Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 958
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Bioorg Med Chem ; 105: 117736, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677111

RESUMO

Leishmaniasis and Chagas disease are neglected tropical diseases caused by Trypanosomatidae parasites. Given the numerous limitations associated with current treatments, such as extended treatment duration, variable efficacy, and severe side effects, there is an urgent imperative to explore novel therapeutic options. This study details the early stages of hit-to-lead optimization for a benzenesulfonyl derivative, denoted as initial hit, against Trypanossoma cruzi (T. cruzi), Leishmania infantum (L. infantum) and Leishmania braziliensis (L. braziliensis). We investigated structure - activity relationships using a series of 26 newly designed derivatives, ultimately yielding potential lead candidates with potent low-micromolar and sub-micromolar activities against T. cruzi and Leishmania spp, respectively, and low in vitro cytotoxicity against mammalian cells. These discoveries emphasize the significant promise of this chemical class in the fight against Chagas disease and leishmaniasis.


Assuntos
Desenho de Fármacos , Leishmania infantum , Testes de Sensibilidade Parasitária , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Relação Dose-Resposta a Droga , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Humanos , Animais , Sulfonas/farmacologia , Sulfonas/síntese química , Sulfonas/química
2.
Parasitol Res ; 123(6): 241, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864931

RESUMO

Managing primary amoebic meningoencephalitis, induced by Naegleria fowleri poses a complex medical challenge. There is currently no specific anti-amoebic drug that has proven effectiveness against N. fowleri infection. Ongoing research endeavours are dedicated to uncovering innovative treatment strategies, including the utilization of drugs and immune modulators targeting Naegleria infection. In this study, we explored the potential of imidazo[2,1-b]thiazole and imidazooxazole derivatives that incorporate sulfonate and sulfamate groups as agents with anti-amoebic properties against N. fowleri. We assessed several synthesized compounds (1f, 1m, 1q, 1s, and 1t) for their efficacy in eliminating amoebae, their impact on cytotoxicity, and their influence on the damage caused to human cerebral microvascular endothelial (HBEC-5i) cells when exposed to the N. fowleri (ATCC 30174) strain. The outcomes revealed that, among the five compounds under examination, 1m, 1q, and 1t demonstrated notable anti-parasitic effects against N. fowleri (P ≤ 0.05). Compound 1t exhibited the highest anti-parasitic activity, reducing N. fowleri population by 80%. Additionally, three compounds, 1m, 1q, and 1t, significantly mitigated the damage inflicted on host cells by N. fowleri. However, the results of cytotoxicity analysis indicated that while 1m and 1q had minimal cytotoxic effects on endothelial cells, compound 1t caused moderate cytotoxicity (34%). Consequently, we conclude that imidazo[2,1-b]thiazole and imidazooxazole derivatives containing sulfonate and sulfamate groups exhibit a marked capacity to eliminate amoebae viability while causing limited toxicity to human cells. In aggregate, these findings hold promise that could potentially evolve into novel therapeutic options for treating N. fowleri infection.


Assuntos
Antiprotozoários , Células Endoteliais , Naegleria fowleri , Tiazóis , Humanos , Tiazóis/farmacologia , Tiazóis/química , Naegleria fowleri/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Linhagem Celular , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Oxazóis/farmacologia , Oxazóis/química , Sobrevivência Celular/efeitos dos fármacos
3.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747836

RESUMO

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Assuntos
Desenho de Fármacos , Hidrazinas , Leishmania , Naftoquinonas , Tripanossomicidas , Trypanosoma cruzi , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Leishmania/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Testes de Sensibilidade Parasitária , Concentração Inibidora 50 , Relação Estrutura-Atividade , Cisteína Endopeptidases
4.
Chem Biodivers ; 21(5): e202400491, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470945

RESUMO

We have evaluated eight p-coumaric acid prenylated derivatives in vitro for their antileishmanial activity against Leishmania amazonensis promastigotes and their antischistosomal activity against Schistosoma mansoni adult worms. Compound 7 ((E)-3,4-diprenyl-4-isoprenyloxycinnamic alcohol) was the most active against L. amazonensis (IC50=45.92 µM) and S. mansoni (IC50=64.25 µM). Data indicated that the number of prenyl groups, the presence of hydroxyl at C9, and a single bond between C7 and C8 are important structural features for the antileishmanial activity of p-coumaric acid prenylated derivatives.


Assuntos
Antiprotozoários , Ácidos Cumáricos , Leishmania , Testes de Sensibilidade Parasitária , Schistosoma mansoni , Animais , Schistosoma mansoni/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/química , Leishmania/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Relação Estrutura-Atividade , Prenilação , Propionatos/farmacologia , Propionatos/química , Estrutura Molecular , Esquistossomicidas/farmacologia , Esquistossomicidas/química , Esquistossomicidas/síntese química , Relação Dose-Resposta a Droga
5.
Arch Pharm (Weinheim) ; 357(6): e2300319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38396284

RESUMO

Several quinoline derivatives incorporating arylnitro and aminochalcone moieties were synthesized and evaluated in vitro against a broad panel of trypanosomatid protozoan parasites responsible for sleeping sickness (Trypanosoma brucei rhodesiense), nagana (Trypanosoma brucei brucei), Chagas disease (Trypanosoma cruzi), and leishmaniasis (Leishmania infantum). Several of the compounds demonstrated significant antiprotozoal activity. Specifically, compounds 2c, 2d, and 4i displayed submicromolar activity against T. b. rhodesiense with half-maximal effective concentration (EC50) values of 0.68, 0.8, and 0.19 µM, respectively, and with a high selectivity relative to human lung fibroblasts and mouse primary macrophages (∼100-fold). Compounds 2d and 4i also showed considerable activity against T. b. brucei with EC50 values of 1.4 and 0.4 µM, respectively.


Assuntos
Antiprotozoários , Leishmania infantum , Testes de Sensibilidade Parasitária , Quinolinas , Trypanosoma brucei rhodesiense , Trypanosoma cruzi , Animais , Camundongos , Quinolinas/farmacologia , Quinolinas/síntese química , Quinolinas/química , Humanos , Relação Estrutura-Atividade , Leishmania infantum/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Estrutura Molecular , Trypanosoma brucei brucei/efeitos dos fármacos , Relação Dose-Resposta a Droga , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Fibroblastos/efeitos dos fármacos
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731916

RESUMO

Herein, we report a series of 1,3-diarylpyrazoles that are analogues of compound 26/HIT 8. We previously identified this molecule as a 'hit' during a high-throughput screening campaign for autophagy inducers. A variety of synthetic strategies were utilized to modify the 1,3-diarylpyrazole core at its 1-, 3-, and 4-position. Compounds were assessed in vitro to identify their cytotoxicity properties. Of note, several compounds in the series displayed relevant cytotoxicity, which warrants scrutiny while interpreting biological activities that have been reported for structurally related molecules. In addition, antiparasitic activities were recorded against a range of human-infective protozoa, including Trypanosoma cruzi, T. brucei rhodesiense, and Leishmania infantum. The most interesting compounds displayed low micromolar whole-cell potencies against individual or several parasitic species, while lacking cytotoxicity against human cells.


Assuntos
Pirazóis , Trypanosoma cruzi , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Humanos , Trypanosoma cruzi/efeitos dos fármacos , Antiparasitários/farmacologia , Antiparasitários/síntese química , Antiparasitários/química , Desenho de Fármacos , Leishmania infantum/efeitos dos fármacos , Relação Estrutura-Atividade , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química
7.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731562

RESUMO

Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 µM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 µM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.


Assuntos
Antiprotozoários , Compostos de Boro , Leishmania major , Simulação de Acoplamento Molecular , Trypanosoma brucei brucei , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Leishmania major/efeitos dos fármacos , Desenho de Fármacos , Relação Estrutura-Atividade , Linhagem Celular , Estrutura Molecular , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Oxirredutases
8.
J Enzyme Inhib Med Chem ; 37(1): 781-791, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35193444

RESUMO

Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 µM (CL-B5 strain) and 33.65 µM (Y strain), IC50 (BZ)=25.31 µM (CL-B5) and 22.73 µM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.


Assuntos
Antiprotozoários/farmacologia , Semicarbazonas/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Semicarbazonas/síntese química , Semicarbazonas/química , Relação Estrutura-Atividade
9.
J Enzyme Inhib Med Chem ; 37(1): 151-167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894940

RESUMO

An efficient pathway was disclosed for the synthesis of 3-chloro-6-nitro-1H-indazole derivatives by 1,3-dipolar cycloaddition on dipolarophile compounds 2 and 3. Faced the problem of separation of two regioisomers, a click chemistry method has allowed us to obtain regioisomers of triazole-1,4 with good yields from 82 to 90% were employed. Also, the antileishmanial biological potency of the compounds was achieved using an MTT assay that reported compound 13 as a promising growth inhibitor of Leishmania major. Molecular docking demonstrated highly stable binding with the Leishmania trypanothione reductase enzyme and produced a network of hydrophobic and hydrophilic interactions. Molecular dynamics simulations were performed for TryR-13 complex to understand its structural and intermolecular affinity stability in a biological environment. The studied complex remained in good equilibrium with a structure deviation of ∼1-3 Å. MM/GBSA binding free energies illustrated the high stability of TryR-13 complex. The studied compounds are promising leads for structural optimisation to enhance the antileishmanial activity.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Leishmania major/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Indazóis/síntese química , Indazóis/química , Leishmania major/enzimologia , Modelos Moleculares , Estrutura Molecular , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
10.
J Enzyme Inhib Med Chem ; 37(1): 912-929, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35306933

RESUMO

Trypanothione synthetase (TryS) catalyses the synthesis of N1,N8-bis(glutathionyl)spermidine (trypanothione), which is the main low molecular mass thiol supporting several redox functions in trypanosomatids. TryS attracts attention as molecular target for drug development against pathogens causing severe and fatal diseases in mammals. A drug discovery campaign aimed to identify and characterise new inhibitors of TryS with promising biological activity was conducted. A large compound library (n = 51,624), most of them bearing drug-like properties, was primarily screened against TryS from Trypanosoma brucei (TbTryS). With a true-hit rate of 0.056%, several of the TbTryS hits (IC50 from 1.2 to 36 µM) also targeted the homologue enzyme from Leishmania infantum and Trypanosoma cruzi (IC50 values from 2.6 to 40 µM). Calmidazolium chloride and Ebselen stand out for their multi-species anti-TryS activity at low µM concentrations (IC50 from 2.6 to 13.8 µM). The moieties carboxy piperidine amide and amide methyl thiazole phenyl were identified as novel TbTryS inhibitor scaffolds. Several of the TryS hits presented one-digit µM EC50 against T. cruzi and L. donovani amastigotes but proved cytotoxic against the human osteosarcoma and macrophage host cells (selectivity index ≤ 3). In contrast, seven hits showed a significantly higher selectivity against T. b. brucei (selectivity index from 11 to 182). Non-invasive redox assays confirmed that Ebselen, a multi-TryS inhibitor, induces an intracellular oxidative milieu in bloodstream T. b. brucei. Kinetic and mass spectrometry analysis revealed that Ebselen is a slow-binding inhibitor that modifies irreversible a highly conserved cysteine residue from the TryS's synthetase domain. The most potent TbTryS inhibitor (a singleton containing an adamantine moiety) exerted a non-covalent, non-competitive (with any of the substrates) inhibition of the enzyme. These data feed the drug discovery pipeline for trypanosomatids with novel and valuable information on chemical entities with drug potential.


Assuntos
Amida Sintases/antagonistas & inibidores , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Amida Sintases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leishmania infantum/enzimologia , Macrófagos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Trypanosoma cruzi/enzimologia
11.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164094

RESUMO

The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels-Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1-8 µM) and two of them (compounds 6 and 14) showed a good selectivity index.


Assuntos
Alcaloides , Antiprotozoários , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Tabernaemontana/química , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tripanossomíase Africana/tratamento farmacológico , Alcaloides/síntese química , Alcaloides/química , Alcaloides/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Linhagem Celular Tumoral , Camundongos , Ratos , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/patologia
12.
Molecules ; 27(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011552

RESUMO

Human protozoan diseases represent a serious health problem worldwide, affecting mainly people in social and economic vulnerability. These diseases have attracted little investment in drug discovery, which is reflected in the limited available therapeutic arsenal. Authorized drugs present problems such as low efficacy in some stages of the disease or toxicity, which result in undesirable side effects and treatment abandonment. Moreover, the emergence of drug-resistant parasite strains makes necessary an even greater effort to develop safe and effective antiparasitic agents. Among the chemotypes investigated for parasitic diseases, the indole nucleus has emerged as a privileged molecular scaffold for the generation of new drug candidates. In this review, the authors provide an overview of the indole-based compounds developed against important parasitic diseases, namely malaria, trypanosomiasis and leishmaniasis, by focusing on the design, optimization and synthesis of the most relevant synthetic indole scaffolds recently reported.


Assuntos
Antiprotozoários/farmacologia , Desenvolvimento de Medicamentos , Indóis/farmacologia , Leishmania/efeitos dos fármacos , Plasmodium/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/uso terapêutico , Técnicas de Química Sintética , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/tendências , Humanos , Indóis/síntese química , Indóis/química , Indóis/uso terapêutico , Leishmaniose/tratamento farmacológico , Malária/tratamento farmacológico , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomíase/tratamento farmacológico
13.
Bioorg Med Chem Lett ; 47: 128196, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116159

RESUMO

Endoperoxides are a class of compounds, which is well-known for their antimalarial properties, but few reports exist about 3,5-disubstituted 1,2-dioxolanes. After having designed a new synthetic route for the preparation of these substances, they were evaluated against 4 different agents of infectious diseases, protozoa (Plasmodium and Leishmania) and Fungi (Candida and Aspergillus). Whereas moderate antifungal activity was found for our products, potent antimalarial and antileishmanial activities were observed for a few compounds. The nature of the substituents linked to the endoperoxide ring seems to play an important role in the bioactivities.


Assuntos
Antifúngicos/farmacologia , Antiprotozoários/farmacologia , Dioxolanos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Aspergillus/efeitos dos fármacos , Candida/efeitos dos fármacos , Dioxolanos/síntese química , Dioxolanos/química , Relação Dose-Resposta a Droga , Leishmania/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 50: 116467, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34666274

RESUMO

Toxoplasma gondiiis an apicomplexan parasite, the causative agent of toxoplasmosis, a common disease in the world. Toxoplasmosis could be severe, especially in immunocompromised patients. The current therapy is limited, where pyrimethamine and sulfadiazine are the best choices despite being associated with side effects and ineffective against the bradyzoites, the parasitic form present during the chronic phase of the infection. Thus, new therapies against both tachyzoites and bradyzoites from T. gondii are urgent. Herein, we present the anti-T. gondii effect of 1,10-phenanthroline and its N-phenyl-1,10-phenanthroline-2-amine derivatives. The chemical modification of 1,10-phenanthroline tonew derivatives improved the anti-T. gondiiactivity 3.4 fold. The most active derivative presented ED50in the nanomolar range, the smallest value found was for Ph8, 0.1 µM for 96 h of treatment. The host cell viability was maintained after the treatment with the compounds, which were found to be highly selective presenting large selectivity indexes. Treatment with derivatives for 96 h was able to eliminate the T. gondii infection irreversibly. The ultrastructural alterations caused after the treatment with the most effective derivative (Ph8) included signs of cell death, specifically revealed by the Tunel assay for detection of DNA fragmentation. The Phen derivatives were also able to control the growth of the in vitro-derived bradyzoite forms of T. gondii EGS strain, causing its lysis and death. These findings promote the 1,10-phenanthroline derivatives as potential lead compounds for the development of a treatment for acute and chronic phases of toxoplasmosis.


Assuntos
Antiprotozoários/farmacologia , Toxoplasma/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Toxoplasma/crescimento & desenvolvimento
15.
Bioorg Chem ; 110: 104816, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33799180

RESUMO

Leishmaniasis being one of the six major tropical diseases that affects nearly 0.7-1.3 million people annually, has so far limited and high toxic therapeutic options. Herein, we report the synthesis, in silico, and in vitro evaluations of novel coumarin-incorporated isatin hydrazones (Spf-1 - Spf-10) as highly potent and safe antileishmanial agents. Molecular docking was initially carried out to decipher the binding confirmation of lead molecules towards the active cavity of the target protein (Leishmanolysin gp63) of Leishmania tropica. Among all the docked compounds, only Spf-6, Spf-8, and Spf-10 showed high binding affinities due to a pattern of strong conventional hydrogen bonds and hydrophobic π-interactions. The molecular dynamics simulations showed the stable pattern of such bonding and structure-based confirmation with a time scale of 50 ns towards the top compound (Spf-10) and protein. These analyses affirmed the high stability of the system. Three out of ten compounds evaluated for their antileishmanial activity against Leishmania tropica promastigotes and amastigotes were found to be active at micromolar concentrations (IC50 range 0.1-4.13 µmol/L), and most importantly, they were also found to be highly biocompatible when screened for their toxicity in human erythrocytes.


Assuntos
Antiprotozoários/farmacologia , Cumarínicos/farmacologia , Isatina/farmacologia , Leishmania tropica/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Antiprotozoários/síntese química , Antiprotozoários/química , Cumarínicos/química , Relação Dose-Resposta a Droga , Isatina/química , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
16.
Bioorg Chem ; 114: 105141, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328862

RESUMO

A new series of 3-aryl-4-(N-aryl)aminocoumarins was synthesized in two steps starting from the natural product 4-hydroxycoumarin using the photoredox catalysis for the key step. These conditions reactions allowed to make CC bonds is up to 95% yields in mild conditions, easy operation, in an environmentally benign way, and are compatible with several patterns of substitution. The biological activity of the new compounds was tested in vitro against MCF-7, MDA-MB-231, and CCD-1072Sk cancer cell lines, as soon as to promastigotes and intracellular amastigotes of Leishmania amazonensis. Compounds 17d, 17s and 17x showed activity against promastigote forms (IC50 = 5.96 ± 3.210, 9.05 ± 2.855 and 5.65 ± 2.078 µM respectively), and compound 17x presented the best activity against L. amazonensis amastigote intracellular form (IC50 = 9.6 ± 1.148 µM), no BALB/c peritoneal macrophage cytotoxicity at assayed concentrations (CC50 > 600 µM), and high selectivity to parasites over the mammalian cells (Selectivity Index > 62.2). There was no expressive activity for the cancer cell lines. Single crystal X-ray diffraction analysis was employed for structural elucidation of compounds 17a and 17s. In silico analyses of physicochemical, pharmacokinetic, and toxicological properties suggest that compound 17x is a potential candidate for anti-leishmaniasis drugs.


Assuntos
Aminocumarinas/farmacologia , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Aminocumarinas/síntese química , Aminocumarinas/química , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Oxirredução , Testes de Sensibilidade Parasitária , Processos Fotoquímicos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Bioorg Chem ; 114: 105118, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216896

RESUMO

A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.


Assuntos
Antiprotozoários/farmacologia , Antituberculosos/farmacologia , Atovaquona/farmacologia , Leishmania/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Naftoquinonas/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Antituberculosos/síntese química , Antituberculosos/química , Atovaquona/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
18.
J Enzyme Inhib Med Chem ; 36(1): 1145-1164, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34074198

RESUMO

We report herein anti-proliferation effects of 4-arylthiosemicarbazides, with a cyclopentane substitution at N1 position, on highly virulent RH strain of Toxoplasma gondii. Among them, the highest in vitro anti-Toxoplasma activity was found with the meta-iodo derivative. Further experiments demonstrated inhibitory effects of thiosemicarbazides on tyrosinase (Tyr) activity, and good correlation was found between percentage of Tyr inhibition and IC50Tg. To confirm the concept that thiosemicarbazides are able to disrupt tyrosine metabolism in Toxoplasma tachyzoites, the most potent Tyr inhibitors were tested for their efficacy of T. gondii growth inhibition. All of them significantly reduced the number of tachyzoites in the parasitophorous vacuoles (PVs) compared to untreated cells, as well as inhibited tachyzoites growth by impeding cell division. Collectively, these results indicate that compounds with the thiosemicarbazide scaffold are able to disrupt tyrosine metabolism in Toxoplasma tachyzoites by deregulation of their crucial enzyme tyrosine hydroxylase (TyrH).


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Semicarbazidas/farmacologia , Toxoplasma/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Testes de Sensibilidade Parasitária , Semicarbazidas/síntese química , Semicarbazidas/química , Relação Estrutura-Atividade , Toxoplasma/crescimento & desenvolvimento
19.
J Enzyme Inhib Med Chem ; 36(1): 1952-1967, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455887

RESUMO

A series of 6-amidinobenzothiazoles, linked via phenoxymethylene or directly to the 1,2,3-triazole ring with a p-substituted phenyl or benzyl moiety, were synthesised and evaluated in vitro against four human tumour cell lines and the protozoan parasite Trypanosoma brucei. The influence of the type of amidino substituent and phenoxymethylene linker on antiproliferative and antitrypanosomal activities was observed, showing that the imidazoline moiety had a major impact on both activities. Benzothiazole imidazoline 14a, which was directly connected to N-1-phenyl-1,2,3-triazole, had the most potent growth-inhibitory effect (IC50 = 0.25 µM) on colorectal adenocarcinoma (SW620), while benzothiazole imidazoline 11b, containing a phenoxymethylene linker, exhibited the best antitrypanosomal potency (IC90 = 0.12 µM). DNA binding assays showed a non-covalent interaction of 6-amidinobenzothiazole ligands, indicating both minor groove binding and intercalation modes of DNA interaction. Our findings encourage further development of novel structurally related 6-amidino-2-arylbenzothiazoles to obtain more selective anticancer and anti-HAT agents.


Assuntos
Antiprotozoários/síntese química , Benzotiazóis/síntese química , Substâncias Intercalantes/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Amidinas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Benzotiazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , DNA/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazolinas/química , Substâncias Intercalantes/farmacologia , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Triazóis/química
20.
Chem Biodivers ; 18(12): e2100687, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34726832

RESUMO

Toxoplasmosis post serious threaten to human health, leading to severely eye and brain disease, especially for immunocompromised patients and pregnant women. The multiple side effects and long dosing period of current main treatment regiments calls for high effective and low toxicity anti-toxoplasmosis drugs. Herein, we report our efforts to synthesize a series of 2-(piperazin-1-yl)quinazolin-4(3H)-one derivatives and investigate their activity against Toxoplasma gondii tachyzoites in vitro based on cell phenotype screening. Among the 26 compounds, 8w and 8x with diaryl ether moiety at the side chain of piperazine exhibited good efficacy to inhibit T. gondii, with IC50 values of 4 µM and 3 µM, respectively. Structure-activity relationship (SAR) studies implies that hydrophobic aryl at the side chain would be preferred for improvement of activity. Molecular docking study reveals these two compounds appeared high affinity to TgCDPK1 by interaction with the hydrophobic pocket of ATP-binding cleft.


Assuntos
Antiprotozoários/farmacologia , Quinazolinonas/farmacologia , Toxoplasma/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinazolinonas/síntese química , Quinazolinonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA