Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.751
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 161(2): 291-306, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25860611

RESUMO

Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases.


Assuntos
Colesterol/metabolismo , Lisossomos/metabolismo , Peroxissomos/metabolismo , RNA Interferente Pequeno/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/metabolismo , Anfotericina B/farmacologia , Animais , Transporte Biológico , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Transtornos Peroxissômicos/metabolismo , Transtornos Peroxissômicos/patologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sinaptotagminas/metabolismo , Peixe-Zebra
2.
Nature ; 623(7989): 1079-1085, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938782

RESUMO

Decades of previous efforts to develop renal-sparing polyene antifungals were misguided by the classic membrane permeabilization model1. Recently, the clinically vital but also highly renal-toxic small-molecule natural product amphotericin B was instead found to kill fungi primarily by forming extramembraneous sponge-like aggregates that extract ergosterol from lipid bilayers2-6. Here we show that rapid and selective extraction of fungal ergosterol can yield potent and renal-sparing polyene antifungals. Cholesterol extraction was found to drive the toxicity of amphotericin B to human renal cells. Our examination of high-resolution structures of amphotericin B sponges in sterol-free and sterol-bound states guided us to a promising structural derivative that does not bind cholesterol and is thus renal sparing. This derivative was also less potent because it extracts ergosterol more slowly. Selective acceleration of ergosterol extraction with a second structural modification yielded a new polyene, AM-2-19, that is renal sparing in mice and primary human renal cells, potent against hundreds of pathogenic fungal strains, resistance evasive following serial passage in vitro and highly efficacious in animal models of invasive fungal infections. Thus, rational tuning of the dynamics of interactions between small molecules may lead to better treatments for fungal infections that still kill millions of people annually7,8 and potentially other resistance-evasive antimicrobials, including those that have recently been shown to operate through supramolecular structures that target specific lipids9.


Assuntos
Antifúngicos , Rim , Polienos , Esteróis , Animais , Humanos , Camundongos , Anfotericina B/análogos & derivados , Anfotericina B/química , Anfotericina B/toxicidade , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Farmacorresistência Fúngica , Ergosterol/química , Ergosterol/metabolismo , Rim/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Polienos/química , Polienos/metabolismo , Polienos/farmacologia , Inoculações Seriadas , Esteróis/química , Esteróis/metabolismo , Fatores de Tempo
3.
Annu Rev Microbiol ; 77: 583-602, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406342

RESUMO

Candida auris is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, C. auris infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, C. auris has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, C. auris is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of C. auris. We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.


Assuntos
Candida auris , Candida , Humanos , Idoso , Candida/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Equinocandinas , Anfotericina B
4.
PLoS Pathog ; 20(7): e1012382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991025

RESUMO

Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.


Assuntos
Resistência a Medicamentos , Leishmania donovani , Leishmaniose Visceral , Esterol 14-Desmetilase , Leishmania donovani/enzimologia , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Anfotericina B/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Antiprotozoários/farmacologia , Humanos , Ergosterol/metabolismo
5.
N Engl J Med ; 386(12): 1109-1120, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35320642

RESUMO

BACKGROUND: Cryptococcal meningitis is a leading cause of human immunodeficiency virus (HIV)-related death in sub-Saharan Africa. Whether a treatment regimen that includes a single high dose of liposomal amphotericin B would be efficacious is not known. METHODS: In this phase 3 randomized, controlled, noninferiority trial conducted in five African countries, we assigned HIV-positive adults with cryptococcal meningitis in a 1:1 ratio to receive either a single high dose of liposomal amphotericin B (10 mg per kilogram of body weight) on day 1 plus 14 days of flucytosine (100 mg per kilogram per day) and fluconazole (1200 mg per day) or the current World Health Organization-recommended treatment, which includes amphotericin B deoxycholate (1 mg per kilogram per day) plus flucytosine (100 mg per kilogram per day) for 7 days, followed by fluconazole (1200 mg per day) for 7 days (control). The primary end point was death from any cause at 10 weeks; the trial was powered to show noninferiority at a 10-percentage-point margin. RESULTS: A total of 844 participants underwent randomization; 814 were included in the intention-to-treat population. At 10 weeks, deaths were reported in 101 participants (24.8%; 95% confidence interval [CI], 20.7 to 29.3) in the liposomal amphotericin B group and 117 (28.7%; 95% CI, 24.4 to 33.4) in the control group (difference, -3.9 percentage points); the upper boundary of the one-sided 95% confidence interval was 1.2 percentage points (within the noninferiority margin; P<0.001 for noninferiority). Fungal clearance from cerebrospinal fluid was -0.40 log10 colony-forming units (CFU) per milliliter per day in the liposomal amphotericin B group and -0.42 log10 CFU per milliliter per day in the control group. Fewer participants had grade 3 or 4 adverse events in the liposomal amphotericin B group than in the control group (50.0% vs. 62.3%). CONCLUSIONS: Single-dose liposomal amphotericin B combined with flucytosine and fluconazole was noninferior to the WHO-recommended treatment for HIV-associated cryptococcal meningitis and was associated with fewer adverse events. (Funded by the European and Developing Countries Clinical Trials Partnership and others; Ambition ISRCTN number, ISRCTN72509687.).


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/tratamento farmacológico , Anfotericina B/administração & dosagem , Antifúngicos/administração & dosagem , Fluconazol/administração & dosagem , Flucitosina/administração & dosagem , Meningite Criptocócica/tratamento farmacológico , Infecções Oportunistas Relacionadas com a AIDS/mortalidade , Administração Oral , África Subsaariana , Anfotericina B/efeitos adversos , Antifúngicos/efeitos adversos , Esquema de Medicação , Quimioterapia Combinada , Fluconazol/efeitos adversos , Flucitosina/efeitos adversos , Infecções por HIV/complicações , Meningite Criptocócica/mortalidade
6.
Nature ; 567(7748): 405-408, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30867598

RESUMO

Loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) compromise epithelial HCO3- and Cl- secretion, reduce airway surface liquid pH, and impair respiratory host defences in people with cystic fibrosis1-3. Here we report that apical addition of amphotericin B, a small molecule that forms unselective ion channels, restored HCO3- secretion and increased airway surface liquid pH in cultured airway epithelia from people with cystic fibrosis. These effects required the basolateral Na+, K+-ATPase, indicating that apical amphotericin B channels functionally interfaced with this driver of anion secretion. Amphotericin B also restored airway surface liquid pH, viscosity, and antibacterial activity in primary cultures of airway epithelia from people with cystic fibrosis caused by different mutations, including ones that do not yield CFTR, and increased airway surface liquid pH in CFTR-null pigs in vivo. Thus, unselective small-molecule ion channels can restore host defences in cystic fibrosis airway epithelia via a mechanism that is independent of CFTR and is therefore independent of genotype.


Assuntos
Fibrose Cística/metabolismo , Epitélio/metabolismo , Canais Iônicos/metabolismo , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , Anfotericina B/farmacologia , Animais , Bicarbonatos/metabolismo , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Mucosa Respiratória/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
7.
Clin Microbiol Rev ; 36(4): e0015622, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38014977

RESUMO

Cryptococcal meningitis is a leading cause of morbidity and mortality globally, especially in people with advanced HIV disease. Cryptococcal meningitis is responsible for nearly 20% of all deaths related to advanced HIV disease, with the burden of disease predominantly experienced by people in resource-limited countries. Major advancements in diagnostics have introduced low-cost, easy-to-use antigen tests with remarkably high sensitivity and specificity. These tests have led to improved diagnostic accuracy and are essential for screening campaigns to reduce the burden of cryptococcosis. In the last 5 years, several high-quality, multisite clinical trials have led to innovations in therapeutics that have allowed for simplified regimens, which are better tolerated and result in less intensive monitoring and management of medication adverse effects. One trial found that a shorter, 7-day course of deoxycholate amphotericin B is as effective as the longer 14-day course and that flucytosine is an essential partner drug for reducing mortality in the acute phase of disease. Single-dose liposomal amphotericin B has also been found to be as effective as a 7-day course of deoxycholate amphotericin B. These findings have allowed for simpler and safer treatment regimens that also reduce the burden on the healthcare system. This review provides a detailed discussion of the latest evidence guiding the clinical management and special circumstances that make cryptococcal meningitis uniquely difficult to treat.


Assuntos
Infecções por HIV , Meningite Criptocócica , Adulto , Humanos , Anfotericina B/uso terapêutico , Ácido Desoxicólico/uso terapêutico , Fluconazol/uso terapêutico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Meningite Criptocócica/diagnóstico , Meningite Criptocócica/tratamento farmacológico , Ensaios Clínicos como Assunto
8.
J Infect Dis ; 229(2): 599-607, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38109276

RESUMO

BACKGROUND: Candida auris isolates exhibit elevated amphotericin B (AMB) minimum inhibitory concentrations (MICs). As liposomal AMB (L-AMB) can be safely administered at high doses, we explored L-AMB pharmacodynamics against C. auris isolates in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) dilution model. METHODS: Four C. auris isolates with Clinical and Laboratory Standards Institute (CLSI) AMB MICs = 0.5-2 mg/L were tested in an in vitro PK/PD model simulating L-AMB pharmacokinetics. The in vitro model was validated using a Candida albicans isolate tested in animals. The peak concentration (Cmax)/MIC versus log10 colony-forming units (CFU)/mL reduction from the initial inoculum was analyzed with the sigmoidal model with variable slope (Emax model). Monte Carlo analysis was performed for the standard (3 mg/kg) and higher (5 mg/kg) L-AMB doses. RESULTS: The in vitro PK/PD relationship Cmax/MIC versus log10 CFU/mL reduction followed a sigmoidal pattern (R2 = 0.91 for C. albicans, R2 = 0.86 for C. auris). The Cmax/MIC associated with stasis was 2.1 for C. albicans and 9 for C. auris. The probability of target attainment was >95% with 3 mg/kg for wild-type C. albicans isolates with MIC ≤2 mg/L and C. auris isolates with MIC ≤1 mg/L whereas 5 mg/kg L-AMB is needed for C. auris isolates with MIC 2 mg/L. CONCLUSIONS: L-AMB was 4-fold less active against C. auris than C. albicans. Candida auris isolates with CLSI MIC 2 mg/L would require a higher L-AMB dose.


Assuntos
Anfotericina B , Antifúngicos , Animais , Anfotericina B/farmacologia , Antifúngicos/farmacocinética , Candida auris , Candida , Candida albicans , Testes de Sensibilidade Microbiana
9.
Biochemistry ; 63(8): 953-957, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38545902

RESUMO

A major challenge currently facing medicinal chemists is designing agents that can selectively destroy drug resistant fungi and bacteria that have begun to emerge. One factor that has been overlooked by virtually all drug discovery/development approaches is the supramolecular factor, in which aggregated forms of a drug candidate exhibit low selectivity in destroying targeted cells while the corresponding monomers exhibit high selectivity. This Perspective discusses how we were led to the supramolecular factor through fundamental studies with simple model systems, how we reasoned that the selectivity of monomers of the antifungal agent amphotericin B should be much greater than the selectivity of the corresponding aggregates, and how we confirmed this hypothesis using derivatives of amphotericin B. In a broader context, these findings provide a strong rationale for considering the supramolecular factor in the design of new drug candidates and the testing of virtually all of them.


Assuntos
Anfotericina B , Antifúngicos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Fungos , Desenho de Fármacos , Descoberta de Drogas
10.
Mol Microbiol ; 120(5): 723-739, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800599

RESUMO

DectiSomes are anti-infective drug-loaded liposomes targeted to pathogenic cells by pathogen receptors including the Dectins. We have previously used C-type lectin (CTL) pathogen receptors Dectin-1, Dectin-2, and DC-SIGN to target DectiSomes to the extracellular oligoglycans surrounding diverse pathogenic fungi and kill them. Dectin-3 (also known as MCL, CLEC4D) is a CTL pathogen receptor whose known cognate ligands are partly distinct from other CTLs. We expressed and purified a truncated Dectin-3 polypeptide (DEC3) comprised of its carbohydrate recognition domain and stalk region. We prepared amphotericin B (AmB)-loaded pegylated liposomes (AmB-LLs) and coated them with this isoform of Dectin-3 (DEC3-AmB-LLs), and we prepared control liposomes coated with bovine serum albumin (BSA-AmB-LLs). DEC3-AmB-LLs bound to the exopolysaccharide matrices of Candida albicans, Rhizopus delemar (formerly known as R. oryzae), and Cryptococcus neoformans from one to several orders of magnitude more strongly than untargeted AmB-LLs or BSA-AmB-LLs. The data from our quantitative fluorescent binding assays were standardized using a CellProfiler program, AreaPipe, that was developed for this purpose. Consistent with enhanced binding, DEC3-AmB-LLs inhibited and/or killed C. albicans and R. delemar more efficiently than control liposomes and significantly reduced the effective dose of AmB. In conclusion, Dectin-3 targeting has the potential to advance our goal of building pan-antifungal DectiSomes.


Assuntos
Antifúngicos , Criptococose , Humanos , Antifúngicos/farmacologia , Lipossomos/química , Lipossomos/farmacologia , Anfotericina B/farmacologia , Anfotericina B/química , Candida albicans
11.
Antimicrob Agents Chemother ; 68(1): e0096823, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38084953

RESUMO

Antifungal susceptibility testing (AST) is crucial in clinical settings to guide appropriate therapy. Nevertheless, discrepancies between treatment response and some results still persist, particularly in detecting resistance to amphotericin B (AMB) in Clavispora (Candida) lusitaniae. This study aimed to assess the susceptibility patterns of 48 recent isolates of C. lusitaniae to 9 antifungal agents and explore the feasibility of using a CLSI reference-based method to identify AMB resistance. Microdilution techniques revealed a wide range of minimal inhibitory concentration (MIC) values for azole antifungals, while echinocandins and AMB exhibited a narrow range of MIC values, with all strains considered wild-type for the tested polyene and echinocandins. However, when agar diffusion (ellipsometry) was employed for AST, certain strains displayed colonies within the inhibition ellipse, indicating potential resistance. Interestingly, these strains did not respond to AMB treatment and were isolated during AMB treatment (breakthrough). Moreover, the evaluation of AMB minimum fungicidal concentrations (MFCs) indicated that only the strains with colonies inside the ellipse had MFC/MIC ratios ≥ 4, suggesting reduced fungicidal activity. In conclusion, this study confirms the effectiveness of ellipsometry with RPMI-1640 2% glucose agar for detecting AMB resistance in C. lusitaniae. Additionally, the proposed approach of culturing "clear" wells in the microdilution method can aid in uncovering resistant strains. The findings highlight the importance of appropriate AST methods to guide effective treatment strategies for deep-seated candidiasis caused by C. lusitaniae. Further collaborative studies are warranted to validate these findings and improve the detection of AMB clinical resistance.


Assuntos
Anfotericina B , Antifúngicos , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Ágar/farmacologia , Equinocandinas/farmacologia , Testes de Sensibilidade Microbiana
12.
Antimicrob Agents Chemother ; 68(5): e0154523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38557112

RESUMO

Ibrexafungerp (formerly SCY-078) is the first member of the triterpenoid class that prevents the synthesis of the fungal cell wall polymer ß-(1,3)-D-glucan by inhibiting the enzyme glucan synthase. We evaluated the in vivo efficacy of ibrexafungerp against pulmonary mucormycosis using an established murine model. Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with placebo (diluent control), ibrexafungerp (30 mg/kg, PO BID), liposomal amphotericin B (LAMB 10 mg/kg IV QD), posaconazole (PSC 30 mg/kg PO QD), or a combination of ibrexafungerp plus LAMB or ibrexafungerp plus PSC began 16 h post-infection and continued for 7 days for ibrexafungerp or PSC and through day 4 for LAMB. Ibrexafungerp was as effective as LAMB or PSC in prolonging median survival (range: 15 days to >21 days) and enhancing overall survival (30%-65%) vs placebo (9 days and 0%; P < 0.001) in mice infected with R. delemar. Furthermore, median survival and overall percent survival resulting from the combination of ibrexafungerp plus LAMB were significantly greater compared to all monotherapies (P ≤ 0.03). Similar survival results were observed in mice infected with M. circinelloides. Monotherapies also reduce the lung and brain fungal burden by ~0.5-1.0log10 conidial equivalents (CE)/g of tissue vs placebo in mice infected with R. delemar (P < 0.05), while a combination of ibrexafungerp plus LAMB lowered the fungal burden by ~0.5-1.5log10 CE/g compared to placebo or any of the monotherapy groups (P < 0.03). These results are promising and warrant continued investigation of ibrexafungerp as a novel treatment option against mucormycosis.


Assuntos
Anfotericina B , Antifúngicos , Glicosídeos , Mucormicose , Neutropenia , Triterpenos , Animais , Anfotericina B/uso terapêutico , Anfotericina B/farmacologia , Mucormicose/tratamento farmacológico , Camundongos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Neutropenia/tratamento farmacológico , Neutropenia/complicações , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Rhizopus/efeitos dos fármacos , Pneumopatias Fúngicas/tratamento farmacológico , Pneumopatias Fúngicas/microbiologia , Mucor/efeitos dos fármacos , Triazóis/uso terapêutico , Triazóis/farmacologia
13.
Antimicrob Agents Chemother ; 68(8): e0022524, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38958455

RESUMO

As comparative pharmacokinetic/pharmacodynamic (PK/PD) studies of liposomal amphotericin B (L-AMB) against Candida spp. are lacking, we explored L-AMB pharmacodynamics against different Candida species in an in vitro PK/PD dilution model. Eight Candida glabrata, Candida parapsilosis, and Candida krusei isolates (EUCAST/CLSI AMB MIC 0.125-1 mg/L) were studied in the in vitro PK/PD model simulating L-AMB Cmax = 0.25-64 mg/L and t1/2 = 9 h. The model was validated with one susceptible and one resistant Candida albicans isolate. The Cmax/MIC-log10CFU/mL reduction from the initial inoculum was analyzed with the Emax model, and Monte Carlo analysis was performed for the standard (3 mg/kg with Cmax = 21.87 ± 12.47 mg/L) and higher (5 mg/kg with Cmax = 83 ± 35.2 mg/L) L-AMB dose. A ≥1.5 log10CFU/mL reduction was found at L-AMB Cmax = 8 mg/L against C. albicans, C. parapsilosis, and C. krusei isolates (MIC 0.25-0.5 mg/L) whereas L-AMB Cmax ≥ 32 mg/L was required for C. glabrata isolates. The in vitro PK/PD relationship followed a sigmoidal pattern (R2 ≥ 0.85) with a mean Cmax/MIC required for stasis of 2.1 for C. albicans (close to the in vivo stasis), 24/17 (EUCAST/CLSI) for C. glabrata, 8 for C. parapsilosis, and 10 for C. krusei. The probability of target attainment was ≥99% for C. albicans wild-type (WT) isolates with 3 mg/kg and for wild-type isolates of the other species with 5 mg/kg. L-AMB was four- to eightfold less active against the included non-C. albicans species than C. albicans. A standard 3-mg/kg dose is pharmacodynamically sufficient for C. albicans whereas our data suggest that 5 mg/kg may be recommendable for the included non-C. albicans species.


Assuntos
Anfotericina B , Antifúngicos , Candida , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Anfotericina B/farmacocinética , Anfotericina B/farmacologia , Antifúngicos/farmacocinética , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Farmacorresistência Fúngica , Candida glabrata/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Humanos
14.
Antimicrob Agents Chemother ; 68(10): e0091124, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39297640

RESUMO

The global epidemic of drug-resistant Candida auris continues unabated. The initial report on pan-drug resistant (PDR) C. auris strains in a hospitalized patient in New York was unprecedented. PDR C. auris showed both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine. However, the factors that allow C. auris to acquire pan-drug resistance are not known. Therefore, we conducted a genomic, transcriptomic, and phenomic analysis to better understand PDR C. auris. Among 1,570 genetic variants in drug-resistant C. auris, 299 were unique to PDR strains. The whole-genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR C. auris revealed two genes to be significantly differentially expressed-a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 transcripts had no known homology. We observed no fitness defects among multi-drug resistant (MDR) and PDR C. auris strains grown in nutrient-deficient or -enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients and increased utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modeling of a 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in C. auris to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR C. auris in response to antifungal drug lethality without deleterious fitness costs.


Assuntos
Antifúngicos , Candida auris , Farmacorresistência Fúngica Múltipla , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Humanos , Candida auris/genética , Candida auris/efeitos dos fármacos , Farmacorresistência Fúngica Múltipla/genética , Transcriptoma , Sequenciamento Completo do Genoma , Flucitosina/farmacologia , Anfotericina B/farmacologia , Equinocandinas/farmacologia , Azóis/farmacologia , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Genômica/métodos
15.
Antimicrob Agents Chemother ; 68(10): e0057024, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39264189

RESUMO

We observed an increase in the frequency of Candida auris among invasive candidiasis isolates in the 2022 SENTRY Antifungal Surveillance Program compared to prior years: ≤0.1% before 2018, 0.4%-0.6% from 2018 to 2021, and 1.6% in 2022. C. auris isolates were collected in seven countries, but 28 (35.9%) isolates were recovered in the USA (five states; more common in New York, Texas, and New Jersey) and 26 (33.3%) in Panama. Greece and Turkey had 12 and 9 isolates, respectively. Overall, 82.1% of the isolates were resistant to fluconazole; 17.9% were resistant to amphotericin B; and 1.3% were resistant to caspofungin, anidulafungin, or micafungin (Centers for Disease Control and Prevention tentative resistance breakpoints). Rezafungin inhibited 96.2% of the isolates (Clinical and Laboratory Standards Institute susceptibility breakpoint). Pandrug resistance was not observed, but 17.9% of the isolates were resistant to fluconazole and amphotericin B. South Asian (Clade I) isolates were most common (n = 40, 51.3%); of these, 97.5% were resistant to fluconazole and 30.0% were resistant to amphotericin B. Thirty (38.5%) isolates belonged to the South American region (Clade IV), and 56.7% of those were resistant to fluconazole and 6.7% to amphotericin B. Seven isolates belonged to the South African Clade III and one to East Asian Clade II. Erg11 (Y132F, K143R, and F126L) and MRR1 (N647T) alterations were detected. One isolate that was resistant to all echinocandins carried an FKS R1354G alteration. Two isolates displayed elevated rezafungin minimum inhibitory concentration (MIC) values but low MIC values against other echinocandins and no FKS alterations. As C. auris is spreading globally, monitoring this species is prudent.


Assuntos
Antifúngicos , Candida auris , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Humanos , Candida auris/efeitos dos fármacos , Candida auris/genética , Farmacorresistência Fúngica/genética , Genótipo , Equinocandinas/farmacologia , Micafungina/farmacologia , Candidíase Invasiva/microbiologia , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/epidemiologia , Anfotericina B/farmacologia , Anidulafungina/farmacologia , Fluconazol/farmacologia , Caspofungina/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Candida/isolamento & purificação , Candidíase/microbiologia , Candidíase/tratamento farmacológico
16.
Small ; 20(32): e2312253, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501846

RESUMO

Chronic wounds of significant severity and acute injuries are highly vulnerable to fungal infections, drastically impeding the expected wound healing trajectory. The clinical use of antifungal therapeutic drug is hampered by poor solubility, high toxicity and adverse reactions, thereby necessitating the urgent development of novel antifungal therapy strategy. Herein, this study proposes a new strategy to enhance the bioactivity of small-molecule antifungal drugs based on multifunctional metal nanozyme engineering, using amphotericin B (AmB) as an example. AmB-decorated gold nanoparticles (AmB@AuNPs) are synthesized by a facile one-pot reaction strategy, and the AmB@AuNPs exhibit superior peroxidase (POD)-like enzyme activity, with maximal reaction rates (Vmax) 3.4 times higher than that of AuNPs for the catalytic reaction of H2O2. Importantly, the enzyme-like activity of AuNPs significantly enhanced the antifungal properties of AmB, and the minimum inhibitory concentrations of AmB@AuNPs against Candida albicans (C. albicans) and Saccharomyces cerevisiae (S. cerevisiae) W303 are reduced by 1.6-fold and 50-fold, respectively, as compared with AmB alone. Concurrent in vivo studies conducted on fungal-infected wounds in mice underscored the fundamentally superior antifungal ability and biosafety of AmB@AuNPs. The proposed strategy of engineering antifungal drugs with nanozymes has great potential for enhanced therapy of fungal infections and related diseases.


Assuntos
Anfotericina B , Antifúngicos , Candida albicans , Ouro , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Ouro/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/química , Anfotericina B/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Candida albicans/efeitos dos fármacos , Animais , Saccharomyces cerevisiae/efeitos dos fármacos , Camundongos
17.
J Clin Microbiol ; 62(4): e0152823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501836

RESUMO

Although the Vitek 2 system is broadly used for antifungal susceptibility testing of Candida spp., its performance against Candida auris has been assessed using limited number of isolates recovered from restricted geographic areas. We therefore compared Vitek 2 system with the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method using an international collection of 100 C. auris isolates belonging to different clades. The agreement ±1 twofold dilution between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints and Vitek 2-specific wild-type upper limit values (WT-ULVs) were determined. The CLSI-Vitek 2 agreement was poor for 5-flucytosine (0%), fluconazole (16%), and amphotericin B (29%), and moderate for voriconazole (61%), micafungin (67%), and caspofungin (81%). Significant interpretation errors were recorded using the CDC breakpoints for amphotericin B (31% CA, 69% major errors; MaEs) and fluconazole (69% CA, 31% very major errors; VmEs), but not for echinocandins (99% CA, 1% MaEs for both micafungin and caspofungin) for which the Vitek 2 allowed correct categorization of echinocandin-resistant FKS1 mutant isolates. Discrepancies were reduced when the Vitek 2 WT-ULV of 16 mg/L for amphotericin B (98% CA, 2% MaEs) and of 4 mg/L for fluconazole (96% CA, 1% MaEs, 3% VmEs) were used. In conclusion, the Vitek 2 system performed well for echinocandin susceptibility testing of C .auris. Resistance to fluconazole was underestimated whereas resistance to amphotericin B was overestimated using the CDC breakpoints of ≥32 and ≥2 mg/L, respectively. Vitek 2 minimun inhibitory concentrations (MICs) >4 mg/L indicated resistance to fluconazole and Vitek 2 MICs ≤16 mg/L indicated non-resistance to amphotericin B.


Assuntos
Anfotericina B , Fluconazol , Humanos , Fluconazol/farmacologia , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida auris , Micafungina , Caspofungina , Testes de Sensibilidade Microbiana , Equinocandinas/farmacologia
18.
Curr Opin Infect Dis ; 37(5): 342-348, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39012806

RESUMO

PURPOSE OF REVIEW: The number of cases of visceral leishmaniasis associated with transplant-associated immunosuppression has increased in recent years. Reviewing and updating the latest developments in its diagnostic management, treatment, and follow-up is necessary and relevant. RECENT FINDINGS: Visceral leishmaniasis cases associated with non-HIV immunosuppression are a growing cause of the parasitic infections, and the transplant patients are included in this context. These have been described especially in kidney transplantation. Liposomal amphotericin B is the first-line treatment. Due to immunosuppression, these patients often suffer from recurrent infections. The use of markers that indicate whether the patient has developed an adequate cellular response against Leishmania after treatment seems to be good biomarkers of cure and useful for monitoring and guiding secondary prophylaxis. SUMMARY: There is a lack of consensus regarding the need for leishmaniasis screening in donors and recipients and the indications for secondary prophylaxis. The study of new biomarkers of cure may be useful in all three contexts.


Assuntos
Anfotericina B , Antiprotozoários , Leishmaniose Visceral , Humanos , Antiprotozoários/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/diagnóstico , Anfotericina B/uso terapêutico , Hospedeiro Imunocomprometido , Transplantados , Transplante de Órgãos/efeitos adversos , Transplante de Rim/efeitos adversos , Leishmaniose/diagnóstico
19.
J Antimicrob Chemother ; 79(4): 703-711, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252921

RESUMO

INTRODUCTION: Therapeutic drug monitoring (TDM) is a tool that supports personalized dosing, but its role for liposomal amphotericin B (L-amb) is unclear. This systematic review assessed the evidence for L-amb TDM in children. OBJECTIVES: To evaluate the concentration-efficacy relationship, concentration-toxicity relationship and pharmacokinetic/pharmacodynamic (PK/PD) variability of L-amb in children. METHODS: We systematically reviewed PubMed and Embase databases following PRISMA guidelines. Eligible studies included L-amb PK/PD studies in children aged 0-18 years. Review articles, case series of 600 mg·h/L for nephrotoxicity. L-amb doses of 2.5-10 mg/kg/day were reported to achieve Cmax/MIC > 25 using an MIC of 1 mg/L. CONCLUSIONS: While significant PK variability was observed in children, evidence to support routine L-amb TDM was limited. Further studies on efficacy and toxicity benefits are required before routine TDM of L-amb can be recommended.


Assuntos
Anfotericina B , Antifúngicos , Monitoramento de Medicamentos , Humanos , Anfotericina B/farmacocinética , Anfotericina B/administração & dosagem , Anfotericina B/efeitos adversos , Anfotericina B/uso terapêutico , Criança , Antifúngicos/farmacocinética , Antifúngicos/administração & dosagem , Antifúngicos/efeitos adversos , Antifúngicos/uso terapêutico , Pré-Escolar , Adolescente , Lactente , Recém-Nascido , Aspergilose/tratamento farmacológico , Testes de Sensibilidade Microbiana
20.
J Antimicrob Chemother ; 79(7): 1547-1554, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727613

RESUMO

INTRODUCTION: Post-kala-azar dermal leishmaniasis (PKDL) arises as a dermal complication following a visceral leishmaniasis (VL) infection. Current treatment options for PKDL are unsatisfactory, and there is a knowledge gap regarding the distribution of antileishmanial compounds within human skin. The present study investigated the skin distribution of miltefosine in PKDL patients, with the aim to improve the understanding of the pharmacokinetics at the skin target site in PKDL. METHODS: Fifty-two PKDL patients underwent treatment with liposomal amphotericin B (20 mg/kg) plus miltefosine (allometric dosing) for 21 days. Plasma concentrations of miltefosine were measured on study days 8, 15, 22 and 30, while a punch skin biopsy was taken on day 22. A physiologically based pharmacokinetic (PBPK) model was developed to evaluate the distribution of miltefosine into the skin. RESULTS: Following the allometric weight-based dosing regimen, median miltefosine concentrations on day 22 were 43.73 µg/g (IQR: 21.94-60.65 µg/g) in skin and 33.29 µg/mL (IQR: 25.9-42.58 µg/mL) in plasma. The median individual concentration ratio of skin to plasma was 1.19 (IQR: 0.79-1.9). In 87% (45/52) of patients, skin exposure was above the suggested EC90 PK target of 10.6 mg/L associated with in vitro susceptibility. Simulations indicated that the residence time of miltefosine in the skin would be more than 2-fold longer than in plasma, estimated by a mean residence time of 604 versus 266 hours, respectively. CONCLUSION: This study provides the first accurate measurements of miltefosine penetration into the skin, demonstrating substantial exposure and prolonged retention of miltefosine within the skin. These findings support the use of miltefosine in cutaneous manifestations of leishmaniasis. In combination with parasitological and clinical data, these results are critical for the future optimization of combination therapies with miltefosine in the treatment of PKDL.


Assuntos
Anfotericina B , Antiprotozoários , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina , Pele , Humanos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacocinética , Fosforilcolina/administração & dosagem , Fosforilcolina/uso terapêutico , Antiprotozoários/farmacocinética , Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Masculino , Adulto , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Feminino , Pele/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Pessoa de Meia-Idade , Adulto Jovem , Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Anfotericina B/administração & dosagem , Adolescente , Ásia Meridional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA