RESUMO
Colostrum quality and volume are fundamental for calves because it is the primary supplier of antibodies and the first source of energy, carbohydrates, lipids, proteins, minerals, and vitamins for the newborn. Assessing the detailed composition (i.e., AA and mineral content) of bovine colostrum (BC) on-line and at a reasonable cost would help dairy stakeholders such as farmers or veterinarians for precision feeding purposes and industries producing preparations containing BC such as foodstuff, supplements, and medicaments. In the present study we evaluated mid- (MIRS) and near-infrared spectroscopy (NIRS) prediction ability for AA and mineral composition of individual BC. Second, we the investigated the major factors affecting the phenotypic variability of such traits also evaluating the correlations with the Ig concentration. Results demonstrated that MIRS and NIRS were able to provide sufficiently accurate predictions for all the AA. The coefficient of determination in external validation (R2V) fell, in fact, within the range of 0.70 to 0.86, with the exception of Ile, His, and Met. Only some minerals reached a sufficient accuracy (i.e., Ca, P, S, and Mg; R2V ≥ 0.66) using MIRS, and also S (R2V = 0.87) using NIRS. Phenotypically, both parity and calving season affected the variability of these BC composition traits. Heifers' colostrum was the one with the greatest concentration of Ca and P, the 2 most abundant minerals. These minerals were however very low in cows calving in summer compared with the rest of the year. The pattern of AA across parities and calving season was not linear, likely because their variability was scarcely (or not) affected by these effects. Finally, samples characterized by high IgG concentration were those presenting on average greater concentration of AA. Findings suggest that infrared spectroscopy has the potential to be used to predict certain AA and minerals, outlining the possibility of implementing on-site analyses for the evaluation of the broad-sense BC quality.
Assuntos
Colostro , Espectroscopia de Luz Próxima ao Infravermelho , Gravidez , Animais , Bovinos , Feminino , Espectroscopia de Luz Próxima ao Infravermelho/veterinária , Aminoácidos Essenciais/análise , Minerais/análise , Imunoglobulina G/análise , Variação Biológica da PopulaçãoRESUMO
Mammalian cell culture processes rely heavily on empirical knowledge in which process control remains a challenge due to the limited characterization/understanding of cell metabolism and inability to predict the cell behaviors. This study facilitates control of Chinese hamster ovary (CHO) processes through a forecast-based feeding approach that predicts multiple essential amino acids levels in the culture from easily acquired viable cell density data. Multiple cell growth behavior forecast extrapolation approaches are considered with logistic curve fitting found to be the most effective. Next, the nutrient-minimized CHO genome-scale model is combined with the growth forecast model to generate essential amino acid forecast profiles of multiple CHO batch cultures. Comparison of the forecast with the measurements suggests that this algorithm can accurately predict the concentration of most essential amino acids from cell density measurement with error mitigated by incorporating off-line amino acids concentration measurements. Finally, the forecast algorithm is applied to CHO fed-batch cultures to support amino acid feeding control to control the concentration of essential amino acids below 1-2 mM for lysine, leucine, and valine as a model over a 9-day fed batch culture while maintaining comparable growth behavior to an empirical-based culture. In turn, glycine production was elevated, alanine reduced and lactate production slightly lower in control cultures due to metabolic shifts in branched-chain amino acid degradation. With the advantage of requiring minimal measurement inputs while providing valuable and in-advance information of the system based on growth measurements, this genome model-based amino acid forecast algorithm represent a powerful and cost-effective tool to facilitate enhanced control over CHO and other mammalian cell-based bioprocesses.
Assuntos
Algoritmos , Aminoácidos Essenciais , Técnicas de Cultura Celular por Lotes/métodos , Proliferação de Células/genética , Meios de Cultura , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/química , Meios de Cultura/metabolismo , Genoma/genética , Modelos GenéticosRESUMO
BACKGROUND: Hempseed meal, a by-product of the hempseed oil processing stream, is a potential alternative source for food proteins. Efficient extraction of proteins from hempseed meal is challenging owing to differences in the structure and solubility of various protein fractions present in the seed. In the present study, protein was extracted from hempseed meal using four different solvents, including aqueous NaOH, KOH, NaHCO3 and NaCl, at four different concentrations with the aim of improving the recovery of protein fractions rich in essential amino acids. RESULTS: Extraction using alkaline solvents provided superior protein recovery (60-78%) compared with NaCl solution and control extractions (20-48% and 21%, respectively). The concentration of alkali or salt (0.25-1 mol L-1 ) had a minor but significant impact on the yield. Amino acid composition analysis revealed that hempseed meal contains 24% (54.5 ± 0.19 mg g-1 ) essential amino acids of total amino acids, and extraction with NaOH, KOH, NaHCO3 or NaCl did not improve the selective extraction of essential amino acids compared to control experiments. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis allowed the identification of edestin and albumin in the extracts obtained with NaHCO3 and NaCl solvents, with results further showing that the type of extraction solvent influences protein extraction selectivity. CONCLUSION: Although alkali solvents provide superior extraction yields, extraction with water resulted in extracts containing the highest proportion of proteins bearing essential amino acids. According to the results of SDS-PAGE, extraction using alkali solvents induced protein crosslinking. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Sementes , Cloreto de Sódio , Albuminas/química , Aminoácidos/análise , Aminoácidos Essenciais/análise , Cannabis , Extratos Vegetais , Sementes/química , Cloreto de Sódio/análise , Dodecilsulfato de Sódio/análise , Hidróxido de Sódio , Solventes/química , Água/análiseRESUMO
Marine feed ingredients derived from cephalopods (e.g., squid) and crustaceans (e.g., krill) are commercially used to improve the palatability of shrimp diets. Increase in global demand for shrimps has resulted in overfishing of these marine organisms and is a matter of concern. Insect protein hydrolysate could be a sustainable alternative for the possible replacement of these marine feed ingredients. During this study, four formulations: diet A (control: not containing any palatability enhancer), diet B (containing squid meal and krill oil), diet C (containing 1% insect protein hydrolysate), and diet D (containing 2% insect protein hydrolysate) were tested for (1) time required by first subject to begin feeding (time to strike) and (2) palatability in Litopenaeus vannamei. Additionally, the chemical composition of all four diet formulations was also analyzed. Results indicate that all diets had similar crude composition. The major essential amino acids in all diets were leucine and lysine, whereas eicosapentaenoic acid was the major omega-3 fatty acid in all diets. There were no significant differences between the mean time to strike for all the tested formulations. Palatability of tested formulations was found in the following order: diet D > diet C > diet B = diet A (p < 0.05), indicating that addition of squid meal and krill oil has no effect on palatability in comparison to control, whereas inclusion of insect protein hydrolysates significantly improves the palatability of formulations. Palatability enhancement potential of insect protein hydrolysate could be attributed to the high free amino acid content and water solubility in comparison to squid meal.
Assuntos
Ração Animal/análise , Dípteros/química , Proteínas de Insetos/química , Penaeidae/fisiologia , Aminoácidos Essenciais/análise , Animais , Aquicultura/métodos , Proteínas de Artrópodes/química , Conservação dos Recursos Naturais , Decapodiformes/química , Dieta , Proteínas Alimentares/química , Euphausiacea/química , Preferências Alimentares , Humanos , Larva/química , Penaeidae/crescimento & desenvolvimento , Hidrolisados de Proteína/química , SolubilidadeRESUMO
BACKGROUND: Raw meat contains all indispensable amino acids (IAAs), but before human consumption, meat usually undergoes some degree of processing. Processing affects the 3-dimensional structure of proteins, which may affect amino acid (AA) digestibility and, therefore, overall protein quality. OBJECTIVES: The experiment aimed at determining digestible indispensable amino acid scores (DIAAS) for pork products, and to test the hypothesis that processing increases DIAAS. METHODS: Ten ileal cannulated gilts (body weight: 26.63 ± 1.62 kg) were randomly allotted to a 10 × 10 Latin square design with ten 7-d periods. Ileal digesta were collected for 9 h on days 6 and 7 of each period. Nine diets contained a single pork product (i.e., raw belly, smoked bacon, smoked-cooked bacon, non-cured ham, alternatively cured ham, conventionally cured ham, and loins heated to 63°C, 68°C, or 72°C) as the sole source of AAs. A nitrogen-free diet was formulated to determine basal endogenous losses of AAs, which enabled calculation of standardized ileal digestibility (SID) of AAs. DIAAS were subsequently calculated according to the FAO. RESULTS: All pork products had DIAAS >100 (as-is basis). Loin heated to 63°C had the greatest (P < 0.05) DIAAS for children 6 mo to 3 y and smoked-cooked bacon had the greatest (P < 0.05) DIAAS for children older than 3 y, adolescents, and adults. Raw belly, smoked bacon, and loins heated to 68°C and 72°C had a reduced (P < 0.05) DIAAS for both reference patterns compared with other proteins. Alternatively cured ham had greater (P < 0.05) DIAAS when compared with non-cured ham and conventionally cured ham. CONCLUSIONS: Bacon, ham, and loin are excellent proteins with DIAAS >100, and processing may sometimes, but not always, increase DIAAS.
Assuntos
Aminoácidos Essenciais/análise , Culinária , Digestão , Carne/análise , Aminoácidos Essenciais/metabolismo , Animais , Feminino , SuínosRESUMO
Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.
Assuntos
Acetobacter/fisiologia , Aminoácidos Essenciais/metabolismo , Drosophila melanogaster/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Lactobacillus/fisiologia , Simbiose , Acetobacter/genética , Acetobacter/crescimento & desenvolvimento , Acetobacteraceae/genética , Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/fisiologia , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/deficiência , Animais , Animais Geneticamente Modificados , Regulação do Apetite , Comportamento Animal , Misturas Complexas/administração & dosagem , Misturas Complexas/química , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Feminino , Preferências Alimentares , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Oviposição , Especificidade da Espécie , Fermento Seco/químicaRESUMO
Beans (Phaseolus spp.) are one of the most important legumes for their nutritional value and health benefits in many world regions. In addition to Phaseolus vulgaris, there are four additional species that are cultivated in many regions of the world and are a source of food for human consumption: P. lunatus, P. coccineus, P. polyanthus, and P. acutifolius. In this work, phenolic compounds, antioxidant activity, and anti-nutritional compounds of 18 bean accessions, corresponding to four different species of the genus Phaseolus, were analyzed. In addition, their physical characteristics, proximate composition, and amino acid content were determined in order to compare their phytochemical composition and nutritional value. The species closest to each other in terms of essential amino acid content were P. polyanthus with P. vulgaris and P. lunatus with P. coccineus. Furthermore, there was a strong positive correlation between antioxidant activity and flavonoids, anthocyanins, and lectins with all the accessions collected. Significant differences in the content of phenolic compounds were found among the bean species studied. Therefore, in addition to P. vulgaris, other species such as P. coccineus and P. lunatus have high biological and antioxidant potential that could be beneficial to human health when consumed as nutraceutical foods.
Assuntos
Antioxidantes/análise , Valor Nutritivo , Phaseolus/química , Aminoácidos Essenciais/análise , Antocianinas/análise , Suplementos Nutricionais/análise , Flavonoides/análise , Humanos , Lectinas/análise , México , Phaseolus/classificação , Fenóis/análise , Ácido Fítico/análise , Proantocianidinas/análise , Sementes/química , Especificidade da EspécieRESUMO
In order to reveal the main nutrients and functional ingredients in the shoots of Polygonatum cyrtonema, the polysaccharides, proteins, amino acids, and total phenols were determined. The tested samples cultured in Ma'nijiaonong, Hengtang village, Tianmushan town, Lin'an, Zhejiang, which were collected from three provenances(Pan'an and Longquan in Zhejiang and Qingyang in Anhui). The results showed that the polysaccharide content of the shoots varied from 2.34% to 12.73%, roughly one-third of rhizomes. The protein content varied from 107.75 to 192.49 mg·g~(-1), nearly 5.50 times more than rhizomes. Moreover, the average of total amino acid content was 193.13-248.74 mg·g~(-1), approximately 4.16 times of rhizomes. And the essential amino acids account for 35.57%-39.44% of the total amino acids content, which was close to the standard of the ideal protein proposed by FAO/WHO(the essential amino acid/total amino acid is about 40%). In addition, the taste amino acids(TaAA) changed from 160.12 to 208.29 mg·g~(-1), revealing the material basis of "shoots were extremely delicious" in Chinese ancient herbal medicine. Additionally, the total phenols varied from 51.21-58.76 mg·g~(-1), about 2.96 times of rhizomes. The DPPH free radical scavenging rate of tested shoots was over 95%, which obviously superior to rhizomes. Therefore, the shoots of P. cyrtonema is a very high-quality vegetable and functional food with good development potential. Furthermore, the main nutrients and functional substances in P. cyrtonema shoots are closely related to the provenances and harvesting seasons. It is important to improve the quality and yield of the shoots by strengthening the variety of breeding and cultivation techniques.
Assuntos
Alimento Funcional , Nutrientes/análise , Brotos de Planta/química , Polygonatum/química , Aminoácidos Essenciais/análise , Proteínas de Vegetais Comestíveis/análise , Polissacarídeos/análise , RizomaRESUMO
Amino acid composition of metabolizable protein (MP) is important in dairy cattle diets, but effects of AA imbalances on energy and N utilization are unclear. This study determined the effect of different AA profiles within a constant supplemental MP level on whole-body energy and N partitioning in dairy cattle. Five rumen-fistulated Holstein-Friesian dairy cows (2.8 ± 0.4 lactations; 81 ± 11 d in milk; mean ± standard deviation) were randomly assigned to a 5 × 5 Latin square design in which each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of rest. A total mixed ration consisting of 58% corn silage, 16% alfalfa hay, and 26% concentrate (dry matter basis) was formulated to meet 100 and 83% of net energy and MP requirements, respectively, and was fed at 90% of ad libitum intake by individual cow. Abomasal infusion treatments were saline (SAL) or 562 g/d of essential AA delivered in 4 profiles where individual AA content corresponded to their relative content in casein. The profiles were (1) a complete essential amino acid mixture (EAAC), (2) Ile, Leu, and Val (ILV), (3) His, Ile, Leu, Met, Phe, Trp, Val (GR1+ILV), and (4) Arg, His, Lys, Met, Phe, Thr, Trp (GR1+ALT). The experiment was conducted in climate respiration chambers to determine energy and N balance in conjunction with milk production and composition, digestibility, and plasma constituents. Compared with SAL, infusion of EAAC increased milk, protein, and lactose yield, increased energy retained as body protein, and did not affect milk N efficiency. Total N intake and urine N output was higher with all AA infusions relative to SAL. Compared with EAAC, infusions of GR1+ILV and GR1+ALT produced the same milk yield and the same yield and content of milk fat, protein, and lactose, and had similar energy and N retention. Milk N efficiency was not different between EAAC and GR1+ILV, but was lower with GR1+ALT compared with EAAC, and tended to be lower with GR1+ALT compared with GR1+ILV. Infusion of ILV tended to decrease dry matter intake compared with the other AA infusions. Milk production and composition was not different between ILV and SAL. Compared with EAAC, infusion of ILV decreased or tended to decrease milk, protein, and lactose yields and milk protein content, and increased milk fat and lactose content. Milk N efficiency decreased with ILV compared with SAL, EAAC, and GR1+ILV. Milk urea concentration was not affected by essential amino acid (EAA) infusions. Plasma urea concentration did not differ between EAAC and SAL, tended to increase with ILV and GR1+ILV over SAL, and increased with GR1+ALT compared with EAAC and SAL. In conclusion, removing Arg, Lys, and Thr or removing Ile, Leu, and Val from a complete EAA profile when the total amount of EAA infused remained constant did not impair milk production, but milk N efficiency decreased when Ile, Leu, and Val were absent. Infusion of only Ile, Leu, and Val decreased milk protein yield and content and reduced milk N efficiency compared with a complete EAA profile.
Assuntos
Aminoácidos Essenciais/análise , Bovinos/fisiologia , Metabolismo Energético , Proteínas do Leite/metabolismo , Leite/química , Nitrogênio/metabolismo , Abomaso/metabolismo , Animais , Dieta/veterinária , Feminino , Lactação , Lactose/metabolismo , Rúmen/metabolismo , Silagem/análise , Zea maysRESUMO
Objectives of this study were to investigate the effects of supplementing rumen-protected methionine (RP-Met), threonine (RP-Thr), isoleucine (RP-Ile), and leucine (RP-Leu) individually or jointly to a low-protein diet, on the performance of lactating dairy cows, as well as to determine the effects of these amino acids (AA) on the mammalian target of rapamycin (mTOR) in vivo. Ten lactating Holstein cows were randomly allocated to a repeated 5 × 5 Latin square experiment with five 19-d periods. Treatments were high-protein diet (16% crude protein, positive control; HP), low-protein diet (12% crude protein, negative control; LP), LP plus RP-Met (LPM), LP plus RP-Met and RP-Thr (LPMT), and LP plus RP-Met, RP-Thr, RP-Ile, and RP-Leu (LPMTIL). The dry matter intakes (DMI) of the LP, LPM, and LPMT diets were lower than that of the HP diet, whereas the DMI of the LPMTIL diet was intermediate between the HP diet and the other LP diets. Supplementing RP-Met to the LP diet increased the yields of milk and milk protein, increased the content of milk urea N, and tended to increase milk N efficiency. Co-supplementation of RP-Thr with RP-Met resulted in no further milk production increase. Co-supplementation of all 4 rumen-protected amino acids (RP-AA) increased milk and lactose yields to the level of the HP diet and tended to increase milk protein yield compared with the LPMT diet. We found no significant differences in the contents and yields of milk components between the LPMTIL and HP diets except for a lower milk urea N content in the LPMTIL diet. Venous concentrations of the measured AA were similar across the LP and LP diets supplemented with RP-AA. Relative to levels of the HP diet, LP diets had higher venous concentrations of Met and Gly and tended to have higher Phe concentration and lower concentrations of Val and BCAA. The LPMTIL diet had higher venous concentrations of Arg, Lys, Met, Phe, and Glu, and a lower Val concentration. Phosphorylation status of the measured mTOR components in LPM and LPMT treatments were similar to those in the LP treatment but phosphorylation status of mTOR and eIF4E-binding protein 1 (4eBP1) in LPMTIL treatment were higher. The phosphorylation rates of eukaryotic elongation factor 2 (eEF2) in the 4 LP and LP plus RP-AA diets were higher than that of the HP diet. Overall, results of the present study supported the concept that under the relatively short time of this experiment, supplementing RP-AA, which are believed to stimulate the mTOR signal pathway, can lead to increased milk protein yield. This increase appears to be due to increased DMI, greater mTOR signaling, and greater eEF2 activity.
Assuntos
Aminoácidos Essenciais/administração & dosagem , Bovinos/fisiologia , Suplementos Nutricionais/análise , Proteínas do Leite/análise , Leite/metabolismo , Nitrogênio/metabolismo , Aminoácidos Essenciais/análise , Animais , Indústria de Laticínios , Dieta/veterinária , Dieta com Restrição de Proteínas/veterinária , Feminino , Lactação/efeitos dos fármacos , Lactose/metabolismo , Metionina/administração & dosagem , Leite/química , Nitrogênio/análise , Rúmen/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ureia/análiseRESUMO
BACKGROUND: During the industrial production of ß-glucan, a protein-rich fraction remains as a by-product. Recovery of this protein as oat protein concentrate (OPC) results in a source of cereal protein for food and improves the overall economy of the process. In this study, a yoghurt-type product is developed by lactic acid fermentation of an OPC suspension after subjection to heat treatment to assure starch gelatinization. RESULTS: In detail, the process of yoghurt production involved an initial heating step to 90 °C, followed by 24 h fermentation with a starter culture consisting of Lactobacillus delbrueckii subsp. bulgaricus und Streptococcus thermophilus. The resulting yoghurt-type product was mildly sour (pH 4.2) with a certain amount of lactic acid (3.3 ± 0.2 g kg-1 ) and contained 4.9 × 106 cfu g-1 lactobacillus after 24 h fermentation. Scanning electron microscopy revealed a porous network presumably built up from the gelatinized starch fraction containing aggregated structures, between which were assumed to be aggregated oat proteins. Moreover, to a limited extent, proteolysis occurred during fermentation. Thus some of the proteolytic enzymes present in the yoghurt culture cleaved oat protein and released peptides. However, the effect on essential amino acids was small. CONCLUSION: The results of this study provide a deeper knowledge into the role of starch and protein in fermented OPC yoghurts. The structure of fermented OPC verifies the applicability of oat protein as an alternative source for yoghurt-type products. © 2019 Society of Chemical Industry.
Assuntos
Avena/metabolismo , Aditivos Alimentares/análise , Manipulação de Alimentos/métodos , Lactobacillus delbrueckii/metabolismo , Proteínas de Plantas/análise , Streptococcus thermophilus/metabolismo , Iogurte/análise , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/metabolismo , Avena/química , Avena/microbiologia , Fermentação , Aditivos Alimentares/metabolismo , Ácido Láctico/análise , Ácido Láctico/metabolismo , Proteínas de Plantas/metabolismo , Iogurte/microbiologiaRESUMO
BACKGROUND: Tropospheric ozone (O3 ) is phytotoxic and therefore impacts global food security. In the present study yield responses and kernel quality traits of two maize cultivars [DHM117: normal maize (NM)] and [HQPM1: quality protein maize (QPM)] are investigated. Cultivars were exposed to two doses of elevated O3 , namely NFC + 15 and NFC + 30 ppb O3 above ambient level (NFC, non-filtered chambers) while filtered chambers served as control. RESULTS: Test weight (thousand kernel weight), weight of kernels per square meter and kernel starch content reduced more in NM than QPM due to elevated O3 exposure. Total soluble and reducing sugars increased in both the cultivars being more in NM. Though, endosperm protein showed comparatively more increase in QPM than NM, decline in essential amino acids tryptophan and lysine was higher in QPM. Majority of nutrient elements increased after O3 treatment, while reductions in oil content as well as saturated fatty acids were observed in both test cultivars. Of the two essential fatty acids, omega 3 fatty acid reduced while omega 6 fatty acid contents increased in QPM. Oil became more unsaturated (increase in polyunsaturated fatty acids) upon O3 exposure, thus increasing its reactivity and hence became more prone to auto-oxidation. CONCLUSIONS: Elevated O3 caused losses in yield of maize cultivars and NM showed higher sensitivity than QPM. Kernel quality analysis revealed significant changes in nutritional parameters. Carbohydrate content reduced more in NM, while essential amino acids and saturated fatty acids showed more decline in QPM. © 2018 Society of Chemical Industry.
Assuntos
Ozônio/farmacologia , Proteínas de Plantas/química , Zea mays/química , Zea mays/efeitos dos fármacos , Aminoácidos Essenciais/análise , Ácidos Graxos/análise , Valor Nutritivo , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismoRESUMO
The postprandial rise in essential amino acid (EAA) concentrations modulates the increase in muscle protein synthesis rates after protein ingestion. The EAA content and AA composition of the dietary protein source contribute to the differential muscle protein synthetic response to the ingestion of different proteins. Lower EAA contents and specific lack of sufficient leucine, lysine, and/or methionine may be responsible for the lower anabolic capacity of plant-based compared with animal-based proteins. We compared EAA contents and AA composition of a large selection of plant-based protein sources with animal-based proteins and human skeletal muscle protein. AA composition of oat, lupin, wheat, hemp, microalgae, soy, brown rice, pea, corn, potato, milk, whey, caseinate, casein, egg, and human skeletal muscle protein were assessed using UPLC-MS/MS. EAA contents of plant-based protein isolates such as oat (21%), lupin (21%), and wheat (22%) were lower than animal-based proteins (whey 43%, milk 39%, casein 34%, and egg 32%) and muscle protein (38%). AA profiles largely differed among plant-based proteins with leucine contents ranging from 5.1% for hemp to 13.5% for corn protein, compared to 9.0% for milk, 7.0% for egg, and 7.6% for muscle protein. Methionine and lysine were typically lower in plant-based proteins (1.0 ± 0.3 and 3.6 ± 0.6%) compared with animal-based proteins (2.5 ± 0.1 and 7.0 ± 0.6%) and muscle protein (2.0 and 7.8%, respectively). In conclusion, there are large differences in EAA contents and AA composition between various plant-based protein isolates. Combinations of various plant-based protein isolates or blends of animal and plant-based proteins can provide protein characteristics that closely reflect the typical characteristics of animal-based proteins.
Assuntos
Aminoácidos/análise , Alimento Funcional/análise , Proteínas de Vegetais Comestíveis/química , Aminoácidos Essenciais/análise , Cromatografia Líquida , Humanos , Proteínas Musculares/química , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Oat protein concentrate is often used in human food, but the quality of this protein has not been characterized. Therefore, the objectives of this experiment were to determine the standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in oat protein concentrate and to determine differences in protein quality estimates between the protein digestibility-corrected AA score (PDCAAS) and the digestible indispensable AA score (DIAAS) when using growing pigs for both measurements. RESULTS: For infants, the most limiting AA in oat protein concentrate was the aromatic AA (Phe + Tyr), for which the DIAAS value was 41 and the PDCAAS was 43. For children (6 months to 3 years) and children older than 3 years, the most limiting AA in oat protein concentrate was Lys, for which the DIAAS was 56 and 67 and the PDCAAS was 58 and 69, respectively. CONCLUSION: The DIAAS value for oat protein concentrate was close to the calculated value for PDCAAS, but below the recommended intake for protein. Therefore, to satisfy the daily human AA requirement, oat protein needs to be complemented by other proteins of higher quality and specifically with greater lysine concentrations. © 2017 Society of Chemical Industry.
Assuntos
Aminoácidos Essenciais/metabolismo , Aminoácidos/metabolismo , Ração Animal/análise , Avena/metabolismo , Proteínas de Plantas/metabolismo , Suínos/metabolismo , Aminoácidos/análise , Aminoácidos Essenciais/análise , Animais , Avena/química , Digestão , Proteínas de Plantas/análise , Suínos/crescimento & desenvolvimentoRESUMO
BACKGROUND: The use of protein hydrolyzates in food and feed ingredients is a growing area of interest. The present study was conducted aiming to determine the standardized ileal digestibility (SID) and to evaluate protein quality of porcine and bovine hydrolyzates. The SID values were determined in pigs and these values were used to calculate digestible indispensable amino acid score (DIAAS) values. RESULTS: The SID of crude protein of hydrolyzates of porcine plasma, bovine muscle, bovine collagen, porcine heart and porcine muscle was 0.81, 0.84, 0.79, 0.79 and 0.91, respectively. Based on the DIAAS, hydrolyzates of porcine plasma and porcine heart (DIAAS = 87 and 76) are considered as good quality protein sources for younger children. For older children, adolescents and adults, the hydrolyzates of bovine muscle and porcine heart (DIAAS = 81 and 87) are considered as good quality protein sources and the hydrolyzate of porcine plasma (DIAAS = 102) is considered as a high quality protein source. CONCLUSION: DIAAS values indicate that the porcine and bovine hydrolyzates tested in the present study have low and medium to high protein values and also that the protein products can be included in human nutrition. © 2017 Society of Chemical Industry.
Assuntos
Aminoácidos Essenciais/análise , Análise de Alimentos/normas , Íleo/metabolismo , Músculo Esquelético/química , Plasma/química , Hidrolisados de Proteína/química , Aminoácidos Essenciais/metabolismo , Animais , Bovinos , Digestão , Análise de Alimentos/métodos , Humanos , Carne/análise , Músculo Esquelético/metabolismo , Plasma/metabolismo , Hidrolisados de Proteína/metabolismo , SuínosRESUMO
The goal of this work was to analyze nutritional value of various minimally processed commercial products of plant protein sources such as faba bean (Vicia faba), lupin (Lupinus angustifolius), rapeseed press cake (Brassica rapa/napus subsp. Oleifera), flaxseed (Linum usitatissimum), oil hemp seed (Cannabis sativa), buckwheat (Fagopyrum esculentum), and quinoa (Chenopodium quinoa). Basic composition and various nutritional components like amino acids, sugars, minerals, and dietary fiber were determined. Nearly all the samples studied could be considered as good sources of essential amino acids, minerals and dietary fiber. The highest content of crude protein (over 30 g/100 g DW) was found in faba bean, blue lupin and rapeseed press cake. The total amount of essential amino acids (EAA) ranged from 25.8 g/16 g N in oil hemp hulls to 41.5 g/16 g N in pearled quinoa. All the samples studied have a nutritionally favorable composition with significant health benefit potential. Processing (dehulling or pearling) affected greatly to the contents of analyzed nutrients.
Assuntos
Aminoácidos Essenciais/análise , Fibras na Dieta/análise , Magnoliopsida/química , Minerais/análise , Valor Nutritivo , Proteínas de Plantas/análise , Brassica rapa/química , Cannabis/química , Chenopodium quinoa/química , Proteínas Alimentares/análise , Fagopyrum/química , Linho/química , Lupinus/química , Vicia faba/químicaRESUMO
We have prepared a review of the physical-chemical composition and the functional and anti-nutritional properties of quinoa (Chenopodium quinoa Willd.). It is a plant of the Chenopodiaceae family, originally from the Andean regions, adaptable to different types of soils and climatic conditions. Its composition has attracted the attention of scientific community for its high nutritional value, being rich in proteins, lipids, fibers, vitamins, and minerals, with an extraordinary balance of essential amino acids. It is also gluten-free, a characteristic that enables its use by celiac patients. In spite of all these attributes, quinoa is not widely used by consumers due to the high cost of imported grain and little knowledge of its benefits. More studies are required to increase knowledge about this "pseudo-cereal" to demonstrate its functional and nutritional benefits and to study its anti-nutritional effects, since it presents high commercial value and excellent nutritional quality.
Assuntos
Chenopodium quinoa/química , Valor Nutritivo , Aminoácidos Essenciais/análise , Antioxidantes/análise , Carboidratos da Dieta/análise , Gorduras na Dieta/análise , Fibras na Dieta/análise , Proteínas Alimentares/análise , Flavonoides/análise , Humanos , Micronutrientes/análise , Nitratos/análise , Oxalatos/análise , Ácido Fítico/análise , Polifenóis/análise , Saponinas/análise , Taninos/análise , Inibidores da Tripsina/análise , Grãos Integrais/químicaRESUMO
The study aimed to determine the effects of reduction of dietary crude protein (CP) level with balanced essential amino acids (EAA) on intestinal bacteria and their metabolites of growing pigs. Forty pigs (initial BW 13.50 ± 0.50 kg, 45 ± 2 days of age) were randomly assigned to four dietary treatments containing CP levels at 20.00% (normal crude protein, NP); 17.16% (medium crude protein, MP); 15.30% (low crude protein, LP); and 13.90% (extremely low crude protein, ELP), respectively. Crystalline AAs were added to meet the EAA requirement of pigs. After 4-week feeding, eight pigs per treatment (n = 8) were randomly selected and slaughtered for sampling of ileal, cecal, and colonic digesta and mucosa. Pigs with moderately reduced CP level had increased bacterial diversity, with the Shannon diversity indices for the colon digesta in the LP group and mucosa in the MP and LP groups significantly (P < 0.05) higher than those in the NP and ELP groups. As the CP level reduces, the Bifidobacterium population were linearly decreased (P < 0.05) both in ileum, cecum, and colon, and the ELP group had the lowest Bifidobacterium population in the cecum and colon, with its value significantly lower than NP and MP groups (P < 0.05). However, the ELP group had the highest population of Escherichia coli in the colon, with its value significantly higher than the LP group (P < 0.05). For bacterial metabolites, as CP level decreased, total short-chain fatty acid (T-SCFA), acetate, and butyrate were linearly increased (linear, P < 0.05) in the ileum, while all SCFAs except formate in the cecum and T-SCFA and acetate in the colon, were linearly decreased (P < 0.05). Reducing CP level led to a linear decrease of microbial crude protein (MCP) in the ileum (P < 0.05) and ammonia in all intestine segments (P < 0.05). The spermidine in cecum and total amines, cadaverine, methylamine, and spermidine in colon were shown a quadratic change (P < 0.05) as dietary CP decreases, with the highest concentration in LP group. These findings suggest that moderate reduction of dietary CP level may benefit large intestinal bacterial community and its fermentation, which was negatively affected by extremely low CP diet.
Assuntos
Aminoácidos Essenciais/administração & dosagem , Ração Animal , Ceco/microbiologia , Colo/microbiologia , Proteínas Alimentares/administração & dosagem , Fermentação , Consórcios Microbianos/fisiologia , Aminas/análise , Aminoácidos Essenciais/análise , Ração Animal/análise , Animais , Bifidobacterium/isolamento & purificação , Proteínas Alimentares/análise , Proteínas Alimentares/química , Digestão , Escherichia coli/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Íleo/microbiologia , Distribuição Aleatória , Espermidina/análise , Suínos , DesmameRESUMO
Compositions of fatty acid, amino acids, and volatile compound were investigated in green coffee beans of seven cultivars of Coffea robusta grown in Hainan Province, China. The chlorogenic acids, trigonelline, caffeine, total lipid, and total protein contents as well as color parameters were measured. Chemometric techniques, principal component analysis (PCA), hierarchical cluster analysis (HCA), and analysis of one-way variance (ANOVA) were performed on the complete data set to reveal chemical differences among all cultivars and identify markers characteristic of a particular botanical origin of the coffee. The major fatty acids of coffee were linoleic acid, palmitic acid, oleic acid, and arachic acid. Leucine (0.84 g/100 g DW), lysine (0.63 g/100 g DW), and arginine (0.61 g/100 g DW) were the predominant essential amino acids (EAAs) in the coffee samples. Seventy-nine volatile compounds were identified and semi-quantified by HS-SPME/GC-MS. PCA of the complete data matrix demonstrated that there were significant differences among all cultivars, HCA supported the results of PCA and achieved a satisfactory classification performance.
Assuntos
Aminoácidos Essenciais/análise , Coffea/química , Coffea/classificação , Ácidos Graxos/análise , Compostos Orgânicos Voláteis/análise , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/químicaRESUMO
BACKGROUND: With increasing demand for new protein sources, research on plant protein extraction and evaluation of the functional properties of protein isolates is necessary. In this study, pH and NaCl concentration, as two parameters affecting protein extraction of fenugreek seed, was investigated and the condition of fenugreek protein isolate (FPI) extraction was optimized using response surface methodology. RESULTS: FPI had significantly (P< 0.05) higher protein and essential amino acid content (891.00 and 387.41 g kg(-1) , respectively) compared with soy protein isolate (SPI). FPI was rich in Asp and Glu, confirming the presence of bands in the acidic region (30-39 kDa) of its electrophoretic pattern. Differential scanning calorimeter thermography of both FPI and SPI showed two peaks with high denaturation temperature, confirming the presence of high protein content and hydrophobic amino acids. Protein solubility, foaming capacity, foam stability and emulsion stability of FPI were higher than SPI; moreover, both FPI and SPI showed pH-dependent protein functionalities. CONCLUSION: Fenugreek seed protein extraction was optimized by control of pH and NaCl concentration. FPI could be used as a protein source with remarkable functional properties.