Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.019
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(19): 5121-5127, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303681

RESUMO

Fungi play critical roles in the homeostasis of ecosystems globally and have emerged as significant causes of an expanding repertoire of devastating diseases in plants, animals, and humans. In this Commentary, we highlight the importance of fungal pathogens and argue for concerted research efforts to enhance understanding of fungal virulence, antifungal immunity, novel drug targets, antifungal resistance, and the mycobiota to improve human health.


Assuntos
Fungos , Micoses , Fungos/patogenicidade , Humanos , Micoses/microbiologia , Micoses/imunologia , Animais , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Virulência
2.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220746

RESUMO

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Assuntos
Antifúngicos , Candidíase , Animais , Camundongos , Complemento C5/metabolismo , Fagócitos/metabolismo
3.
Nat Immunol ; 24(11): 1879-1889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872315

RESUMO

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.


Assuntos
COVID-19 , Micobioma , Humanos , Animais , Camundongos , Antifúngicos , Disbiose , Neutrófilos , Candida albicans , Imunoglobulina G
4.
Cell ; 171(1): 10-13, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28888322

RESUMO

Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target.


Assuntos
Distinções e Prêmios , Células/metabolismo , Fisiologia/história , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Animais , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/uso terapêutico , História do Século XX , Humanos , Neoplasias/tratamento farmacológico , Sirolimo/química , Sirolimo/isolamento & purificação , Sirolimo/uso terapêutico , Suíça
6.
Cell ; 160(4): 771-784, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679766

RESUMO

Aneuploid genomes, characterized by unbalanced chromosome stoichiometry (karyotype), are associated with cancer malignancy and drug resistance of pathogenic fungi. The phenotypic diversity resulting from karyotypic diversity endows the cell population with superior adaptability. We show here, using a combination of experimental data and a general stochastic model, that the degree of phenotypic variation, thus evolvability, escalates with the degree of overall growth suppression. Such scaling likely explains the challenge of treating aneuploidy diseases with a single stress-inducing agent. Instead, we propose the design of an "evolutionary trap" (ET) targeting both karyotypic diversity and fitness. This strategy entails a selective condition "channeling" a karyotypically divergent population into one with a predominant and predictably drugable karyotypic feature. We provide a proof-of-principle case in budding yeast and demonstrate the potential efficacy of this strategy toward aneuploidy-based azole resistance in Candida albicans. By analyzing existing pharmacogenomics data, we propose the potential design of an ET against glioblastoma.


Assuntos
Aneuploidia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Linhagem Celular Tumoral , Farmacorresistência Fúngica , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Fluconazol/farmacologia , Humanos , Higromicina B/farmacologia , Irinotecano , Saccharomyces cerevisiae/metabolismo
7.
Cell ; 159(5): 1168-1187, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416953

RESUMO

The fungal meningitis pathogen Cryptococcus neoformans is a central driver of mortality in HIV/AIDS. We report a genome-scale chemical genetic data map for this pathogen that quantifies the impact of 439 small-molecule challenges on 1,448 gene knockouts. We identified chemical phenotypes for 83% of mutants screened and at least one genetic response for each compound. C. neoformans chemical-genetic responses are largely distinct from orthologous published profiles of Saccharomyces cerevisiae, demonstrating the importance of pathogen-centered studies. We used the chemical-genetic matrix to predict novel pathogenicity genes, infer compound mode of action, and to develop an algorithm, O2M, that predicts antifungal synergies. These predictions were experimentally validated, thereby identifying virulence genes, a molecule that triggers G2/M arrest and inhibits the Cdc25 phosphatase, and many compounds that synergize with the antifungal drug fluconazole. Our work establishes a chemical-genetic foundation for approaching an infection responsible for greater than one-third of AIDS-related deaths.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Algoritmos , Animais , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Descoberta de Drogas , Técnicas de Inativação de Genes , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/genética , Fatores de Virulência/genética
8.
Nature ; 623(7989): 1079-1085, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938782

RESUMO

Decades of previous efforts to develop renal-sparing polyene antifungals were misguided by the classic membrane permeabilization model1. Recently, the clinically vital but also highly renal-toxic small-molecule natural product amphotericin B was instead found to kill fungi primarily by forming extramembraneous sponge-like aggregates that extract ergosterol from lipid bilayers2-6. Here we show that rapid and selective extraction of fungal ergosterol can yield potent and renal-sparing polyene antifungals. Cholesterol extraction was found to drive the toxicity of amphotericin B to human renal cells. Our examination of high-resolution structures of amphotericin B sponges in sterol-free and sterol-bound states guided us to a promising structural derivative that does not bind cholesterol and is thus renal sparing. This derivative was also less potent because it extracts ergosterol more slowly. Selective acceleration of ergosterol extraction with a second structural modification yielded a new polyene, AM-2-19, that is renal sparing in mice and primary human renal cells, potent against hundreds of pathogenic fungal strains, resistance evasive following serial passage in vitro and highly efficacious in animal models of invasive fungal infections. Thus, rational tuning of the dynamics of interactions between small molecules may lead to better treatments for fungal infections that still kill millions of people annually7,8 and potentially other resistance-evasive antimicrobials, including those that have recently been shown to operate through supramolecular structures that target specific lipids9.


Assuntos
Antifúngicos , Rim , Polienos , Esteróis , Animais , Humanos , Camundongos , Anfotericina B/análogos & derivados , Anfotericina B/química , Anfotericina B/toxicidade , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Farmacorresistência Fúngica , Ergosterol/química , Ergosterol/metabolismo , Rim/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Polienos/química , Polienos/metabolismo , Polienos/farmacologia , Inoculações Seriadas , Esteróis/química , Esteróis/metabolismo , Fatores de Tempo
9.
Nature ; 616(7955): 190-198, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949198

RESUMO

The membrane-integrated synthase FKS is involved in the biosynthesis of ß-1,3-glucan, the core component of the fungal cell wall1,2. FKS is the target of widely prescribed antifungal drugs, including echinocandin and ibrexafungerp3,4. Unfortunately, the mechanism of action of FKS remains enigmatic and this has hampered development of more effective medicines targeting the enzyme. Here we present the cryo-electron microscopy structures of Saccharomyces cerevisiae FKS1 and the echinocandin-resistant mutant FKS1(S643P). These structures reveal the active site of the enzyme at the membrane-cytoplasm interface and a glucan translocation path spanning the membrane bilayer. Multiple bound lipids and notable membrane distortions are observed in the FKS1 structures, suggesting active FKS1-membrane interactions. Echinocandin-resistant mutations are clustered at a region near TM5-6 and TM8 of FKS1. The structure of FKS1(S643P) reveals altered lipid arrangements in this region, suggesting a drug-resistant mechanism of the mutant enzyme. The structures, the catalytic mechanism and the molecular insights into drug-resistant mutations of FKS1 revealed in this study advance the mechanistic understanding of fungal ß-1,3-glucan biosynthesis and establish a foundation for developing new antifungal drugs by targeting FKS.


Assuntos
Microscopia Crioeletrônica , Glucosiltransferases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Antifúngicos/farmacologia , beta-Glucanas/metabolismo , Domínio Catalítico , Membrana Celular/química , Membrana Celular/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/ultraestrutura , Testes de Sensibilidade Microbiana , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
10.
Nat Immunol ; 17(4): 406-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950237

RESUMO

The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.


Assuntos
Citocinas/imunologia , Endotoxemia/imunologia , Metabolismo Energético/imunologia , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Sepse/imunologia , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/imunologia , Aspergilose/metabolismo , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/imunologia , Candidíase Invasiva/metabolismo , Endotoxemia/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Feminino , Glicólise , Humanos , Immunoblotting , Interferon gama/uso terapêutico , Ácido Láctico/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/metabolismo , NAD/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Estudos Prospectivos , Sepse/tratamento farmacológico , Sepse/metabolismo , Transcriptoma , Adulto Jovem
11.
Annu Rev Microbiol ; 77: 403-425, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713457

RESUMO

Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.


Assuntos
Antifúngicos , Hipóxia , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Virulência , Progressão da Doença
12.
Annu Rev Microbiol ; 77: 583-602, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406342

RESUMO

Candida auris is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, C. auris infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, C. auris has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, C. auris is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of C. auris. We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.


Assuntos
Candida auris , Candida , Humanos , Idoso , Candida/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Equinocandinas , Anfotericina B
13.
N Engl J Med ; 390(6): 522-529, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38324485

RESUMO

A multinational outbreak of nosocomial fusarium meningitis occurred among immunocompetent patients who had undergone surgery with epidural anesthesia in Mexico. The pathogen involved had a high predilection for the brain stem and vertebrobasilar arterial system and was associated with high mortality from vessel injury. Effective treatment options remain limited; in vitro susceptibility testing of the organism suggested that it is resistant to all currently approved antifungal medications in the United States. To highlight the severe complications associated with fusarium infection acquired in this manner, we report data, clinical courses, and outcomes from 13 patients in the outbreak who presented with symptoms after a median delay of 39 days.


Assuntos
Surtos de Doenças , Fusariose , Fusarium , Doença Iatrogênica , Meningite Fúngica , Humanos , Antifúngicos/uso terapêutico , Fusariose/epidemiologia , Fusariose/etiologia , Fusarium/isolamento & purificação , Doença Iatrogênica/epidemiologia , Meningite Fúngica/epidemiologia , Meningite Fúngica/etiologia , México/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Internacionalidade , Imunocompetência , Farmacorresistência Fúngica , Analgesia Epidural/efeitos adversos
14.
Annu Rev Microbiol ; 76: 369-388, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35650665

RESUMO

The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.


Assuntos
Antifúngicos , Cryptococcus neoformans , Antifúngicos/farmacologia , Candida albicans/genética , Cryptococcus neoformans/genética , Genômica/métodos , Humanos , Saccharomyces cerevisiae
15.
Semin Immunol ; 67: 101752, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001464

RESUMO

The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/uso terapêutico , Imunoterapia , Citocinas
16.
Semin Immunol ; 67: 101757, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003056

RESUMO

The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.


Assuntos
Antifúngicos , Imunoglobulina A Secretora , Humanos , Imunoglobulina G , Bactérias , Imunidade nas Mucosas , Imunoglobulinas
17.
Proc Natl Acad Sci U S A ; 121(32): e2314087121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39083421

RESUMO

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.


Assuntos
Antifúngicos , Cryptococcus neoformans , Glucosiltransferases , Trealose , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Trealose/metabolismo , Trealose/análogos & derivados , Trealose/biossíntese , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Modelos Moleculares , Humanos , Domínio Catalítico , Cristalografia por Raios X
18.
PLoS Pathog ; 20(3): e1012076, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466738

RESUMO

Candida auris is a fungal pathogen of humans responsible for nosocomial infections with high mortality rates. High levels of resistance to antifungal drugs and environmental persistence mean these infections are difficult to treat and eradicate from a healthcare setting. Understanding the life cycle and the genetics of this fungus underpinning clinically relevant traits, such as antifungal resistance and virulence, is of the utmost importance to develop novel treatments and therapies. Epidemiological and genomic studies have identified five geographical clades (I-V), which display phenotypic and genomic differences. Aggregation of cells, a phenotype primarily of clade III strains, has been linked to reduced virulence in some infection models. The aggregation phenotype has thus been associated with conferring an advantage for (skin) colonisation rather than for systemic infection. However, strains with different clade affiliations were compared to infer the effects of different morphologies on virulence. This makes it difficult to distinguish morphology-dependent causes from clade-specific or even strain-specific genetic factors. Here, we identify two different types of aggregation: one induced by antifungal treatment which is a result of a cell separation defect; and a second which is controlled by growth conditions and only occurs in strains with the ability to aggregate. The latter aggregation type depends on an ALS-family adhesin which is differentially expressed during aggregation in an aggregative C. auris strain. Finally, we demonstrate that macrophages cannot clear aggregates, suggesting that aggregation might after all provide a benefit during systemic infection and could facilitate long-term persistence in the host.


Assuntos
Antifúngicos , Candida , Humanos , Antifúngicos/uso terapêutico , Candida/genética , Candida auris , Virulência , Farmacorresistência Fúngica , Adesinas Bacterianas/metabolismo , Testes de Sensibilidade Microbiana
19.
PLoS Pathog ; 20(1): e1011902, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166150

RESUMO

Fungal infections have emerged as a major concern among immunocompromised patients, causing approximately 2 million deaths each year worldwide. However, the regulatory mechanisms underlying antifungal immunity remain elusive and require further investigation. The E3 ligase Trim26 belongs to the tripartite motif (Trim) protein family, which is involved in various biological processes, including cell proliferation, antiviral innate immunity, and inflammatory responses. Herein, we report that Trim26 exerts protective antifungal immune functions after fungal infection. Trim26-deficient mice are more susceptible to fungemia than their wild-type counterparts. Mechanistically, Trim26 restricts inflammatory neutrophils infiltration and limits proinflammatory cytokine production, which can attenuate kidney fungal load and renal damage during Candida infection. Trim26-deficient neutrophils showed higher proinflammatory cytokine expression and impaired fungicidal activity. We further demonstrated that excessive neutrophils infiltration in the kidney was because of the increased production of chemokines CXCL1 and CXCL2, which are mainly synthesized in the macrophages or dendritic cells of Trim26-deficient mice after Candida albicans infections. Together, our study findings unraveled the vital role of Trim26 in regulating antifungal immunity through the regulation of inflammatory neutrophils infiltration and proinflammatory cytokine and chemokine expression during candidiasis.


Assuntos
Candidíase , Neutrófilos , Animais , Camundongos , Antifúngicos , Candida albicans , Candidíase/metabolismo , Candidíase/microbiologia , Citocinas/metabolismo , Infiltração de Neutrófilos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
20.
PLoS Pathog ; 20(8): e1012497, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39213436

RESUMO

Antimicrobial drug resistance poses a global health threat, requiring a deeper understanding of the evolutionary processes that lead to its emergence in pathogens. Complex evolutionary dynamics involve multiple mutations that can result in cooperative or competitive (clonal interference) effects. Candida albicans, a major fungal pathogen, displays high rates of copy number variation (CNV) and loss of heterozygosity (LOH). CNV and LOH events involve large numbers of genes and could synergize during evolutionary adaptation. Understanding the contributions of CNV and LOH to antifungal drug adaptation is challenging, especially in the context of whole-population genome sequencing. Here, we document the sequential evolution of fluconazole tolerance and then resistance in a C. albicans isolate involving an initial CNV on chromosome 4, followed by an LOH on chromosome R that involves KSR1. Similar LOH events involving KSR1, which encodes a reductase in the sphingolipid biosynthesis pathway, were also detected in independently evolved fluconazole resistant isolates. We dissect the specific KSR1 codons that affect fluconazole resistance and tolerance. The combination of the chromosome 4 CNV and KSR1 LOH results in a >500-fold decrease in azole susceptibility relative to the progenitor, illustrating a compelling example of rapid, yet step-wise, interplay between CNV and LOH in drug resistance evolution.


Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Fúngica , Proteínas Fúngicas , Perda de Heterozigosidade , Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/genética , Candida albicans/efeitos dos fármacos , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Candidíase/genética , Variações do Número de Cópias de DNA , Evolução Molecular , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA