Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37194566

RESUMO

We present genome sequences for the caecilians Geotrypetes seraphini (3.8 Gb) and Microcaecilia unicolor (4.7 Gb), representatives of a limbless, mostly soil-dwelling amphibian clade with reduced eyes, and unique putatively chemosensory tentacles. More than 69% of both genomes are composed of repeats, with retrotransposons being the most abundant. We identify 1,150 orthogroups that are unique to caecilians and enriched for functions in olfaction and detection of chemical signals. There are 379 orthogroups with signatures of positive selection on caecilian lineages with roles in organ development and morphogenesis, sensory perception, and immunity amongst others. We discover that caecilian genomes are missing the zone of polarizing activity regulatorysequence (ZRS) enhancer of Sonic Hedgehog which is also mutated in snakes. In vivo deletions have shown ZRS is required for limb development in mice, thus, revealing a shared molecular target implicated in the independent evolution of limblessness in snakes and caecilians.


Assuntos
Anfíbios , Proteínas Hedgehog , Animais , Camundongos , Proteínas Hedgehog/genética , Anfíbios/genética , Genoma , Serpentes/genética , Aclimatação , Evolução Molecular
2.
Fungal Genet Biol ; 170: 103858, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101696

RESUMO

The chytrid fungus Batrachochytrium dendrobatidis (Bd) was discovered in 1998 as the cause of chytridiomycosis, an emerging infectious disease causing mass declines in amphibian populations worldwide. The rapid population declines of the 1970s-1990s were likely caused by the spread of a highly virulent lineage belonging to the Bd-GPL clade that was introduced to naïve susceptible populations. Multiple genetically distinct and regional lineages of Bd have since been isolated and sequenced, greatly expanding the known biological diversity within this fungal pathogen. To date, most Bd research has been restricted to the limited number of samples that could be isolated using culturing techniques, potentially causing a selection bias for strains that can grow on media and missing other unculturable or fastidious strains that are also present on amphibians. We thus attempted to characterize potentially non-culturable genetic lineages of Bd from distinct amphibian taxa using sequence capture technology on DNA extracted from host tissue and swabs. We focused our efforts on host taxa from two different regions that likely harbored distinct Bd clades: (1) wild-caught leopard frogs (Rana) from North America, and (2) a Japanese Giant Salamander (Andrias japonicus) at the Smithsonian Institution's National Zoological Park that exhibited signs of disease and tested positive for Bd using qPCR, but multiple attempts failed to isolate and culture the strain for physiological and genetic characterization. We successfully enriched for and sequenced thousands of fungal genes from both host clades, and Bd load was positively associated with number of recovered Bd sequences. Phylogenetic reconstruction placed all the Rana-derived strains in the Bd-GPL clade. In contrast, the A. japonicus strain fell within the Bd-Asia3 clade, expanding the range of this clade and generating additional genomic data to confirm its placement. The retrieved ITS locus matched public barcoding data from wild A. japonicus and Bd infections found on other amphibians in India and China, suggesting that this uncultured clade is widespread across Asia. Our study underscores the importance of recognizing and characterizing the hidden diversity of fastidious strains in order to reconstruct the spatiotemporal and evolutionary history of Bd. The success of the sequence capture approach highlights the utility of directly sequencing pathogen DNA from host tissue to characterize cryptic diversity that is missed by culture-reliant approaches.


Assuntos
Quitridiomicetos , Animais , Filogenia , Quitridiomicetos/genética , Anfíbios/genética , Anfíbios/microbiologia , Evolução Biológica , DNA
3.
Mol Ecol ; 33(1): e17198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933583

RESUMO

Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.


Assuntos
Variação Genética , Microbiota , Animais , Seleção Genética , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/genética , Microbiota/genética , Anfíbios/genética , Alelos
4.
Mol Ecol ; 33(11): e17353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613250

RESUMO

Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reaching N ̂ e = 50 and a <9% probability of reaching N ̂ e = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median N ̂ e than unlisted populations, and this was consistent across all taxonomic groups. N ̂ e was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of N ̂ e in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.


Assuntos
Anfíbios , Conservação dos Recursos Naturais , Genética Populacional , Mamíferos , Densidade Demográfica , Animais , Anfíbios/genética , Anfíbios/classificação , Mamíferos/genética , Mamíferos/classificação , Fluxo Gênico , Aves/genética , Aves/classificação , Humanos , Endogamia , Deriva Genética , Plantas/genética , Plantas/classificação , Atividades Humanas
5.
Mol Phylogenet Evol ; 198: 108130, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38889862

RESUMO

Unusually for oceanic islands, the granitic Seychelles host multiple lineages of endemic amphibians. This includes an ancient (likely ca. 60 million years) radiation of eight caecilian species, most of which occur on multiple islands.These caecilians have a complicated taxonomic history and their phylogenetic inter-species relationships have been difficult to resolve. Double-digest RAD sequencing (ddRADseq) has been applied extensively to phylogeography and increasingly to phylogenetics but its utility for resolving ancient divergences is less well established. To address this, we applied ddRADseq to generate a genome-wide SNP panel for phylogenomic analyses of the Seychelles caecilians, whose phylogeny has so far not been satisfactorily resolved with traditional DNA markers. Based on 129,154 SNPs, we resolved deep and shallow splits, with strong support. Our findings demonstrate the capability of genome-wide SNPs for evolutionary inference at multiple taxonomic levels and support the recently proposed synonymy of Grandisonia Taylor, 1968 with Hypogeophis Peters, 1879. We revealed three clades of Hypogeophis (large-, medium- and short-bodied) and identify a single origin of the diminutive, stocky-bodied and pointy-snouted phenotype.


Assuntos
Anfíbios , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Seicheles , Anfíbios/genética , Anfíbios/classificação , Filogeografia , Ilhas , Análise de Sequência de DNA
6.
Biotechnol Bioeng ; 121(2): 456-471, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37986625

RESUMO

In recent years, environmental DNA (eDNA) has received attention from biologists due to its sensitivity, convenience, labor and material efficiency, and lack of damage to organisms. The extensive application of eDNA has opened avenues for the monitoring and biodiversity assessment of amphibians, which are frequently small and difficult to observe in the field, in areas such as biodiversity survey assessment and detection of specific, rare and threatened, or alien invasive species. However, the accuracy of eDNA can be influenced by factors such as ambient temperature, pH, and false positives or false negatives, which makes eDNA an adjunctive tool rather than a replacement for traditional surveys. This review provides a concise overview of the eDNA method and its workflow, summarizes the differences between applying eDNA for detecting amphibians and other organisms, reviews the research progress in eDNA technology for amphibian monitoring, identifies factors influencing detection efficiency, and discusses the challenges and prospects of eDNA. It aims to serve as a reference for future research on the application of eDNA in amphibian detection.


Assuntos
DNA Ambiental , Animais , Ecossistema , Anfíbios/genética , Biodiversidade
7.
Biol Lett ; 20(7): 20240216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046287

RESUMO

Most described species have not been explicitly included in phylogenetic trees-a problem named the Darwinian shortfall-owing to a lack of molecular and/or morphological data, thus hampering the explicit incorporation of evolution into large-scale biodiversity analyses. We investigate potential drivers of the Darwinian shortfall in tetrapods, a group in which at least one-third of described species still lack phylogenetic data, thus necessitating the imputation of their evolutionary relationships in fully sampled phylogenies. We show that the number of preserved specimens in scientific collections is the main driver of phylogenetic knowledge accumulation, highlighting the major role of biological collections in unveiling novel biodiversity data and the importance of continued sampling efforts to reduce knowledge gaps. Additionally, large-bodied and wide-ranged species, as well as terrestrial and aquatic amphibians and reptiles, are phylogenetically better known. Future efforts should prioritize phylogenetic research on organisms that are narrow-ranged, small-bodied and underrepresented in scientific collections, such as fossorial species. Addressing the Darwinian shortfall will be imperative for advancing our understanding of evolutionary drivers shaping biodiversity patterns and implementing comprehensive conservation strategies.


Assuntos
Biodiversidade , Evolução Biológica , Filogenia , Vertebrados , Animais , Vertebrados/genética , Vertebrados/classificação , Anfíbios/genética , Anfíbios/classificação , Répteis/classificação , Répteis/genética
8.
Physiol Genomics ; 55(3): 113-131, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645671

RESUMO

Solute carrier 12 (Slc12) is a family of electroneutral cation-coupled chloride (Cl-) cotransporters. Na+/K+/2Cl- (Nkcc) and Na+/Cl- cotransporters (Ncc) belong to the Nkcc/Ncc subfamily. Human and mouse possess one gene for the Na+/Cl- cotransporter (ncc gene: slc12a3), whereas teleost fishes possess multiple ncc genes, slc12a3 (ncc1) and slc12a10 (ncc2), in addition to their species-specific paralogs. Amphibians and squamates have two ncc genes: slc12a3 (ncc1) and ncc3. However, the evolutionary relationship between slc12a10 and ncc3 remains unresolved, and the presence of slc12a10 (ncc2) in mammals has not been clarified. Synteny and phylogenetic analyses of vertebrate genome databases showed that ncc3 is the ortholog of slc12a10, and slc12a10 is present in most ray-finned fishes, coelacanths, amphibians, reptiles, and a few mammals (e.g., platypus and horse) but pseudogenized or deleted in birds, most mammals, and some ray-finned fishes (pufferfishes). This shows that slc12a10 is widely present among bony vertebrates and pseudogenized or deleted independently in multiple lineages. Notably, as compared with some fish that show varied slc12a10 tissue expression profile, spotted gar, African clawed frog, red-eared slider turtle, and horse express slc12a10 in the ovaries or premature gonads. In horse tissues, an unexpectedly large number of splicing variants for Slc12a10 have been cloned, many of which encode truncated forms of Slc12a10, suggesting that the functional constraints of horse slc12a10 are weakened, which may be in the process of becoming a pseudogene. Our results elaborate on the evolution of Nkcc/Ncc subfamily of Slc12 in vertebrates.NEW & NOTEWORTHY slc12a10 is not a fish-specific gene and is present in a few mammals (e.g., platypus and horse), non-avian reptiles, amphibians, but was pseudogenized or deleted in most mammals (e.g., human, mouse, cat, cow, and rhinoceros), birds, and some ray-finned fishes (pufferfishes).


Assuntos
Ornitorrinco , Feminino , Bovinos , Animais , Humanos , Cavalos , Camundongos , Membro 3 da Família 12 de Carreador de Soluto , Filogenia , Peixes/genética , Répteis/genética , Aves , Anfíbios/genética
9.
Nucleic Acids Res ; 49(D1): D144-D150, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33084905

RESUMO

Alternative splicing is widespread throughout eukaryotic genomes and greatly increases transcriptomic diversity. Many alternative isoforms have functional roles in developmental processes and are precisely temporally regulated. To facilitate the study of alternative splicing in a developmental context, we created MeDAS, a Metazoan Developmental Alternative Splicing database. MeDAS is an added-value resource that re-analyses publicly archived RNA-seq libraries to provide quantitative data on alternative splicing events as they vary across the time course of development. It has broad temporal and taxonomic scope and is intended to assist the user in identifying trends in alternative splicing throughout development. To create MeDAS, we re-analysed a curated set of 2232 Illumina polyA+ RNA-seq libraries that chart detailed time courses of embryonic and post-natal development across 18 species with a taxonomic range spanning the major metazoan lineages from Caenorhabditis elegans to human. MeDAS is freely available at https://das.chenlulab.com both as raw data tables and as an interactive browser allowing searches by species, tissue, or genomic feature (gene, transcript or exon ID and sequence). Results will provide details on alternative splicing events identified for the queried feature and can be visualised at the gene-, transcript- and exon-level as time courses of expression and inclusion levels, respectively.


Assuntos
Processamento Alternativo , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Genoma , RNA Mensageiro/genética , Transcriptoma , Anfíbios/genética , Anfíbios/crescimento & desenvolvimento , Anfíbios/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Cefalocordados/genética , Cefalocordados/crescimento & desenvolvimento , Cefalocordados/metabolismo , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Íntrons , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento , Mamíferos/metabolismo , RNA Mensageiro/metabolismo , Répteis/genética , Répteis/crescimento & desenvolvimento , Répteis/metabolismo , Software , Urocordados/genética , Urocordados/crescimento & desenvolvimento , Urocordados/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
10.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511112

RESUMO

Predatory innovations impose reciprocal selection pressures upon prey. The evolution of snake venom alpha-neurotoxins has triggered the corresponding evolution of resistance in the post-synaptic nicotinic acetylcholine receptors of prey in a complex chemical arms race. All other things being equal, animals like caecilians (an Order of legless amphibians) are quite vulnerable to predation by fossorial elapid snakes and their powerful alpha-neurotoxic venoms; thus, they are under strong selective pressure. Here, we sequenced the nicotinic acetylcholine receptor alpha-1 subunit of 37 caecilian species, representing all currently known families of caecilians from across the Americas, Africa, and Asia, including species endemic to the Seychelles. Three types of resistance were identified: (1) steric hindrance from N-glycosylated asparagines; (2) secondary structural changes due to the replacement of proline by another amino acid; and (3) electrostatic charge repulsion of the positively charged neurotoxins, through the introduction of a positively charged amino acid into the toxin-binding site. We demonstrated that resistance to alpha-neurotoxins convergently evolved at least fifteen times across the caecilian tree (three times in Africa, seven times in the Americas, and five times in Asia). Additionally, as several species were shown to possess multiple resistance modifications acting synergistically, caecilians must have undergone at least 20 separate events involving the origin of toxin resistance. On the other hand, resistance in non-caecilian amphibians was found to be limited to five origins. Together, the mutations underlying resistance in caecilians constitute a robust signature of positive selection which strongly correlates with elapid presence through both space (sympatry with caecilian-eating elapids) and time (Cenozoic radiation of elapids). Our study demonstrates the extent of convergent evolution that can be expected when a single widespread predatory adaptation triggers parallel evolutionary arms races at a global scale.


Assuntos
Elapidae , Neurotoxinas , Animais , Neurotoxinas/genética , Neurotoxinas/toxicidade , Neurotoxinas/química , Anfíbios/genética , Venenos Elapídicos/química , Venenos de Serpentes , Aminoácidos
11.
Appl Environ Microbiol ; 88(5): e0160421, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044804

RESUMO

Host-associated microbial biofilms can provide protection against pathogen establishment. In many host-microbe symbioses (including, but not limited to humans, plants, insects, and amphibians), there is a correlation between host-associated microbial diversity and pathogen infection risk. Diversity may prevent infection by pathogens through sampling effects and niche complementarity, but an alternative hypothesis may be that microbial biomass is confounded with diversity and that host-associated biofilms are deterring pathogen establishment through space preemption. In this study, we use the amphibian system as a model for host-microbe-pathogen interactions to ask two questions: (i) is bacterial richness confounded with biofilm thickness or cell density, and (ii) to what extent do biofilm thickness, cell density, and bacterial richness each deter the establishment of the amphibian fungal pathogen Batrachochytrium dendrobatidis? To answer these questions, we built a custom biofilm microcosm that mimics the host-environment interface by allowing nutrients to diffuse out of a fine-pore biofilm scaffolding. This created a competitive environment in which bacteria and the fungal pathogen compete for colonization space. We then challenged bacterial biofilms ranging in community richness, biofilm thickness, bacterial cell density, and B. dendrobatidis (also known as Bd)-inhibitory metabolite production with live B. dendrobatidis zoospores to determine how B. dendrobatidis establishment success on membranes varies. We found that biofilm thickness and B. dendrobatidis-inhibitory isolate richness work in complement to reduce B. dendrobatidis establishment success. This work underscores that physical aspects of biofilm communities can play a large role in pathogen inhibition, and in many studies, these traits are not studied. IMPORTANCE Our finding highlights the fact that diversity, as measured through 16S rRNA gene sequencing, may obscure the true mechanisms behind microbe-mediated pathogen defense and that physical space occupation by biofilm-forming symbionts may significantly contribute to pathogen protection. These findings have implications across a wide range of host-microbe systems since 16S rRNA gene sequencing is a standard tool used across many microbial systems. Further, our results are potentially relevant to many host-pathogen systems since host-associated bacterial biofilms are ubiquitous.


Assuntos
Quitridiomicetos , Microbiota , Anfíbios/genética , Anfíbios/microbiologia , Animais , Bactérias , Batrachochytrium , Biofilmes , Quitridiomicetos/genética , Humanos , Microbiota/genética , RNA Ribossômico 16S/genética , Pele/microbiologia
12.
Mol Ecol ; 31(17): 4558-4570, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796691

RESUMO

While some pathogens are limited to single species, others can colonize many hosts, likely contributing to the emergence of novel disease outbreaks. Despite this biodiversity threat, traits associated with host niche expansions are not well understood in multihost pathogens. Here, we aimed to uncover functional machinery driving multihost invasion by focusing on Batrachochytrium dendrobatidis (Bd), a pathogen that infects the skin of hundreds of amphibians worldwide. We performed a meta-analysis of Bd gene expression using data from published infection experiments and newly generated profiles. We analysed Bd transcriptomic landscapes across the skin of 14 host species, reconstructed Bd isolates phylogenetic relationships, and inferred the origin and evolutionary history of differentially expressed genes under a phylogenetic framework comprising other 12 zoosporic fungi. Bd displayed plastic infection strategies when challenged by hosts with different disease susceptibility. Our analyses identified sets of differentially expressed genes under host environments with similar infection outcome. We stressed nutritional immunity and gene silencing as important processes required to overcome challenging skin environments in less susceptible hosts. Overall, Bd genes expressed during amphibian skin exploitation have arisen mainly via gene duplications with great family expansions, increasing the gene copy events previously described for this fungal species. Finally, we provide a comprehensive gene data set that can be used to further examine eco-evolutionary hypotheses for this host-pathogen system. Our study supports the idea that host environments exert contrasting selective pressures, such that gene expression plasticity could be one of the evolutionary keys leading to the success of multihost pathogens.


Assuntos
Quitridiomicetos , Micoses , Anfíbios/genética , Anfíbios/microbiologia , Animais , Batrachochytrium , Quitridiomicetos/genética , Micoses/genética , Micoses/microbiologia , Micoses/veterinária , Filogenia , Plásticos
13.
Mol Phylogenet Evol ; 170: 107442, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35192920

RESUMO

The genus Pipa is a species-poor clade of Neotropical frogs and one of the most bizarre-looking due to many highly derived anatomical traits related to their fully aquatic lifestyle. With their African relatives, they form the Pipidae family, which has attracted much attention, especially regarding its anatomy, reproductive biology, paleontology and biogeography. However, the actual diversity and phylogenetic relationships within Pipa remain poorly understood, and thus so do their historical biogeography and the evolution of striking features, such as the absence of teeth and endotrophy in some species. Using short mtDNA sequences across the distribution of the genus, we identified 15 main lineages (Operational Taxonomic Units - OTUs). This more than doubles the number of the currently seven valid nominal species. Several closely related OTUs do not share nuDNA alleles, confirming species divergence. Time-calibrated phylogenies obtained from mitogenomes and from 10 nuclear loci provide highly similar topologies but strikingly distinct node ages for Pipa. High dN/dS ratios and the variation of substitution rates across the trees suggest a strong effect of saturation on fast evolving positions of mtDNA, producing a substantially shorter stem branch of Pipa. Focusing on the nuDNA topology, we inferred an early Neogene Amazonian origin of the diversification of Pipa, with an initial split between the Guiana-Brazilian Shields and Western Amazonia, a pattern observed in many other co-distributed groups. All the western species are edentate, suggesting a single loss in the genus. Each of these groups diversified further out of Amazonia, toward the Atlantic Forest and toward trans-Andean forests, respectively. These events are concomitant with paleogeographic changes and match patterns observed in other co-distributed taxonomic groups. The two Amazonian lineages have probably independently acquired endotrophic larval development.


Assuntos
Pipidae , Anfíbios/genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Filogenia , Filogeografia , Pipidae/genética
14.
J Pept Sci ; 28(5): e3382, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34859535

RESUMO

Disintegrins comprise a family of small proteins that bind to and alter the physiological function of integrins, especially integrins that mediate platelet aggregation in blood. Here, we report a lysine-glycine-aspartic acid (KGD) disintegrin-like motif present in a 15-amino acid residue peptide identified in a cDNA library of the amphibian Hypsiboas punctatus skin. The original peptide sequence was used as a template from which five new analogs were designed, chemically synthesized by solid phase, and tested for disintegrin activity and tridimensional structural studies using NMR spectroscopy. The original amphibian peptide had no effect on integrin-mediated responses. Nevertheless, derived peptide analogs inhibited integrin-mediated platelet function, including platelet spreading on fibrinogen.


Assuntos
Desintegrinas , Peptídeos , Anfíbios/genética , Anfíbios/metabolismo , Animais , DNA Complementar/genética , Desintegrinas/química , Desintegrinas/genética , Desintegrinas/farmacologia , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Agregação Plaquetária/fisiologia
15.
Can J Microbiol ; 68(9): 583-593, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979959

RESUMO

Temporal changes and transmission patterns in host-associated microbial communities have important implications for host health. The diversity of amphibian skin microbial communities is associated with disease outcome in amphibians exposed to the fungal pathogen Batrachochytrium dendrobatidis (Bd). To successfully develop conservation strategies against Bd, we need a comprehensive understanding of how skin microbes are maintained and transmitted over time within populations. We used 16S rRNA sequence analysis to compare Epipedobates anthonyi frogs housed with one conspecific to frogs housed singly at four time points over the course of 1 year. We found that both α and ß diversity of frog skin bacterial communities changed significantly over the course of the experiment. Specifically, we found that bacterial communities of cohabitating frogs became more similar over time. We also observed that some bacterial taxa were differentially abundant between frogs housed singly and frogs housed with a conspecific. These results suggest that conspecific contact may play a role in mediating amphibian skin microbial diversity and that turnover of skin microbial communities can occur across time. Our findings provide rationale for future studies exploring horizontal transmission as a potential mechanism of host-associated microbial maintenance in amphibians.


Assuntos
Quitridiomicetos , Microbiota , Anfíbios/genética , Anfíbios/microbiologia , Animais , Bactérias/genética , Quitridiomicetos/genética , RNA Ribossômico 16S/genética , Pele/microbiologia
16.
Genomics ; 113(1 Pt 2): 1120-1128, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189779

RESUMO

Type I and type II keratins are subgroups of intermediate filament proteins that provide toughness to the epidermis and protect it from water loss. In terrestrial vertebrates, the keratin genes form two major clusters, clusters 1 and 2, each of which is dominated by type I and II keratin genes. By contrast, such clusters are not observed in teleost fish. Although the diversification of keratins is believed to have made a substantial contribution to terrestrial adaptation, its evolutionary process has not been clarified. Here, we performed a comprehensive genomic survey of the keratin genes of a broad range of vertebrates. As a result, we found that ancient fish lineages such as elephant shark, reedfish, spotted gar, and coelacanth share both keratin gene clusters. We also discovered an expansion of keratin genes that form a novel subcluster in reedfish. Syntenic and phylogenetic analyses revealed that two pairs of krt18/krt8 keratin genes were shared among all vertebrates, thus implying that they encode ancestral type I and II keratin protein sets. We further revealed that distinct keratin gene subclusters, which show specific expressions in the epidermis of adult amphibians, stemmed from canonical keratin genes in non-terrestrial ancestors. Molecular evolutionary analyses suggested that the selective constraints were relaxed in the adult epidermal subclusters of amphibians as well as the novel subcluster of reedfish. The results of the present study represent the process of diversification of keratins through a series of gene duplications that could have facilitated the terrestrial adaptation of vertebrates.


Assuntos
Evolução Molecular , Proteínas de Peixes/genética , Peixes/genética , Queratinas/genética , Filogenia , Adaptação Fisiológica , Proteínas de Anfíbios/genética , Anfíbios/classificação , Anfíbios/genética , Animais , Sequência Conservada , Peixes/classificação
17.
Semin Cell Dev Biol ; 88: 80-90, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29408711

RESUMO

A growing number of biologists have begun asking whether environmentally induced phenotypic change--'phenotypic plasticity'--precedes and facilitates the origin and canalization of novel, complex phenotypes. However, such 'plasticity-first evolution' (PFE) remains controversial. Here, we summarize the PFE hypothesis and describe how it can be evaluated in natural systems. We then review the evidence for PFE from amphibians (a group in which phenotypic plasticity is especially widespread) and describe how phenotypic plasticity might have facilitated macroevolutionary change. Finally, we discuss what is known about the proximate mechanisms of PFE in amphibians. We close with suggestions for future research. As we describe, amphibians offer some of the best support for plasticity's role in the origin of evolutionary novelties.


Assuntos
Anfíbios/genética , Evolução Biológica , Epigênese Genética , Estudos de Associação Genética , Genótipo , Fenótipo , Adaptação Fisiológica/genética , Anfíbios/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Interação Gene-Ambiente , Variação Genética , Larva/genética , Larva/crescimento & desenvolvimento , Característica Quantitativa Herdável , Seleção Genética
18.
J Cell Physiol ; 236(4): 2850-2868, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32960450

RESUMO

In this study, we used a bioinformatics approach to analyze the nucleotide composition and pattern of synonymous codon usage in mitochondrial ND genes in three amphibian groups, that is, orders Anura, Caudata, and Gymnophiona to identify the commonality and the differences of codon usage as no research work was reported yet. The high value of the effective number of codons revealed that the codon usage bias (CUB) was low in mitochondrial ND genes among the orders. Nucleotide composition analysis suggested that for each gene, the compositional features differed among Anura, Caudata, and Gymnophiona and the GC content was lower than AT content. Furthermore, a highly significant difference (p < .05) for GC content was found in each gene among the orders. The heat map showed contrasting patterns of codon usage among different ND genes. The regression of GC12 on GC3 suggested a narrow range of GC3 distribution and some points were located in the diagonal, indicating both mutation pressure and natural selection might influence the CUB. Moreover, the slope of the regression line was less than 0.5 in all ND genes among orders, indicating natural selection might have played the dominant role whereas mutation pressure had played a minor role in shaping CUB of ND genes across orders.


Assuntos
Anfíbios/genética , Uso do Códon , Evolução Molecular , Mitocôndrias/genética , Proteínas Mitocondriais/genética , NADH Desidrogenase/genética , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Anfíbios/metabolismo , Animais , Anuros/genética , Anuros/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/metabolismo , Especificidade da Espécie , Urodelos/genética , Urodelos/metabolismo
19.
BMC Genomics ; 22(1): 564, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294052

RESUMO

BACKGROUND: Prestin (SLC26A5) is responsible for acute sensitivity and frequency selectivity in the vertebrate auditory system. Limited knowledge of prestin is from experiments using site-directed mutagenesis or domain-swapping techniques after the amino acid residues were identified by comparing the sequence of prestin to those of its paralogs and orthologs. Frog prestin is the only representative in amphibian lineage and the studies of it were quite rare with only one species identified. RESULTS: Here we report a new coding sequence of SLC26A5 for a frog species, Rana catesbeiana (the American bullfrog). In our study, the SLC26A5 gene of Rana has been mapped, sequenced and cloned successively using RNA-Seq. We measured the nonlinear capacitance (NLC) of prestin both in the hair cells of Rana's inner ear and HEK293T cells transfected with this new coding gene. HEK293T cells expressing Rana prestin showed electrophysiological features similar to that of hair cells from its inner ear. Comparative studies of zebrafish, chick, Rana and an ancient frog species showed that chick and zebrafish prestin lacked NLC. Ancient frog's prestin was functionally different from Rana. CONCLUSIONS: We mapped and sequenced the SLC26A5 of the Rana catesbeiana from its inner ear cDNA using RNA-Seq. The Rana SLC26A5 cDNA was 2292 bp long, encoding a polypeptide of 763 amino acid residues, with 40% identity to mammals. This new coding gene could encode a functionally active protein conferring NLC to both frog HCs and the mammalian cell line. While comparing to its orthologs, the amphibian prestin has been evolutionarily changing its function and becomes more advanced than avian and teleost prestin.


Assuntos
Proteínas de Transporte de Ânions , Peixe-Zebra , Anfíbios/genética , Animais , Proteínas de Transporte de Ânions/genética , Células HEK293 , Humanos , RNA-Seq , Peixe-Zebra/genética
20.
Mol Ecol ; 30(16): 3918-3929, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34053153

RESUMO

Human land transformation is one of the leading causes of vertebrate population declines. These declines are thought to be partly due to decreased connectivity and habitat loss reducing animal population sizes in disturbed habitats. With time, this can lead to declines in effective population size and genetic diversity which restrict the ability of wildlife to efficiently cope with environmental change through genetic adaptation. However, it is not well understood whether these effects generally hold across taxa. We address this question by repurposing and synthesizing raw microsatellite data from online repositories for 19 amphibian species sampled at 554 georeferenced sites in North America. For each site, we estimated gene diversity, allelic richness, effective population size, and population differentiation. Using binary urban-rural census designations, and continuous measures of human population density, the Human Footprint Index, and impervious surface cover, we tested for generalizable effects of human land use on amphibian genetic diversity. We found minimal evidence, either positive or negative, for relationships between genetic metrics and urbanization. Together with previous work on focal species that also found varying effects of urbanization on genetic composition, it seems likely that the consequences of urbanization are not easily generalizable within or across amphibian species. Questions about the genetic consequences of urbanization for amphibians should be addressed on a case-by-case basis. This contrasts with general negative effects of urbanization in mammals and consistent, but species-specific, positive and negative effects in birds.


Assuntos
Anfíbios , Genética Populacional , Anfíbios/genética , Animais , Aves , Ecossistema , Humanos , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA