing renal AA amyloidosis in the Algerian population.


Assuntos
Amiloidose , Febre Familiar do Mediterrâneo , Humanos , Febre Familiar do Mediterrâneo/complicações , Febre Familiar do Mediterrâneo/genética , Estudos de Casos e Controles , Amiloidose/genética , Fatores de Risco , Pirina , Proteína Amiloide A Sérica
8.
FASEB J ; 37(1): e22700, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515677

RESUMO

Chicken amyloid arthropathy is a debilitating disease with a major impact on animal welfare. Since the disease is triggered by bacterial infection, preventative treatment also contributes to the widespread overuse of antibiotics. Bacterial infection initiates an acute phase response including increased serum amyloid A (SAA) production by the liver. SAA accumulates at sites of infection and in particular in large joints of affected birds. Interestingly, white egg-laying chickens (WL) are resistant to the disease whilst brown egg-laying chickens (BL) are most affected. Disease susceptibility has an immunological basis but the possible contribution of underlying genetic risk factors is not understood. Using a whole genome sequencing approach, we discovered a novel variant in the SAA gene in WL, which is predicted to result in an arginine to serine substitution at position 90 (SAA.R90S). Surprisingly, when overexpressed in chicken hepatocellular carcinoma cells, SAA.R90S was expressed at a higher rate and secreted to a greater degree than the wild-type SAA protein. Moreover, RNASeq analysis showed that the R90S mutant exerted a differential effect on the expression of core transcription factors linked to cell fate determination and cell differentiation. Comparative analysis of gene expression in murine CD4 T-cells stimulated with IL-6/SAA, suggests that SAA.R90S might block an induced cell fate change toward pro-inflammatory T helper 17 cells, which are required for immunological protection against pathogenic bacteria during an acute phase response. Our results provide first mechanistic insights into the genetic resistance of WL to amyloid arthropathy and could be applied to commercial layer breeding programs to improve animal welfare and reduce the negative effects of the overuse of antibiotics.


Assuntos
Amiloidose , Osteoartrite , Doenças das Aves Domésticas , Animais , Camundongos , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Galinhas/metabolismo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Reação de Fase Aguda/complicações , Amiloidose/genética , Mutação , Antibacterianos/farmacologia
9.
Mol Psychiatry ; 28(8): 3332-3342, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37369719

RESUMO

Alzheimer's Disease (AD) is a prevalent neurodegenerative disease characterized by tau hyperphosphorylation, Aß1-42 aggregation and cognitive dysfunction. Therapeutic agents directed at mitigating tau aggregation and clearing Aß1-42, and delivery of growth factor genes (BDNF, FGF2), have ameliorated cognitive deficits, but these approaches did not prevent or stop AD progression. Here we report that viral-(AAV) delivery of Neurotrophic Factor-α1/Carboxypeptidase E (NF-α1/CPE) gene in hippocampus at an early age prevented later development of cognitive deficits as assessed by Morris water maze and novel object recognition assays, neurodegeneration, and tau hyperphosphorylation in male 3xTg-AD mice. Additionally, amyloid precursor protein (APP) expression was reduced to near non-AD levels, and insoluble Aß1-42 was reduced significantly. Pro-survival proteins: mitochondrial Bcl2 and Serpina3g were increased; and mitophagy inhibitor Plin4 and pro-inflammatory protein Card14 were decreased in AAV-NF-α1/CPE treated versus untreated AD mice. Thus NF-α1/CPE gene therapy targets many regulatory components to prevent cognitive deficits in 3xTg-AD mice and has implications as a new therapy to prevent AD progression by promoting cell survival, inhibiting APP overexpression and tau hyperphosphorylation.


Assuntos
Doença de Alzheimer , Amiloidose , Doenças Neurodegenerativas , Camundongos , Masculino , Animais , Doença de Alzheimer/metabolismo , Carboxipeptidase H/genética , Carboxipeptidase H/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/prevenção & controle , Transtornos da Memória/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Fatores de Crescimento Neural/metabolismo , Amiloidose/genética , Amiloidose/metabolismo , Amnésia/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Proteínas tau/genética , Proteínas tau/metabolismo
10.
J Pathol ; 261(1): 96-104, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550796

RESUMO

Fibrinogen Aα-chain amyloidosis is a hereditary systemic amyloidosis characterized by glomerular amyloid depositions, which are derived from the fibrinogen Aα-chain variant in humans. Despite its unique pathology, the pathogenic mechanisms of this disease are only partially understood. This is in part because comparative pathological studies on fibrinogen Aα-chain amyloidosis are currently unavailable as there is a lack of reported cases in animals other than humans. In this study, mass spectrometry-based proteomic analyses of Japanese squirrels (Sciurus lis) that died in five Japanese zoos showed that they developed glomerular-associated fibrinogen Aα-chain amyloidosis with an extremely high incidence rate (29/38 cases, 76.3%). The condition was found to be age-dependent in the Japanese squirrels, with 89% of individuals over 4 years of age affected. Mass spectrometry revealed that the C-terminal region of the fibrinogen Aα-chain was involved in amyloidogenesis in Japanese squirrels as well as humans. No gene variations were identified between amyloid-positive and amyloid-negative squirrels, which contrasted with the available data for humans. The results indicate that fibrinogen Aα-chain amyloidosis is a senile amyloidosis in Japanese squirrels. The results have also provided comparative pathological support that the amyloidogenic C-terminal region of the fibrinogen Aα-chain is involved in the characteristic glomerular pathology, regardless of the animal species. This study elucidates the potential causes of death in Japanese squirrels and will contribute to future comparative pathological studies of fibrinogen Aα-chain amyloidosis. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Amiloidose , Nefropatias , Sciuridae , Animais , Amiloidose/epidemiologia , Amiloidose/genética , Amiloidose/veterinária , Surtos de Doenças , Nefropatias/genética , Nefropatias/veterinária , Proteômica
11.
JAMA ; 331(9): 778-791, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441582

RESUMO

Importance: Systemic amyloidosis from transthyretin (ATTR) protein is the most common type of amyloidosis that causes cardiomyopathy. Observations: Transthyretin (TTR) protein transports thyroxine (thyroid hormone) and retinol (vitamin A) and is synthesized predominantly by the liver. When the TTR protein misfolds, it can form amyloid fibrils that deposit in the heart causing heart failure, heart conduction block, or arrhythmia such as atrial fibrillation. The biological processes by which amyloid fibrils form are incompletely understood but are associated with aging and, in some patients, affected by inherited variants in the TTR genetic sequence. ATTR amyloidosis results from misfolded TTR protein deposition. ATTR can occur in association with normal TTR genetic sequence (wild-type ATTR) or with abnormal TTR genetic sequence (variant ATTR). Wild-type ATTR primarily manifests as cardiomyopathy while ATTR due to a genetic variant manifests as cardiomyopathy and/or polyneuropathy. Approximately 50 000 to 150 000 people in the US have heart failure due to ATTR amyloidosis. Without treatment, heart failure due to ATTR amyloidosis is associated with a median survival of approximately 5 years. More than 130 different inherited genetic variants in TTR exist. The most common genetic variant is Val122Ile (pV142I), an allele with an origin in West African countries, that is present in 3.4% of African American individuals in the US or approximately 1.5 million persons. The diagnosis can be made using serum free light chain assay and immunofixation electrophoresis to exclude light chain amyloidosis combined with cardiac nuclear scintigraphy to detect radiotracer uptake in a pattern consistent with amyloidosis. Loop diuretics, such as furosemide, torsemide, and bumetanide, are the primary treatment for fluid overload and symptomatic relief of patients with ATTR heart failure. An ATTR-directed therapy that inhibited misfolding of the TTR protein (tafamidis, a protein stabilizer), compared with placebo, reduced mortality from 42.9% to 29.5%, reduced hospitalizations from 0.7/year to 0.48/year, and was most effective when administered early in disease course. Conclusions and Relevance: ATTR amyloidosis causes cardiomyopathy in up to approximately 150 000 people in the US and tafamidis is the only currently approved therapy. Tafamidis slowed progression of ATTR amyloidosis and improved survival and prevented hospitalization, compared with placebo, in people with ATTR-associated cardiomyopathy.


Assuntos
Amiloidose , Cardiomiopatias , Insuficiência Cardíaca , Pré-Albumina , Humanos , Amiloidose/complicações , Amiloidose/epidemiologia , Amiloidose/genética , Amiloidose/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina , Pré-Albumina/genética , Pré-Albumina/metabolismo , Negro ou Afro-Americano/etnologia , Negro ou Afro-Americano/genética , Negro ou Afro-Americano/estatística & dados numéricos , Estados Unidos/epidemiologia , África Ocidental , Dobramento de Proteína
12.
JAMA ; 331(21): 1824-1833, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38734952

RESUMO

Importance: Individual cohort studies concur that the amyloidogenic V142I variant of the transthyretin (TTR) gene, present in 3% to 4% of US Black individuals, increases heart failure (HF) and mortality risk. Precisely defining carrier risk across relevant clinical outcomes and estimating population burden of disease are important given established and emerging targeted treatments. Objectives: To better define the natural history of disease in carriers across mid to late life, assess variant modifiers, and estimate cardiovascular burden to the US population. Design, Setting, and Participants: A total of 23 338 self-reported Black participants initially free from HF were included in 4 large observational studies across the US (mean [SD], 15.5 [8.2] years of follow-up). Data analysis was performed between May 2023 and February 2024. Exposure: V142I carrier status (n = 754, 3.2%). Main Outcomes and Measures: Hospitalizations for HF (including subtypes of reduced and preserved ejection fraction) and all-cause mortality. Outcomes were analyzed by generating 10-year hazard ratios for each age between 50 and 90 years. Using actuarial methods, mean survival by carrier status was estimated and applied to the 2022 US population using US Census data. Results: Among the 23 338 participants, the mean (SD) age at baseline was 62 (9) years and 76.7% were women. Ten-year carrier risk increased for HF hospitalization by age 63 years, predominantly driven by HF with reduced ejection fraction, and 10-year all-cause mortality risk increased by age 72 years. Only age (but not sex or other select variables) modified risk with the variant, with estimated reductions in longevity ranging from 1.9 years (95% CI, 0.6-3.1) at age 50 to 2.8 years (95% CI, 2.0-3.6) at age 81. Based on these data, 435 851 estimated US Black carriers between ages 50 and 95 years are projected to cumulatively lose 957 505 years of life (95% CI, 534 475-1 380 535) due to the variant. Conclusions and Relevance: Among self-reported Black individuals, male and female V142I carriers faced similar and substantial risk for HF hospitalization, predominantly with reduced ejection fraction, and death, with steep age-dependent penetrance. Delineating the individual contributions of, and complex interplay among, the V142I variant, ancestry, the social construct of race, and biological or social determinants of health to cardiovascular disease merits further investigation.


Assuntos
Amiloidose , Negro ou Afro-Americano , Cardiomiopatias , Insuficiência Cardíaca , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amiloidose/etnologia , Amiloidose/genética , Negro ou Afro-Americano/genética , Cardiomiopatias/etnologia , Cardiomiopatias/genética , Progressão da Doença , Insuficiência Cardíaca/etnologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/mortalidade , Heterozigoto , Hospitalização/estatística & dados numéricos , Pré-Albumina/genética , Volume Sistólico , Estados Unidos/epidemiologia , Efeitos Psicossociais da Doença
13.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892061

RESUMO

Renal amyloidosis is a set of complex disorders characterized by the deposition of amyloid proteins in the kidneys, which causes gradual organ damage and potential kidney failure. Recent developments in diagnostic methods, particularly mass spectrometry and proteome profiling, have greatly improved the accuracy of amyloid typing, which is critical for disease management. These technologies provide extensive insights into the specific proteins involved, allowing for more targeted treatment approaches and better patient results. Despite these advances, problems remain, owing to the heterogeneous composition of amyloid proteins and the varying efficacy of treatments based on amyloid type. Access to sophisticated diagnostics and therapy varies greatly, highlighting the global difference in renal amyloidosis management. Future research is needed to investigate next-generation sequencing and gene-editing technologies, like clustered regularly interspaced short palindromic repeats (CRISPR), which promise more profound insights into the genetic basis of amyloidosis.


Assuntos
Amiloidose , Nefropatias , Humanos , Amiloidose/diagnóstico , Amiloidose/terapia , Amiloidose/genética , Amiloidose/metabolismo , Nefropatias/diagnóstico , Nefropatias/terapia , Nefropatias/genética , Proteômica/métodos , Espectrometria de Massas/métodos
14.
J Biol Chem ; 298(12): 102659, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328246

RESUMO

Self-association of WT ß2-microglobulin (WT-ß2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-ß2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-ß2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-ß2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-ß2m. We show that the crosslinked D76N-ß2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-ß2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-ß2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-ß2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.


Assuntos
Amiloidose , Microglobulina beta-2 , Humanos , Microglobulina beta-2/química , Amiloide/química , Proteínas Amiloidogênicas/genética , Substituição de Aminoácidos , Amiloidose/genética , Fenômenos Biofísicos , Polímeros
15.
J Biol Chem ; 298(10): 102430, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037966

RESUMO

Methionine/valine polymorphism at position 129 of the human prion protein, huPrP, is tightly associated with the pathogenic phenotype, disease progress, and age of onset of neurodegenerative diseases such as Creutzfeldt-Jakob disease or Fatal Familial Insomnia. This raises the question of whether and how the amino acid type at position 129 influences the structural properties of huPrP, affecting its folding, stability, and amyloid formation behavior. Here, our detailed biophysical characterization of the 129M and 129V variants of recombinant full-length huPrP(23-230) by amyloid formation kinetics, CD spectroscopy, molecular dynamics simulations, and sedimentation velocity analysis reveals differences in their aggregation propensity and oligomer content, leading to deviating pathways for the conversion into amyloid at acidic pH. We determined that the 129M variant exhibits less secondary structure content before amyloid formation and higher resistance to thermal denaturation compared to the 129V variant, whereas the amyloid conformation of both variants shows similar thermal stability. Additionally, our molecular dynamics simulations and rigidity analyses at the atomistic level identify intramolecular interactions responsible for the enhanced monomer stability of the 129M variant, involving more frequent minimum distances between E196 and R156, forming a salt bridge. Removal of the N-terminal half of the 129M full-length variant diminishes its differences compared to the 129V full-length variant and highlights the relevance of the flexible N terminus in huPrP. Taken together, our findings provide insight into structural properties of huPrP and the effects of the amino acid identity at position 129 on amyloid formation behavior.


Assuntos
Amiloide , Amiloidose , Síndrome de Creutzfeldt-Jakob , Insônia Familiar Fatal , Polimorfismo Genético , Proteínas Priônicas , Humanos , Amiloide/genética , Amiloide/química , Amiloidose/genética , Síndrome de Creutzfeldt-Jakob/genética , Metionina/genética , Proteínas Priônicas/química , Proteínas Priônicas/genética , Dobramento de Proteína , Valina/genética , Insônia Familiar Fatal/genética
16.
Lab Invest ; 103(2): 100001, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37039144

RESUMO

Cardiac amyloidosis is a disease in which the extracellular space of the heart is deposited with and infiltrated by amyloid fibrillar material, and light chain (LC) amyloidosis (AL) is the most serious form of the disease. AL is caused by the overproduction and aggregation of monoclonal immunoglobulin LCs produced by bone marrow plasma cells. Studies have shown that the initial response at a subcellular level to the toxicity of AL is lysosomal dysfunction with impaired autophagy, elevated reactive oxygen species, cellular dysfunction, and cellular death. Therefore, we speculate that the multiple myeloma complicated by cardiac amyloidosis is due to the deposition of λ LC fibrils in cardiomyocytes, leading to dysregulation of autophagy and cell death. We constructed BACN1 siRNA or FOXO3A siRNA and transfected them into H9c2 cells. We detected changes in oxidative stress- and autophagy-related markers. Our results show that monoclonal immunoglobulin λ LCs can form amyloid aggregates, which are cytotoxic to cardiomyocytes. λ LC fibrils deposit on the cell surface, causing oxidative stress and excessive autophagy by increasing Beclin-1 expression and the LC3 II/LC3 I ratio and decreasing p62 expression, ultimately inducing cell death. Beclin-1 knockdown reversed the increase in the LC3 II/LC3 I ratio and the decrease in p62 induced by LC fibrils, while suppressing overactivated autophagy and oxidative stress. Furthermore, LCs reduce the expression of p-Foxo3a (Ser253) (inactive) and promote Foxo3a translocation into the nucleus to perform transcriptional activity, which induces autophagy-related gene overexpression. Silencing Foxo3a can suppress excessive autophagy induced by LC fibrils and protect cells from death. In summary, the results showed that the cytotoxicity of amyloid fibrils formed by λ LCs on cardiomyocytes is triggered by excessive autophagy and is mediated through the Foxo3a/Beclin-1 pathway.


Assuntos
Amiloidose , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Amiloidose/genética , Amiloidose/metabolismo , Amiloide/metabolismo , Autofagia , Imunoglobulinas/metabolismo
17.
J Neuroinflammation ; 20(1): 214, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749581

RESUMO

Studies of microglial gene manipulation in mouse models of Alzheimer's disease (AD) amyloidopathy can cause unpredictable effects on various key endpoints, including amyloidosis, inflammation, neuritic dystrophy, neurodegeneration, and learning behavior. In this Correspondence, we discuss three examples, microRNA 155 (miR155), TREM2, and INPP5D, in which observed results have been difficult to reconcile with predicted results based on precedent, because these six key endpoints do not reliably track together. The pathogenesis of AD involves multiple cell types and complex events that may change with disease stage. We propose that cell-type targeting and timing of intervention are responsible for the sometimes impossibility of predicting whether any prospective therapeutic intervention should aim at increasing or decreasing the level or activity of a particular molecular target.


Assuntos
Doença de Alzheimer , Amiloidose , MicroRNAs , Animais , Camundongos , Doença de Alzheimer/genética , Movimento Celular , Amiloidose/genética , Modelos Animais de Doenças , MicroRNAs/genética
18.
Haematologica ; 108(12): 3359-3371, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37381778

RESUMO

Systemic light chain amyloidosis (AL) is a clonal plasma cell disorder characterized by the deposition of misfolded immunoglobulin light chains (LC) as insoluble fibrils in organs. The lack of suitable models has hindered the investigation of the disease mechanisms. Our aim was to establish AL LC-producing plasma cell lines and use them to investigate the biology of the amyloidogenic clone. We used lentiviral vectors to generate cell lines expressing LC from patients suffering from AL amyloidosis. The AL LC-producing cell lines showed a significant decrease in proliferation, cell cycle arrest, and an increase in apoptosis and autophagy as compared with the multiple myeloma LC-producing cells. According to the results of RNA sequencing the AL LC-producing lines showed higher mitochondrial oxidative stress, and decreased activity of the Myc and cholesterol pathways. The neoplastic behavior of plasma cells is altered by the constitutive expression of amyloidogenic LC causing intracellular toxicity. This observation may explain the disparity in the malignant behavior of the amyloid clone compared to the myeloma clone. These findings should enable future in vitro studies and help delineate the unique cellular pathways of AL, thus expediting the development of specific treatments for patients with this disorder.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Mieloma Múltiplo , Humanos , Plasmócitos/patologia , Sobrevivência Celular , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Amiloide/metabolismo , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Mieloma Múltiplo/patologia
19.
Toxicol Pathol ; 51(5): 257-263, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37873595

RESUMO

The minipig has been used as a non-rodent species in nonclinical toxicology studies, but little is known about amyloid A (AA) amyloidosis in this species. Among domestic pigs, reports of AA amyloidosis have been limited to animals with mutations in the N-terminal residue of serum AA (SAA), which is thought to be a primary etiological factor. In this study, we histologically examined 26 microminipigs aged 0.6 to 10 years and observed amyloid deposition in one 0.6-year-old and six 5-year-old or older microminipigs. The amyloid deposits were identified as AA based on mass spectrometry (MS) and immunohistochemistry (IHC). The 0.6-year-old microminipig showed severe deposition in the renal cortex and spleen, whereas 5-year-old or older animals had severe deposition in the renal medulla. MS and IHC detected serum amyloid P-component (SAP) in amyloid deposits in older animals but not in a 0.6-year-old animals. Based on the proteomic analysis and gene sequencing, amino acid mutations of SAA, previously found in domestic pigs, were not involved in the pathogenesis of AA amyloidosis in microminipigs. This study demonstrates that microminipigs with wild-type SAA develop AA amyloidosis and presents the possibility that differences in the environment surrounding amyloid, such as SAP, may influence differences in the pathological phenotype.


Assuntos
Amiloidose , Placa Amiloide , Suínos , Animais , Proteômica , Porco Miniatura , Amiloidose/genética , Amiloidose/metabolismo
20.
J Clin Ultrasound ; 51(4): 715-722, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36449313

RESUMO

OBJECTIVE: The most significant complication in familial mediterranean fever (FMF) patients is dysfunction and organ failure developing depending on amyloid deposition in organs. The golden standard for showing amyloid deposition is the biopsy; however, tissue stiffness was examined by shear wave elastography as a non-invasive method in a restricted number of studies conducted, and it is considered that amyloid deposition can be shown indirectly. In our study, we aimed to indirectly evaluate amyloid deposition in organs with Shear wave and Doppler ultrasonography and to reveal its relationship with MEFV gene mutation analysis. METHOD: 42 FMF patients with normal thyroid and renal function tests and 35 participants with no FMF symptoms were included in our study. FMF patients were grouped depending on their MEFV mutation analyses. Thyroid, salivary glands, and renal parenchymal tissue stiffness were evaluated by shear wave elastography. Thyroidal artery and both renal artery resistances were evaluated by Doppler ultrasonography. RESULTS: Both parotis gland, thyroid and renal parenchymal stiffness and arterial vascular resistances in the patient group were found higher than the control group. A significant difference was not found in any parameters in classification based on gender. Tissue stiffness and vascular resistance values in the patient group with M694V homozygote mutation were found statistically significantly higher than the other mutation groups (p < 0.001). CONCLUSION: Our study shows that identifying genetic mutation type in FMF patients will help determine possibly amyloidosis risk. Imaging of tissue stiffness by shear wave elastography and evaluation of vascular resistance by Doppler can be useful for routine screening of those patients.


Assuntos
Amiloidose , Febre Familiar do Mediterrâneo , Humanos , Febre Familiar do Mediterrâneo/complicações , Febre Familiar do Mediterrâneo/diagnóstico por imagem , Febre Familiar do Mediterrâneo/genética , Pirina/genética , Amiloidose/diagnóstico por imagem , Amiloidose/genética , Amiloidose/complicações , Mutação , Ultrassonografia/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA