Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 174(2): 788-797, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28584065

RESUMO

As one of the earliest plant groups to evolve stomata, hornworts are key to understanding the origin and function of stomata. Hornwort stomata are large and scattered on sporangia that grow from their bases and release spores at their tips. We present data from development and immunocytochemistry that identify a role for hornwort stomata that is correlated with sporangial and spore maturation. We measured guard cells across the genera with stomata to assess developmental changes in size and to analyze any correlation with genome size. Stomata form at the base of the sporophyte in the green region, where they develop differential wall thickenings, form a pore, and die. Guard cells collapse inwardly, increase in surface area, and remain perched over a substomatal cavity and network of intercellular spaces that is initially fluid filled. Following pore formation, the sporophyte dries from the outside inwardly and continues to do so after guard cells die and collapse. Spore tetrads develop in spore mother cell walls within a mucilaginous matrix, both of which progressively dry before sporophyte dehiscence. A lack of correlation between guard cell size and DNA content, lack of arabinans in cell walls, and perpetually open pores are consistent with the inactivity of hornwort stomata. Stomata are expendable in hornworts, as they have been lost twice in derived taxa. Guard cells and epidermal cells of hornworts show striking similarities with the earliest plant fossils. Our findings identify an architecture and fate of stomata in hornworts that is ancient and common to plants without sporophytic leaves.


Assuntos
Anthocerotophyta/anatomia & histologia , Fósseis , Células Vegetais , Estômatos de Plantas/citologia , Anthocerotophyta/citologia , Parede Celular/ultraestrutura , Tamanho do Genoma , Genoma de Planta , Microscopia Eletrônica de Transmissão , Pectinas/química , Células Vegetais/ultraestrutura , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética
2.
Ann Bot ; 109(5): 851-71, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22356739

RESUMO

Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.


Assuntos
Evolução Biológica , Embriófitas/genética , Células Germinativas Vegetais/crescimento & desenvolvimento , Filogenia , Anthocerotophyta/anatomia & histologia , Anthocerotophyta/genética , Anthocerotophyta/crescimento & desenvolvimento , Briófitas/anatomia & histologia , Briófitas/genética , Briófitas/crescimento & desenvolvimento , Embriófitas/anatomia & histologia , Embriófitas/crescimento & desenvolvimento , Embriófitas/fisiologia , Gleiquênias/anatomia & histologia , Gleiquênias/genética , Gleiquênias/crescimento & desenvolvimento , Fungos/fisiologia , Micorrizas/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/metabolismo , Transpiração Vegetal , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA