Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Pathol ; 193(11): 1817-1832, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37423551

RESUMO

Annexin A1 (AnxA1) is the primary mediator of the anti-inflammatory actions of glucocorticoids. AnxA1 functions as a pro-resolving mediator in cultured rat conjunctival goblet cells to ensure tissue homeostasis through stimulation of intracellular [Ca2+] ([Ca2+]i) and mucin secretion. AnxA1 has several N-terminal peptides with anti-inflammatory properties of their own, including Ac2-26, Ac2-12, and Ac9-25. The increase in [Ca2+]i caused by AnxA1 and its N-terminal peptides in goblet cells was measured to determine the formyl peptide receptors used by the compounds and the action of the peptides on histamine stimulation. Changes in [Ca2+]i were determined by using a fluorescent Ca2+ indicator. AnxA1 and its peptides each activated formyl peptide receptors in goblet cells. AnxA1 and Ac2-26 at 10-12 mol/L and Ac2-12 at 10-9 mol/L inhibited the histamine-stimulated increase in [Ca2+]i, as did resolvin D1 and lipoxin A4 at 10-12 mol/L, whereas Ac9-25 did not. AnxA1 and Ac2-26 counter-regulated the H1 receptor through the p42/p44 mitogen-activated protein kinase/extracellular regulated kinase 1/2, ß-adrenergic receptor kinase, and protein kinase C pathways, whereas Ac2-12 counter-regulated only through ß-adrenergic receptor kinase. In conclusion, current data show that the N-terminal peptides Ac2-26 and Ac2-12, but not Ac9-25, share multiple functions with the full-length AnxA1 in goblet cells, including inhibition of histamine-stimulated increase in [Ca2+]i and counter-regulation of the H1 receptor. These actions suggest a potential pharmaceutical application of the AnxA1 N-terminal peptides Ac2-26 and Ac2-12 in homeostasis and ocular inflammatory diseases.


Assuntos
Anexina A1 , Ratos , Animais , Anexina A1/farmacologia , Anexina A1/química , Anexina A1/metabolismo , Células Caliciformes/metabolismo , Receptores de Formil Peptídeo/metabolismo , Histamina/farmacologia , Peptídeos/farmacologia , Anti-Inflamatórios/farmacologia , Quinases de Receptores Adrenérgicos beta/metabolismo
2.
Biotechnol Appl Biochem ; 71(4): 701-711, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38409880

RESUMO

Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.


Assuntos
Anexina A1 , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Encefalopatia Associada a Sepse , Animais , Anexina A1/metabolismo , Anexina A1/farmacologia , Ratos , Fármacos Neuroprotetores/farmacologia , Masculino , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , PPAR gama/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34526398

RESUMO

Rheumatoid arthritis (RA) carries a twofold increased incidence of heart failure with preserved ejection fraction, accompanied by diastolic dysfunction, which can lead to death. The causes of diastolic dysfunction are unknown, and there are currently no well-characterized animal models for studying these mechanisms. Current medications for RA do not have marked beneficial cardio-protective effects. K/BxN F1 progeny and KRN control mice were analyzed over time for arthritis development, monitoring left ventricular diastolic and systolic function using echocardiography. Excised hearts were analyzed by flow cytometry, qPCR, and histology. In pharmacological experiments, K/BxN F1 mice were treated with human recombinant AnxA1 (hrAnxA1, 1 µg/mouse) or vehicle daily. K/BxN F1 mice exhibited fully developed arthritis with normal cardiac function at 4 wk; however, by week 8, all mice displayed left ventricular diastolic dysfunction with preserved ejection fraction. This dysfunction was associated with cardiac hypertrophy, myocardial inflammation and fibrosis, and inflammatory markers. Daily treatment of K/BxN F1 mice with hrAnxA1 from weeks 4 to 8 halted progression of the diastolic dysfunction. The treatment reduced cardiac transcripts of proinflammatory cytokines and profibrotic markers. At the cellular level, hrAnxA1 decreased activated T cells and increased MHC IIlow macrophage infiltration in K/BxN F1 hearts. Similar effects were obtained when hrAnxA1 was administered from week 8 to week 15. We describe an animal model of inflammatory arthritis that recapitulates the cardiomyopathy of RA. Treatment with hrAnxA1 after disease onset corrected the diastolic dysfunction through modulation of both fibroblast and inflammatory cell phenotype within the heart.


Assuntos
Anexina A1/metabolismo , Artrite Reumatoide/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Anexina A1/farmacologia , Anexina A1/fisiologia , Artrite Reumatoide/complicações , Cardiomiopatias/patologia , Diástole , Modelos Animais de Doenças , Coração/fisiopatologia , Cardiopatias/patologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca Diastólica/etiologia , Insuficiência Cardíaca Diastólica/fisiopatologia , Ventrículos do Coração/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Miocárdio/patologia , Volume Sistólico/efeitos dos fármacos , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda
4.
FASEB J ; 36(1): e22107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34939700

RESUMO

Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.


Assuntos
Barreira Hematoencefálica/imunologia , Colagenases/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Inibidores Teciduais de Metaloproteinases/imunologia , Animais , Anexina A1/farmacologia , Barreira Hematoencefálica/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Humanos , Masculino , Camundongos , Proteínas Recombinantes/farmacologia
5.
Pharmacol Res ; 198: 107005, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992916

RESUMO

AIMS: The cardio-protective and immuno-regulatory properties of RTP-026, a synthetic peptide that spans the Annexin-A1 (AnxA1) N-terminal region, were tested in rat acute myocardial infarction. METHODS AND RESULTS: In vitro, selective activation of formyl-peptide receptor type 2 (FPR2) by RTP-026 occurred with apparent EC50 in the 10-30 nM range. With human primary cells, RTP-026 counteracted extension of neutrophil life-span and augmented phagocytosis of fluorescent E.coli by blood myeloid cells. An in vivo model of rat acute infarction was used to quantify tissue injury and phenotype immune cells in myocardium and blood. The rat left anterior descending coronary artery was occluded and then reopened for 2-hour or 24-hour reperfusion. For the 2-hour reperfusion protocol, RTP-026 (25-500 µg/kg; given i.v. at the start of reperfusion) significantly reduced infarct size by ∼50 %, with maximal efficacy at 50 µg/kg. Analyses of cardiac immune cells showed that RTP-026 reduced neutrophil and classical monocyte recruitment to the damaged heart. In the blood, RTP-026 (50 µg/kg) attenuated activation of neutrophils and monocytes monitored through CD62L and CD54 expression. Modulation of vascular inflammation by RTP-026 was demonstrated by reduction in plasma levels of mediators like TNF-α, IL-1ß, KC, PGE2 and PGF2α⊡ For the 24-hour reperfusion protocol, RTP-026 (30 µg/kg given i.v. at 0, 3 and 6 h reperfusion) reduced necrotic myocardium by ∼40 %. CONCLUSIONS: RTP-026 modulate immune cell responses and decreases infarct size of the heart in preclinical settings. Tempering over-exuberant immune cell activation by RTP-026 is a suitable approach to translate the biology of AnxA1 for therapeutic purposes.


Assuntos
Anexina A1 , Infarto do Miocárdio , Ratos , Animais , Humanos , Anexina A1/farmacologia , Peptídeos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Coração , Neutrófilos/metabolismo
6.
Inflamm Res ; 72(2): 347-362, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36544058

RESUMO

OBJECTIVES: Excessive inflammatory responses and apoptosis are critical pathologies that contribute to sepsis-induced acute kidney injury (SI-AKI). Annexin A1 (ANXA1), a member of the calcium-dependent phospholipid-binding protein family, protects against SI-AKI through its anti-inflammatory and antiapoptotic effects, but the underlying mechanisms are still largely unknown. METHODS: In vivo, SI-AKI mouse models were established via caecal ligation and puncture (CLP) and were then treated with the Ac2-26 peptide of ANXA1 (ANXA1 (Ac2-26)), WRW4 (Fpr2 antagonist) or both. In vitro, HK-2 cells were induced by lipopolysaccharide (LPS) and then treated with ANXA1 (Ac2-26), Fpr2-siRNA or both. RESULTS: In the present study, we found that the expression levels of ANXA1 were decreased, and the expression levels of TNF-α, IL-1ß, IL-6, cleaved caspase-3, cleaved caspase-8 and Bax were significantly increased, accompanied by marked kidney tissue apoptosis in vivo. Moreover, we observed that ANXA1 (Ac2-26) significantly reduced the levels of TNF-α, IL-1ß and IL-6 and cleaved caspase-3, cleaved caspase-8, FADD and Bax and inhibited apoptosis in kidney tissue and HK-2 cells, accompanied by pathological damage to kidney tissue. Seven-day survival, kidney function and cell viability were significantly improved in vivo and in vitro, respectively. Furthermore, the administration of ANXA1 (Ac2-26) inhibited the CLP- or LPS-induced phosphorylation of PI3K and AKT and downregulated the level of NF-κB in vivo and in vitro. Moreover, our data demonstrate that blocking the Fpr2 receptor by the administration of WRW4 or Fpr2-siRNA reversed the abovementioned regulatory role of ANXA1, accompanied by enhanced phosphorylation of PI3K and AKT and upregulation of the level of NF-κB in vivo and in vitro. CONCLUSIONS: Taken together, this study provides evidence that the protective effect of ANXA1 (Ac2-26) on SI-AKI largely depends on the negative regulation of inflammation and apoptosis via the Fpr2 receptor.


Assuntos
Injúria Renal Aguda , Anexina A1 , Sepse , Camundongos , Animais , NF-kappa B/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 8/farmacologia , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Anexina A1/farmacologia , Anexina A1/uso terapêutico , Anexina A1/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Apoptose , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo
7.
Perfusion ; 38(2): 320-329, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951334

RESUMO

INTRODUCTION: Cardiopulmonary bypass (CPB) -induced lung ischemia-reperfusion (I/R) injury remains a large challenge in cardiac surgery; up to date, no effective treatment has been found. Annexin A1 (AnxA1) has an anti-inflammatory effect, and it has been proven to have a protective effect on CPB-induced lung injury. However, the specific mechanism of AnxA1 in CPB-induced lung injury is not well studied. Therefore, we established a CPB-induced lung injury model to explore the relevant mechanism of AnxA1 and try to find an effective treatment for lung protection. METHODS: Male rats were randomized into five groups (n = 6, each): sham (S group), I/R exposure (I/R group), I/R + dimethyl sulfoxide (D group), I/R + Ac2-26 (AnxA1 peptide) (A group), and I/R + LY294002 (a PI3K specific inhibitor) (AL group). Arterial blood gas analysis and calculation of the oxygenation index, and respiratory index were performed. The morphological changes in lung tissues were observed under light and electron microscopes. TNF-α and IL-6 and total protein in lung bronchoalveolar lavage fluid were detected via enzyme-linked immunosorbent assay. The expressions of PI3K, Akt, and NF-κB (p65) as well as p-PI3K, p-Akt, p-NF-κB (p65), and AnxA1 were detected via western blotting. RESULTS: Compared with the I/R group, the A group showed the following: lower lung pathological damage score; decreased expression of IL-6 and total protein in the bronchoalveolar lavage fluid, and TNF-α in the lung; increased lung oxygenation index; and improved lung function. These imply the protective role of Ac2-26, and show that LY294002 inhibited the ameliorative preconditioning effect of Ac2-26. CONCLUSION: This finding suggested that the AnxA1 peptide Ac2-26 decreased the inflammation reaction and CPB-induced lung injury in rats, the lung protective effects of AnxA1may be correlated with the activation of PI3K/Akt signaling pathway.


Assuntos
Anexina A1 , Lesão Pulmonar , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Ponte Cardiopulmonar/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Anexina A1/metabolismo , Anexina A1/farmacologia , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Transdução de Sinais , Peptídeos/metabolismo , Peptídeos/farmacologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
8.
Brain ; 144(5): 1526-1541, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34148071

RESUMO

Alzheimer's disease, characterized by brain deposits of amyloid-ß plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood-brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer's disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood-brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-ß levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood-brain barrier function and decreasing amyloid-ß and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood-brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-ß load, due to increased clearance and degradation of amyloid-ß by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood-brain barrier breakdown early in Alzheimer's disease can be restored by hrANXA1 as a potential therapeutic approach.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Anexina A1/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Permeabilidade Capilar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
9.
Endocr J ; 69(3): 283-290, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-34645720

RESUMO

Gonadotropin-releasing hormone (GnRH) stimulation of annexin A1 (ANXA1) and A5 (ANXA5) mRNA expression was analyzed in LßT2 gonadotrope cells. Quantitative polymerase chain reaction results showed that a GnRH analog (GnRHa) stimulated the expression of both ANXA1 and A5 mRNA with a peak at 12 h of incubation; however, ANXA1 mRNA was extremely stimulated (60 folds). Immunocytochemical analysis confirmed these findings. A GnRH antagonist inhibited the effect of GnRHa. ANXA1 and A5 mRNA levels were significantly increased by protein kinase C (PKC) activator (12-O-Tetradecanoylphorbol-13-acetate; TPA), but not by dibutyryl cAMP. GnRHa-stimulated induction of ANXA1 and A5 mRNA was inhibited by PKC (GF109203) and MEK inhibitors (PD98059). TPA increased ANXA1 and A5 mRNA expression in a dose-dependent manner (1 nM to 10 µM), while the extent of the increase was much greater in ANXA1. After stimulation with 10 nM or 1 µM TPA, ANXA1 and A5 mRNA levels were increased at 6 h. ANXA1 mRNA levels were higher in the 1 µM TPA than in the 10 nM TPA treatment, whereas 1 µM TPA did not show further stimulation of ANXA5 mRNA compared to 10 nM TPA. These results clearly show that ANXA1 mRNA expression is stimulated by GnRH through PKC like ANXA5, and the response of ANXA1 is much larger than that of ANXA5. A close relationship between these annexins and a significant role for ANXA1 in GnRH action at gonadotropes is suggested.


Assuntos
Anexina A1 , Gonadotrofos , Anexina A1/genética , Anexina A1/metabolismo , Anexina A1/farmacologia , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo
10.
Am J Physiol Renal Physiol ; 321(4): F443-F454, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34396790

RESUMO

Bladder outlet obstruction (BOO) is ultimately experienced by ≈90% of men, most commonly secondary to benign prostatic hyperplasia. Inflammation is a critical driver of BOO pathology in the bladder and can be divided into two critical steps: initiation and resolution. Although great strides have been made toward understanding the initiation of inflammation in the bladder [through the NLR family pyrin domain containing 3 (NLRP3) inflammasome], no studies have examined resolution. Resolution is controlled by five classes of compounds known as specialized proresolving mediators (SPMs), all of which bind to one or more of the seven different receptors. Using immunocytochemistry, we showed the presence of six of the known SPM receptors in the bladder of control and BOO rats; the seventh SPM receptor has no rodent homolog. Expression was predominantly localized to urothelia, often with some expression in smooth muscle, but little to none in interstitial cells. We next examined the therapeutic potential of the annexin-A1 resolution system, also present in control and BOO bladders. Using the peptide mimetic Ac2-26, we blocked inflammation-initiating pathways (NLRP3 activation), diminished BOO-induced inflammation (Evans blue dye extravasation), and normalized bladder dysfunction (urodynamics). Excitingly, Ac2-26 also promoted faster and more complete functional recovery after surgical deobstruction. Together, the results demonstrate that the bladder expresses a wide variety of potential proresolving pathways and that modulation of just one of these pathways can alleviate many detrimental aspects of BOO and speed recovery after deobstruction. This work establishes a precedent for future studies evaluating SPM effectiveness in resolving the many conditions associated with bladder inflammation.NEW & NOTEWORTHY To our knowledge, this is the first study of proinflammation-resolving pathways in the bladder, which is the basis of a new pharmacological genus-dubbed "resolution pharmacology" aimed at reducing inflammation without creating an immunocompromised state. Inflammation plays a causative or exacerbating role in numerous bladder maladies. We documented proresolution receptors in the rat bladder and the effectiveness of a specialized proresolving mediator, annexin-A1, in alleviating detrimental aspects of bladder outlet obstruction and speeding recovery after deobstruction.


Assuntos
Anexina A1/metabolismo , Inflamação/tratamento farmacológico , Peptídeos/farmacologia , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia , Bexiga Urinária/efeitos dos fármacos , Animais , Anexina A1/genética , Anexina A1/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/fisiopatologia
11.
J Neuroinflammation ; 18(1): 119, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022892

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion (I/R) injury is a major cause of early complications and unfavorable outcomes after endovascular thrombectomy (EVT) therapy in patients with acute ischemic stroke (AIS). Recent studies indicate that modulating microglia/macrophage polarization and subsequent inflammatory response may be a potential adjunct therapy to recanalization. Annexin A1 (ANXA1) exerts potent anti-inflammatory and pro-resolving properties in models of cerebral I/R injury. However, whether ANXA1 modulates post-I/R-induced microglia/macrophage polarization has not yet been fully elucidated. METHODS: We retrospectively collected blood samples from AIS patients who underwent successful recanalization by EVT and analyzed ANXA1 levels longitudinally before and after EVT and correlation between ANXA1 levels and 3-month clinical outcomes. We also established a C57BL/6J mouse model of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) and an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in BV2 microglia and HT22 neurons to explore the role of Ac2-26, a pharmacophore N-terminal peptide of ANXA1, in regulating the I/R-induced microglia/macrophage activation and polarization. RESULTS: The baseline levels of ANXA1 pre-EVT were significantly lower in 23 AIS patients, as compared with those of healthy controls. They were significantly increased to the levels found in controls 2-3 days post-EVT. The increased post-EVT levels of ANXA1 were positively correlated with 3-month clinical outcomes. In the mouse model, we then found that Ac2-26 administered at the start of reperfusion shifted microglia/macrophage polarization toward anti-inflammatory M2-phenotype in ischemic penumbra, thus alleviating blood-brain barrier leakage and neuronal apoptosis and improving outcomes at 3 days post-tMCAO/R. The protection was abrogated when mice received Ac2-26 together with WRW4, which is a specific antagonist of formyl peptide receptor type 2/lipoxin A4 receptor (FPR2/ALX). Furthermore, the interaction between Ac2-26 and FPR2/ALX receptor activated the 5' adenosine monophosphate-activated protein kinase (AMPK) and inhibited the downstream mammalian target of rapamycin (mTOR). These in vivo findings were validated through in vitro experiments. CONCLUSIONS: Ac2-26 modulates microglial/macrophage polarization and alleviates subsequent cerebral inflammation by regulating the FPR2/ALX-dependent AMPK-mTOR pathway. It may be investigated as an adjunct strategy for clinical prevention and treatment of cerebral I/R injury after recanalization. Plasma ANXA1 may be a potential biomarker for outcomes of AIS patients receiving EVT.


Assuntos
Anexina A1/metabolismo , Diferenciação Celular , Infarto da Artéria Cerebral Média/prevenção & controle , Macrófagos , Microglia/metabolismo , Traumatismo por Reperfusão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Idoso , Animais , Anexina A1/farmacologia , Anexina A1/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Pessoa de Meia-Idade , Peptídeos/uso terapêutico , Receptores de Formil Peptídeo/metabolismo , Traumatismo por Reperfusão/imunologia , Estudos Retrospectivos
12.
J Neuroinflammation ; 17(1): 325, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121515

RESUMO

BACKGROUND: Bacterial meningitis is still a cause of severe neurological disability. The brain is protected from penetrating pathogens by the blood-brain barrier and the innate immune system. The invading pathogens are recognized by pattern recognition receptors including the G-protein-coupled formyl peptide receptors (FPRs), which are expressed by immune cells of the central nervous system. FPRs show a broad spectrum of ligands, including pro- and anti-inflammatory ones. Here, we investigated the effects of the annexin A1 mimetic peptide Ac2-26 in a mouse model of pneumococcal meningitis. METHODS: Wildtype (WT) and Fpr1- and Fpr2-deficient mice were intrathecally infected with Streptococcus pneumoniae D39 (type 2). Subsequently, the different mice groups were treated by intraperitoneal injections of Ac2-26 (1 mg/kg body weight) 2, 8, and 24 h post-infection. The extent of inflammation was analyzed in various brain regions by means of immunohistochemistry and real-time reverse transcription polymerase chain reaction (RT-PCR) 30 h post-infection. RESULTS: Ac2-26-treated WT mice showed less severe neutrophil infiltration, paralleled by a reduced induction of pro-inflammatory glial cell responses in the hippocampal formation and cortex. While meningitis was ameliorated in Ac2-26-treated Fpr1-deficient mice, this protective effect was not observed in Fpr2-deficient mice. Irrespective of Ac2-26 treatment, inflammation was more severe in Fpr2-deficient compared to Fpr1-deficient mice. CONCLUSIONS: In summary, this study demonstrates anti-inflammatory properties of Ac2-26 in a model of bacterial meningitis, which are mediated via FPR2, but not FPR1. Ac2-26 and other FPR2 modulators might be promising targets for the development of novel therapies for Streptococcus pneumoniae-induced meningitis.


Assuntos
Anexina A1/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Encefalite/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Meningite Pneumocócica/tratamento farmacológico , Infiltração de Neutrófilos/efeitos dos fármacos , Peptídeos/uso terapêutico , Animais , Anexina A1/farmacologia , Anti-Inflamatórios/farmacologia , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Peptídeos/farmacologia , Receptores de Formil Peptídeo/genética , Resultado do Tratamento
13.
J Neurosci Res ; 98(1): 168-178, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31157469

RESUMO

Spontaneous intracerebral hemorrhage (ICH) is the deadliest stroke subtype and neuroinflammation is a critical component of the pathogenesis following ICH. Annexin A1-FPR2 signaling has been shown to play a protective role in animal stroke models. This study aimed to assess whether Annexin A1 attenuated neuroinflammation and brain edema after ICH and investigate the underlying mechanisms. Male CD-1 mice were subjected to collagenase-induced ICH. Annexin A1 was administered at 0.5 hr after ICH. Brain water content measurement, short-term and long-term neurobehavioral tests, Western blot and immnunofluorescence were performed. Results showed that Annexin A1 effectively attenuated brain edema, improved short-term neurological function and ameliorated microglia activation after ICH. Annexin A1 also improved memory function at 28 days after ICH. However, these beneficial effects were abolished with the administration of FPR2 antagonist Boc-2. Furthermore, AnxA1/FPR2 signaling may confer protective effects via inhibiting p38-associated inflammatory cascade. Our study demonstrated that Annexin A1/FPR2/p38 signaling pathway played an important role in attenuating neuroinflammation after ICH and that Annexin A1 could be a potential therapeutic strategy for ICH patients.


Assuntos
Anexina A1/farmacologia , Edema Encefálico/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo , Receptores de Formil Peptídeo/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Anexina A1/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Colagenases , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
14.
Pharmacol Res ; 161: 105117, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768626

RESUMO

BACKGROUND AND PURPOSE: Formyl peptide receptor 2 (FPR2) is a Class A G protein-coupled receptor (GPCR) that interacts with multiple ligands and transduces both proinflammatory and anti-inflammatory signals. These ligands include weak agonists and modulators that are produced during inflammation. The present study investigates how prolonged exposure to FPR2 modulators influence receptor signaling. EXPERIMENTAL APPROACH: Fluorescent biosensors of FPR2 were constructed based on single-molecule fluorescent resonance energy transfer (FRET) and used for measurement of ligand-induced receptor conformational changes. These changes were combined with FPR2-mediated signaling events and used as parameters for the conformational states of FPR2. Ternary complex models were developed to interpret ligand concentration-dependent changes in FPR2 conformational states. KEY RESULTS: Incubation with Ac2-26, an anti-inflammatory ligand of FPR2, decreased FRET intensity at picomolar concentrations. In comparison, WKYMVm (W-pep) and Aß42, both proinflammatory agonists of FPR2, increased FRET intensity. Preincubation with Ac2-26 at 10 pM diminished W-pep-induced Ca2+ flux but potentiated W-pep-stimulated ß-arrestin2 membrane translocation and p38 MAPK phosphorylation. The opposite effects were observed with 10 pM of Aß42. Neither Ac2-26 nor Aß42 competed for W-pep binding at the picomolar concentrations. CONCLUSIONS AND IMPLICATIONS: The results support the presence of two allosteric binding sites on FPR2, each for Ac2-26 and Aß42, with high and low affinities. Sequential binding of the two allosteric ligands at increasing concentrations induce different conformational changes in FPR2, providing a novel mechanism by which biased allosteric modulators alter receptor conformations and generate pro- and anti-inflammatory signals.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Anexina A1/farmacologia , Mediadores da Inflamação/agonistas , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Receptores de Formil Peptídeo/agonistas , Receptores de Lipoxinas/agonistas , Técnicas Biossensoriais , Sinalização do Cálcio , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Ligantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Fosforilação , Conformação Proteica , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/genética , Receptores de Lipoxinas/metabolismo , Proteínas Recombinantes de Fusão , Relação Estrutura-Atividade , beta-Arrestina 2/metabolismo
15.
Wound Repair Regen ; 28(6): 772-779, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32856346

RESUMO

Impaired wound healing is a common complication of diabetes. In diabetic wounds, macrophages present dysfunctional efferocytosis and abnormal phenotypes, which could result in excessive neutrophil accumulation and prolonged inflammation, thereby eventually hindering wound repair. ANXA1 N-terminal peptide Ac2-26 exhibits a high potential in mitigating inflammation and improving repair; however, its efficacy in diabetic wound repair remains unclear. In this study, a cutaneous excisional wound model was built in genetically diabetic mice. Ac2-26 or a vehicle solution was employed locally in wound sites. Subsequently, wound zones were measured and sampled at different time intervals post-wounding. Using hematoxylin-eosin and Masson's trichrome staining, we observed the histopathological variations and collagen deposition in wound samples. Based on immunohistochemistry and immunofluorescence, the numbers of neutrophils, macrophages, and CD206-positive macrophages in the wound samples were determined. Cytokine expression in wound samples was studied by immunoblot assay. Results showed that Ac2-26 treatment could facilitate diabetic wound closure, down-regulate the number of neutrophils, and improve angiogenesis and collagen deposition. In addition, Ac2-26 application expedited macrophage recruitment and up-regulated the percentage of macrophages expressing CD206, which is a marker for M2 macrophages. Moreover, Ac2-26 inhibited the expressions of TNF-α and IL-6 and up-regulated the expressions of IL-10, TGF-ß, and VEGFA during diabetic wound healing. Hence, based on the aforementioned findings, Ac2-26 application in diabetic wounds could exert anti-inflammatory and pro-repair effects by reducing neutrophil accumulation and facilitating M2 macrophage development.


Assuntos
Anexina A1/farmacologia , Diabetes Mellitus Experimental/complicações , Macrófagos/patologia , Peptídeos/farmacologia , Pele/lesões , Lesões dos Tecidos Moles/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Citocinas/metabolismo , Diabetes Mellitus Experimental/patologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/efeitos dos fármacos , Pele/patologia , Lesões dos Tecidos Moles/complicações , Lesões dos Tecidos Moles/patologia , Resultado do Tratamento
16.
Biochem Biophys Res Commun ; 519(2): 396-401, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31519322

RESUMO

Annexin A1 (AnxA1) has been shown to exert potent anti-inflammatory and anti-fibrotic activities in a range of systemic inflammatory disorders. Corneal scarring is characterized by myofibroblast differentiation and disorganized extracellular matrix deposition. This study was aim to explore the potential therapeutic properties of Ac2-26, a mimetic peptide of AnnexinA1 (AnxA1), on TGF-ß induced human corneal myofibroblast differentiation and mechanical injury-induced mouse corneal haze. The results found that Ac2-26 treatment dose dependently reduced α-SMA level and other fibrogenic gene expressions in HTK cells stimulated by exogenous TGF-ß1. While this anti-fibrotic effect was abolished by an FPR2/ALX inhibitor WRW4. In mice, topical Ac2-26 application suppressed the development of corneal scarring, inhibited myofibroblast differentiation, while promoted the corneal epithelial wound healing. Moreover, Ac2-26 treatment inhibited Ly6G + neutrophil infiltration and reduced corneal inflammatory response. The results provided in vivo and in vitro supports the anti-fibrotic and anti-inflammatory effects of AnxA1 derived peptide Ac2-26, and suggest that AnxA1 mimetic agents might be a promising strategy for the treatment of corneal scarring.


Assuntos
Anexina A1/farmacologia , Lesões da Córnea/tratamento farmacológico , Inflamação/tratamento farmacológico , Peptídeos/farmacologia , Estresse Mecânico , Animais , Diferenciação Celular/efeitos dos fármacos , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Microb Pathog ; 123: 153-161, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30003946

RESUMO

This study was conducted to investigate annexin A1 (ANXA1) functions in human placental explants infected with Toxoplasma gondii (T. gondii). We examined the first and third trimester placental explants infected with T. gondii (n = 7 placentas/group) to identify the number and location of parasites, ANXA1 protein, potential involvement of formyl peptide receptors (FPR1 and FPR2), and COX-2 expressions by immunohistochemistry. Treatments with Ac2-26 mimetic peptide of ANXA1 were performed to verify the parasitism rate (ß-galactosidase assay), prostaglandin E2 levels (ELISA assay), and ANXA1, FPR1 and COX-2 expression in third trimester placentas. Placental explants of third trimester expressed less ANXA1 and were more permissive to T. gondii infection than first trimester placentas that expressed more ANXA1. Ac2-26 treatment increases endogenous ANXA1 and decreases parasitism rate, COX-2, and prostaglandin E2 levels. Altogether, these data provide further insight into the anti-parasitic and anti-inflammatory effects of ANXA1 in placentas infected with T. gondii.


Assuntos
Anexina A1/farmacologia , Antiparasitários/farmacologia , Placenta/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Toxoplasma/patogenicidade , Toxoplasmose/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Estudos Transversais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Feminino , Humanos , Inflamação/tratamento farmacológico , Peptídeos/farmacologia , Placenta/patologia , Placenta/fisiopatologia , Gravidez , Terceiro Trimestre da Gravidez , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Toxoplasmose/patologia , beta-Galactosidase/análise
18.
Cytotherapy ; 20(12): 1427-1436, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30377040

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) enhance islet function both in vitro and in vivo, at least in part by secreting ligands that activate islet G-protein coupled receptors (GPCRs). We assessed whether pre-treatment with a defined "cocktail" of MSC-secreted GPCR ligands enhances islet functional survival in vitro and improves the outcomes of islet transplantation in an experimental model of diabetes. METHODS: Isolated islets were cultured for 48 h with ANXA1, SDF-1 or C3a, alone or in combination. Glucose-stimulated insulin secretion (GSIS) and cytokine-induced apoptosis were measured immediately after the 48 h culture period and at 24 h or 72 h following removal of the ligands from the culture media. Islets were syngeneically transplanted underneath the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice and blood glucose levels monitored for 28 days. RESULTS: Pre-culturing islets with a cocktail of ANXA1/SDF-1/C3a potentiated GSIS and protected islet cells from cytokine-induced apoptosis in vitro. These effects were maintained for up to 72 h after the removal of the factors from the culture medium, suggesting a sustained protection of islet graft functional survival during the immediate post-transplantation period. Islets pre-treated with the cocktail of MSC secretory factors were more effective in reducing blood glucose in diabetic mice, consistent with their improved functional survival in vivo. DISCUSSION: Pre-culturing islets with a cocktail of MSC secretory products offers a well-defined, cell-free approach to improve clinical islet transplantation outcomes while avoiding many of the safety, regulatory and logistical hurdles of incorporating MSCs into transplantation protocols.


Assuntos
Quimiocina CXCL12/farmacologia , Complemento C3a/farmacologia , Transplante das Ilhotas Pancreáticas/métodos , Células-Tronco Mesenquimais/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Anexina A1/farmacologia , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Complemento C3a/genética , Complemento C3a/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Glucose/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Receptores Acoplados a Proteínas G/metabolismo
19.
Int J Mol Sci ; 19(4)2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659553

RESUMO

Cardiovascular disease (CVD) continues to be the leading cause of death in the world. Increased inflammation and an enhanced thrombotic milieu represent two major complications of CVD, which can culminate into an ischemic event. Treatment for these life-threatening complications remains reperfusion and restoration of blood flow. However, reperfusion strategies may result in ischemia-reperfusion injury (I/RI) secondary to various cardiovascular pathologies, including myocardial infarction and stroke, by furthering the inflammatory and thrombotic responses and delivering inflammatory mediators to the affected tissue. Annexin A1 (AnxA1) and its mimetic peptides are endogenous anti-inflammatory and pro-resolving mediators, known to have significant effects in resolving inflammation in a variety of disease models. Mounting evidence suggests that AnxA1, which interacts with the formyl peptide receptor (FPR) family, may have a significant role in mitigating I/RI associated complications. In this review article, we focus on how AnxA1 plays a protective role in the I/R based vascular pathologies.


Assuntos
Anexina A1/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Anexina A1/farmacologia , Humanos , Especificidade de Órgãos/efeitos dos fármacos
20.
Circulation ; 133(22): 2169-79, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27154726

RESUMO

BACKGROUND: Platelet activation at sites of vascular injury is essential for hemostasis, but it is also a major pathomechanism underlying ischemic injury. Because anti-inflammatory therapies limit thrombosis and antithrombotic therapies reduce vascular inflammation, we tested the therapeutic potential of 2 proresolving endogenous mediators, annexin A1 N-terminal derived peptide (AnxA1Ac2-26) and aspirin-triggered lipoxin A4 (15-epi-lipoxin A4), on the cerebral microcirculation after ischemia/reperfusion injury. Furthermore, we tested whether the lipoxin A4 receptor formyl-peptide receptor 2/3 (Fpr2/3; ortholog to human FPR2/lipoxin A4 receptor) evoked neuroprotective functions after cerebral ischemia/reperfusion injury. METHODS AND RESULTS: Using intravital microscopy, we found that cerebral ischemia/reperfusion injury was accompanied by neutrophil and platelet activation and neutrophil-platelet aggregate formation within cerebral microvessels. Moreover, aspirin-triggered lipoxin A4 activation of neutrophil Fpr2/3 regulated neutrophil-platelet aggregate formation in the brain and inhibited the reactivity of the cerebral microvasculature. The same results were obtained with AnxA1Ac2-26 administration. Blocking Fpr2/lipoxin A4 receptor with the antagonist Boc2 reversed this effect, and treatments were ineffective in Fpr2/3 knockout mice, which displayed an exacerbated disease severity, evidenced by increased infarct area, blood-brain barrier dysfunction, increased neurological score, and elevated levels of cytokines. Furthermore, aspirin treatment significantly reduced cerebral leukocyte recruitment and increased endogenous levels of aspirin-triggered lipoxin A4, effects again mediated by Fpr2/3. CONCLUSION: Fpr2/lipoxin A4 receptor is a therapeutic target for initiating endogenous proresolving, anti-inflammatory pathways after cerebral ischemia/reperfusion injury.


Assuntos
Doenças Cardiovasculares/terapia , Infarto Cerebral/patologia , Neutrófilos/fisiologia , Receptores de Formil Peptídeo/fisiologia , Sequência de Aminoácidos , Animais , Anexina A1/genética , Anexina A1/farmacologia , Anexina A1/uso terapêutico , Doenças Cardiovasculares/patologia , Infarto Cerebral/prevenção & controle , Inflamação/patologia , Inflamação/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Formil Peptídeo/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA