Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(17): 12915-12927, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629229

RESUMO

Targeted alpha therapy (TAT) is a methodology that is being developed as a promising cancer treatment using the α-particle decay of radionuclides. This technique involves the use of heavy radioactive elements being placed near the cancer target area to cause maximum damage to the cancer cells while minimizing the damage to healthy cells. Using gold nanoparticles (AuNPs) as carriers, a more effective therapy methodology may be realized. AuNPs can be good candidates for transporting these radionuclides to the vicinity of the cancer cells since they can be labeled not just with the radionuclides, but also a host of other proteins and ligands to target these cells and serve as additional treatment options. Research has shown that astatine and iodine are capable of adsorbing onto the surface of gold, creating a covalent bond that is quite stable for use in experiments. However, there are still many challenges that lie ahead in this area, whether they be theoretical, experimental, and even in real-life applications. This review will cover some of the major developments, as well as the current state of technology, and the problems that need to be tackled as this research topic moves along to maturity. The hope is that with more workers joining the field, we can make a positive impact on society, in addition to bringing improvement and more knowledge to science.


Assuntos
Astato , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Humanos , Astato/química , Astato/uso terapêutico , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico
2.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891856

RESUMO

Astatine (211At) is a cyclotron-produced alpha emitter with a physical half-life of 7.2 h. In our previous study, the 211At-labeled prostate-specific membrane antigen (PSMA) compound ([211At]PSMA-5) exhibited excellent tumor growth suppression in a xenograft model. We conducted preclinical biodistribution and toxicity studies for the first-in-human clinical trial. [211At]PSMA-5 was administered to both normal male ICR mice (n = 85) and cynomolgus monkeys (n = 2). The mice were divided into four groups for the toxicity study: 5 MBq/kg, 12 MBq/kg, 35 MBq/kg, and vehicle control, with follow-ups at 1 day (n = 10 per group) and 14 days (n = 5 per group). Monkeys were observed 24 h post-administration of [211At]PSMA-5 (9 MBq/kg). Blood tests and histopathological examinations were performed at the end of the observation period. Blood tests in mice indicated no significant myelosuppression or renal dysfunction. However, the monkeys displayed mild leukopenia 24 h post-administration. Despite the high accumulation in the kidneys and thyroid, histological analysis revealed no abnormalities. On day 1, dose-dependent single-cell necrosis/apoptosis was observed in the salivary glands of mice and intestinal tracts of both mice and monkeys. Additionally, tingible body macrophages in the spleen and lymph nodes indicated phagocytosis of apoptotic B lymphocytes. Cortical lymphopenia (2/10) in the thymus and a decrease in the bone marrow cells (9/10) were observed in the 35 MBq/kg group in mice. These changes were transient, with no irreversible toxicity observed in mice 14 days post-administration. This study identified no severe toxicities associated with [211At]PSMA-5, highlighting its potential as a next-generation targeted alpha therapy for prostate cancer. The sustainable production of 211At using a cyclotron supports its applicability for clinical use.


Assuntos
Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Partículas alfa/uso terapêutico , Astato/farmacocinética , Astato/química , Glutamato Carboxipeptidase II/metabolismo , Macaca fascicularis , Camundongos Endogâmicos ICR , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Distribuição Tecidual
3.
Eur J Nucl Med Mol Imaging ; 50(3): 849-858, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344651

RESUMO

PURPOSE: Targeted α-therapy (TAT) for prostate-specific membrane antigen (PSMA) is a promising treatment for metastatic castration-resistant prostate cancer (CRPC). Astatine is an α-emitter (half-life=7.2 h) that can be produced by a 30-MeV cyclotron. This study evaluated the treatment effect of 211At-labeled PSMA compounds in mouse xenograft models. METHODS: Tumor xenograft models were established by subcutaneous transplantation of human prostate cancer cells (LNCaP) in NOD/SCID mouse. [211At]PSMA1, [211At]PSMA5, or [211At]PSMA6 was administered to LNCaP xenograft mice to evaluate biodistribution at 3 and 24 h. The treatment effect was evaluated by administering [211At]PSMA1 (0.40 ± 0.07 MBq), [211At]PSMA5 (0.39 ± 0.03 MBq), or saline. Histopathological evaluation was performed for the at-risk organs at 3 and 6 weeks after administration. RESULTS: [211At]PSMA5 resulted in higher tumor retention compared to [211At]PSMA1 and [211At]PSMA6 (30.6 ± 17.8, 12.4 ± 4.8, and 19.1 ± 4.5 %ID/g at 3 h versus 40.7 ± 2.6, 8.7 ± 3.5, and 18.1 ± 2.2%ID/g at 24 h, respectively), whereas kidney excretion was superior in [211At]PSMA1 compared to [211At]PSMA5 and [211At]PSMA6. An excellent treatment effect on tumor growth was observed after [211At]PSMA5 administration. [211At]PSMA1 also showed a substantial treatment effect; however, the tumor size was relatively larger compared to that with [211At]PSMA5. In the histopathological evaluation, regenerated tubules were detected in the kidneys at 3 and 6 weeks after the administration of [211At]PSMA5. CONCLUSION: TAT using [211At]PSMA5 resulted in excellent tumor growth suppression with minimal side effects in the normal organs. [211At]PSMA5 should be considered a new possible TAT for metastatic CRPC, and translational prospective trials are warranted.


Assuntos
Astato , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Astato/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Distribuição Tecidual , Estudos Prospectivos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata/patologia , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Compostos Radiofarmacêuticos/uso terapêutico
4.
Chemistry ; 28(11): e202104169, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34965315

RESUMO

Despite the growing interest in radioiodine and 211 At-labeled radiopharmaceuticals, the search for radiolabeling reactions has been somewhat neglected, resulting in a limited number of available radiosynthetic strategies. Herein we report a comparative study of nucleophilic 125 I and 211 At-labeling of aryliodonium ylides. Whereas radioiodination efficiency was low, 211 At-labeling performed efficiently on a broad scope of precursors. The most activated aryliodonium ylides led rapidly to quantitative reactions at room temperature in acetonitrile. For deactivated precursors, heating up to 90 °C in glyme and addition of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as radical scavenger appeared essential to avoid precursor degradation and to achieve high radiochemical yields and molar activity. The approach was applied successfully to the preparation of 4-[211 At]astatophenylalanine (4-APA), an amino acid derivative increasingly studied as radiotherapeutic drug for cancers. This validated aryliodonium ylides as a valuable tool for nucleophilic 211 At-labeling and will complement the short but now growing list of available astatination reactions.


Assuntos
Astato , Preparações Farmacêuticas , Astato/química , Radioisótopos do Iodo/química , Compostos Radiofarmacêuticos/química
5.
Inorg Chem ; 61(31): 12087-12096, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876142

RESUMO

Ketones have been proven effective in extracting astatine(III) from aqueous solvents. Previous theoretical studies suggested a mechanism where the "sp2" lone pair on the carbonyl oxygen donates electron density into the π system of the AtO+ molecular cation to form a dative-type bond. In this study, co-extraction of NO3- as AtO(NO3)·(O═CR1R2) species into the organic phase appears to be a key factor. Adjusting the electronic properties of the ketone, by having an aryl group instead of an alkyl group in the alpha position of the ketone, increased the electron density on C═O, increased the bond strength between the ketone and AtO+, and in turn increased the extraction of 211At into the organic phase. Extraction with diketones shows dependence on the bridging distance between the two carbonyl moieties, where a C3 or longer bridge results in a 10-fold increase in extraction into the organic phase. DFT calculations show the longer bridge allows for the chelation of AtO(NO3) by either the second carbonyl or the phenyl ring.


Assuntos
Astato , Cetonas , Cátions , Solventes , Água
6.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012698

RESUMO

Astatine (211At) is an alpha-emitter with a better treatment efficacy against differentiated thyroid cancer compared with iodine (131I), a conventional beta-emitter. However, its therapeutic comparison has not been fully evaluated. In this study, we compared the therapeutic effect between [211At]NaAt and [131I]NaI. In vitro analysis of a double-stranded DNA break (DSB) and colony formation assay were performed using K1-NIS cells. The therapeutic effect was compared using K1-NIS xenograft mice administered with [211At]NaAt (0.4 MBq (n = 7), 0.8 MBq (n = 9), and 1.2 MBq (n = 4)), and [131I]NaI (1 MBq (n = 4), 3 MBq (n = 4), and 8 MBq (n = 4)). The [211At]NaAt induced higher numbers of DSBs and had a more reduced colony formation than [131I]NaI. In K1-NIS mice, dose-dependent therapeutic effects were observed in both [211At]NaAt and [131I]NaI. In [211At]NaAt, a stronger tumour-growth suppression was observed, while tumour regrowth was not observed until 18, 25, and 46 days after injection of 0.4, 0.8, and 1.2 MBq of [211At]NaAt, respectively. While in [131I]NaI, this was observed within 12 days after injection (1, 3, and 8 MBq). The superior therapeutic effect of [211At]NaAt suggests the promising clinical applicability of targeted alpha therapy using [211At]NaAt in patients with differentiated thyroid cancer refractory to standard [131I]NaI treatment.


Assuntos
Adenocarcinoma , Astato , Neoplasias da Glândula Tireoide , Adenocarcinoma/tratamento farmacológico , Animais , Astato/uso terapêutico , Humanos , Radioisótopos do Iodo/uso terapêutico , Camundongos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Transplante Heterólogo
7.
J Radiol Prot ; 42(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34991086

RESUMO

The International Commission on Radiological Protection (ICRP) recently updated its biokinetic models for workers in a series of reports called the OIR (occupational intakes of radionuclides) series. A new biokinetic model for astatine (At), the heaviest member of the halogen family, was adopted in OIR Part 5 (ICRP in press). Occupational intakes of radionuclides: Part 5). This paper provides an overview of available biokinetic data for At; describes the basis for the ICRP's updated model for At; and tabulates dose coefficients for intravenous injection of each of the two longest lived and most important At isotopes,211At and210At. At-211 (T1/2= 7.214 h) is a promising radionuclide for use in targetedα-particle therapy due to several favourable properties including its half-life and the absence of progeny that could deliver significant radiation doses outside the region ofα-particle therapy. At-210 (T1/2= 8.1 h) is an impurity generated in the production of211At in a cyclotron and represents a potential radiation hazard via its long-lived progeny210Po (T1/2= 138 days). Tissue dose coefficients for injected210At and211At based on the updated model are shown to differ considerably from values based on the ICRP's previous model for At, particularly for the thyroid, stomach wall, salivary glands, lungs, spleen, and kidneys.


Assuntos
Astato , Proteção Radiológica , Humanos , Doses de Radiação , Radioisótopos
8.
Gan To Kagaku Ryoho ; 49(8): 826-828, 2022 Aug.
Artigo em Japonês | MEDLINE | ID: mdl-36046964

RESUMO

In Japan, research and development of"targeted radioisotope therapy: TRT"or"targeted α therapy: TAT"is focusing the 2 α nuclides, 225Ac, 211At. In this article, I would like to provide a brief summary of the following TAT agents, 211At-MABG and 225Ac anti-podoplanin antibody.


Assuntos
Astato , Actínio , Guanidinas , Humanos , Japão , Pesquisa
9.
Gan To Kagaku Ryoho ; 49(8): 829-834, 2022 Aug.
Artigo em Japonês | MEDLINE | ID: mdl-36046965

RESUMO

Radioactive iodine has long been used clinically for patients with differentiated thyroid cancer. Radioiodine(131I) is used for the ablation of thyroid remnants or treatment of metastatic thyroid cancer. However, some patients with multiple metastases are refractory to repetitive 131I treatment, despite the targeted regions showing sufficient iodine uptake. In such patients, ß- particle therapy using 131I is inadequate and another strategy is needed using more effective radionuclide targeting the sodium/iodide symporter(NIS). Astatine(211At)is receiving increasing attention as an α-emitter for targeted radionuclide therapy. 211At is a halogen element with similar chemical properties to iodine. α particles emitted from 211At has higher linear energy transfer as compared to ß particles from 131I and exert a better therapeutic effect by inducing DNA double strand breaks and free radical formation. We showed that increase of the radiochemical purity of astatide of 211At solution by addition of ascorbic acid was associated with significantly enhanced uptake of 211At by both normal thyroid tissue and differentiated thyroid cancer cells. The treatment effect of 211At solution in the K1-NIS xenograft model was dose-dependent and was associated with prolonged survival, suggesting the potential applicability of targeted α therapy for the treatment of advanced differentiated thyroid cancer. Thus, targeted α therapy using 211At is highly promising for the treatment of advanced differentiated thyroid cancer. We have already started the clinical trial of 211At-NaAt in Osaka University Hospital since November 2021 after getting the approval by IRB and PMDA investigation. We would like to get the proof of concept that astatine can be used safely and effectively in patients, aiming at the drug approval as a targeted α therapeutic from Japan.


Assuntos
Adenocarcinoma , Astato , Neoplasias da Glândula Tireoide , Adenocarcinoma/tratamento farmacológico , Astato/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico
10.
Cancer Sci ; 112(5): 1975-1986, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33606344

RESUMO

Tissue factor (TF), the trigger protein of the extrinsic blood coagulation cascade, is abundantly expressed in various cancers including gastric cancer. Anti-TF monoclonal antibodies (mAbs) capable of targeting cancers have been successfully applied to armed antibodies such as antibody-drug conjugates (ADCs) and molecular imaging probes. We prepared an anti-TF mAb, clone 1084, labeled with astatine-211 (211 At), as a promising alpha emitter for cancer treatment. Alpha particles are characterized by high linear energy transfer and a range of 50-100 µm in tissue. Therefore, selective and efficient tumor accumulation of alpha emitters results in potent antitumor activities against cancer cells with minor effects on normal cells adjacent to the tumor. Although the 211 At-conjugated clone 1084 (211 At-anti-TF mAb) was disrupted by an 211 At-induced radiochemical reaction, we demonstrated that astatinated anti-TF mAbs eluted in 0.6% or 1.2% sodium ascorbate (SA) solution were protected from antibody denaturation, which contributed to the maintenance of cellular binding activities and cytocidal effects of this immunoconjugate. Although body weight loss was observed in mice administered a 1.2% SA solution, the loss was transient and the radioprotectant seemed to be tolerable in vivo. In a high TF-expressing gastric cancer xenograft model, 211 At-anti-TF mAb in 1.2% SA exerted a significantly greater antitumor effect than nonprotected 211 At-anti-TF mAb. Moreover, the antitumor activities of the protected immunoconjugate in gastric cancer xenograft models were dependent on the level of TF in cancer cells. These findings suggest the clinical availability of the radioprotectant and applicability of clone 1084 to 211 At-radioimmunotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Ácido Ascórbico/uso terapêutico , Astato/uso terapêutico , Imunoconjugados/uso terapêutico , Radioimunoterapia/métodos , Neoplasias Gástricas/terapia , Tromboplastina/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Astato/farmacocinética , Coagulação Sanguínea/fisiologia , Peso Corporal , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Transferência Linear de Energia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Desnaturação Proteica , Protetores contra Radiação/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Tromboplastina/metabolismo
11.
Cancer Sci ; 112(3): 1132-1140, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33277750

RESUMO

α-Methyl-l-tyrosine (AMT) has a high affinity for the cancer-specific l-type amino acid transporter 1 (LAT1). Therefore, we established an anti-cancer therapy, with 211 At-labeled α-methyl-l-tyrosine (211 At-AAMT) as a carrier of 211 At into tumors. 211 At-AAMT had high affinity for LAT1, inhibited tumor cell growth, and induced DNA double-stranded breaks in vitro. We evaluated the accumulation of 211 At-AAMT in vivo and the role of LAT1. Treatment with 0.4 MBq/mouse 211 At-AAMT inhibited tumor growth in the PANC-1 tumor model and 1 MBq/mouse 211 At-AAMT inhibited metastasis in the lung of the B16F10 metastasis model. Our results suggested that 211 At would be useful for anti-cancer therapy and that LAT1 is suitable as a target for radionuclide therapy.


Assuntos
Partículas alfa/uso terapêutico , Astato/administração & dosagem , Portadores de Fármacos/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/radioterapia , alfa-Metiltirosina/farmacologia , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Bioconjug Chem ; 32(8): 1763-1772, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34260853

RESUMO

Targeted radionuclide therapy (TRT) provides new and safe opportunities for cancer treatment and management with high precision and efficiency. Here we have designed a novel semiconducting polymer nanoparticle (SPN)-based radiopharmaceutical (211At-MeATE-SPN-GIP) for TRT against glucose-dependent insulinotropic polypeptide receptor (GIPR)-positive cancers to further explore the applications of nanoengineered TRT. 211At-MeATE-SPN-GIP was engineered via nanoprecipitation, followed by its functionalization with a glucose-dependent insulinotropic polypeptide (GIP) to target GIPR and deliver 211At for α therapy. The therapeutic effect and biological safety of 211At-MeATE-SPN-GIP were investigated using GIPR-overexpressing human pancreatic cancer CFPAC-1 cells and CFPAC-1-bearing mice. In this work, 211At-MeATE-SPN-GIP was produced with a radiochemical yield of 43% and radiochemical purity of 98%, which exhibited a specifically high uptake in CFPAC-1 cells, inducing cell cycle arrest at the G2/M phase and extensive DNA damage. In the CFPAC-1-bearing tumor model, 211At-MeATE-SPN-GIP exhibited high therapeutic efficiency, with no obvious side effects. The GIPR-specific binding of 211At-MeATE-SPN-GIP combined with effective inhibition of tumor growth and fewer side effects compared to control suggests that 211At-MeATE-SPN-GIP TRT holds great potential as a novel nanoengineered TRT strategy for patients with GIPR-positive cancer.


Assuntos
Astato/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Polímeros/química , Receptores dos Hormônios Gastrointestinais/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias Experimentais , Ligação Proteica , Radioisótopos , Receptores dos Hormônios Gastrointestinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Blood ; 134(15): 1247-1256, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31395601

RESUMO

Minimal residual disease (MRD) has become an increasingly prevalent and important entity in multiple myeloma (MM). Despite deepening responses to frontline therapy, roughly 75% of MM patients never become MRD-negative to ≤10-5, which is concerning because MRD-negative status predicts significantly longer survival. MM is highly heterogeneous, and MRD persistence may reflect survival of isolated single cells and small clusters of treatment-resistant subclones. Virtually all MM clones are exquisitely sensitive to radiation, and the α-emitter astatine-211 (211At) deposits prodigious energy within 3 cell diameters, which is ideal for eliminating MRD if effectively targeted. CD38 is a proven MM target, and we conjugated 211At to an anti-CD38 monoclonal antibody to create an 211At-CD38 therapy. When examined in a bulky xenograft model of MM, single-dose 211At-CD38 at 15 to 45 µCi at least doubled median survival of mice relative to untreated controls (P < .003), but no mice achieved complete remission and all died within 75 days. In contrast, in a disseminated disease model designed to reflect low-burden MRD, 3 studies demonstrated that single-dose 211At-CD38 at 24 to 45 µCi produced sustained remission and long-term survival (>150 days) for 50% to 80% of mice, where all untreated mice died in 20 to 55 days (P < .0001). Treatment toxicities were transient and minimal. These data suggest that 211At-CD38 offers the potential to eliminate residual MM cell clones in low-disease-burden settings, including MRD. We are optimistic that, in a planned clinical trial, addition of 211At-CD38 to an autologous stem cell transplant (ASCT) conditioning regimen may improve ASCT outcomes for MM patients.


Assuntos
ADP-Ribosil Ciclase 1 , Astato/uso terapêutico , Imunoconjugados/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Neoplasia Residual/tratamento farmacológico , ADP-Ribosil Ciclase 1/análise , Astato/administração & dosagem , Astato/farmacocinética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/farmacocinética , Masculino , Mieloma Múltiplo/patologia , Neoplasia Residual/patologia
14.
Mol Pharm ; 18(11): 4179-4187, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591481

RESUMO

As an excellent target for cancer theranostics, fibroblast activation protein (FAP) has become an attractive focus in cancer research. A class of FAP inhibitors (FAPIs) with a N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine) scaffold were developed, which displayed nanomolar affinity and high selectivity. Compared with 90Y, 177Lu, 225Ac, and 188Re, 211At seems to be more favored as a therapeutic candidate for FAPI tracers which have fast washout and short retention in tumor sites. Thus, the current study reported the synthesis of two FAPI precursors for 211At and 131I labeling and the preliminary evaluation of 131I-labeled FAPI analogues for cancer theranostics. FAPI variants with stannyl precursors were successfully synthesized and labeled with 131I using a radioiododestannylation reaction. Two radioactive tracers were obtained with high radiochemical purity over 99% and good radiochemical yields of 58.2 ± 1.78 and 59.5 ± 4.44% for 131I-FAPI-02 and 131I-FAPI-04, respectively. Both tracers showed high specific binding to U87MG cells in comparison with little binding to MCF-7 cells. Compared to 131I-FAPI-02, 131I-FAPI-04 exhibited higher affinity, more intracellular uptake, and longer retention time in vitro. Biodistribution studies revealed that both tracers were mainly excreted through the kidneys as well as the hepatobiliary pathway due to their high lipophilicity. In addition, higher accumulation, longer dwell time, and increased tumor-to-organ ratios were achieved by 131I-FAPI-04, which was clearly demonstrated by SPECT/CT imaging. Furthermore, intratumor injection of 131I-FAPI-04 significantly suppressed the tumor growth in U87MG xenograft mice without significant toxicity observed. The above results implied that FAP-targeted alpha endoradiotherapy (specific to 211At) should be used to treat tumors in the near future, considering the chemical similarity between iodine and astatine can ensure the labeling of the latter onto the designed FAPIs.


Assuntos
Astato/administração & dosagem , Proteínas de Membrana/antagonistas & inibidores , Neoplasias/terapia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Linhagem Celular Tumoral , Endopeptidases , Humanos , Radioisótopos do Iodo , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Traçadores Radioativos , Nanomedicina Teranóstica/métodos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Pharm ; 18(9): 3553-3562, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34403257

RESUMO

Probes for radiotheranostics could be produced by introducing radionuclides with similar chemical characteristics into the same precursors. We recently developed an 211At-labeled RGD peptide and a corresponding radioiodine-labeled RGD peptide. Both labeled peptides accumulated in large quantities in the tumor with similar biodistribution, demonstrating their usefulness for radiotheranostics. In this study, we hypothesized that probes for radiotheranostics combined with multiradionuclides, such as 68Ga and 211At, have useful clinical applications. New radiolabeled RGD peptide probes were synthesized via a molecular design approach, with two labeling sites for metal and halogen. These probes were evaluated in biodistribution experiments using tumor-bearing mice. [67Ga]Ga-DOTA-c[RGDf(4-I)K] ([67Ga]4), Ga-DOTA-[125I]c[RGDf(4-I)K] ([125I]4), and Ga-DOTA-[211At]c[RGDf(4-At)K] ([211At]7) showed similar biodistribution, with high and equivalent accumulation in tumors. These results indicate the usefulness of these probes in radiotheranostics with multiradionuclides, such as a radiometal and a radiohalogen, and they could contribute to a personalized medicine regimen.


Assuntos
Neoplasias/diagnóstico por imagem , Oligopeptídeos/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Astato , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Radioisótopos de Gálio , Humanos , Camundongos , Neoplasias/patologia , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Nanobiotechnology ; 19(1): 223, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320997

RESUMO

BACKGROUND: 211At is a high-energy α-ray emitter with a relatively short half-life and a high cytotoxicity for cancer cells. Its dispersion can be imaged using clinical scanners, and it can be produced in cyclotrons without the use of nuclear fuel material. This study investigated the biodistribution and the antitumor effect of 211At-labeled gold nanoparticles (211At-AuNP) administered intratumorally. RESULTS: AuNP with a diameter of 5, 13, 30, or 120 nm that had been modified with poly (ethylene glycol) methyl ether (mPEG) thiol and labeled with 211At (211At-AuNP-S-mPEG) were incubated with tumor cells, or intratumorally administered to C6 glioma or PANC-1 pancreatic cancers subcutaneously transplanted into rodent models. Systemic and intratumoral distributions of the particles in the rodents were then evaluated using scintigraphy and autoradiography, and the changes in tumor volumes were followed for about 40 days. 211At-AuNP-S-mPEG was cytotoxic when it was internalized by the tumor cells. After intratumoral administration, 211At-AuNP-S-mPEG became localized in the tumor and did not spread to systemic organs during a time period equivalent to 6 half-lives of 211At. Tumor growth was strongly suppressed for both C6 and PANC-1 by 211At-AuNP-S-mPEG. In the C6 glioma model, the strongest antitumor effect was observed in the group treated with 211At-AuNP-S-mPEG with a diameter of 5 nm. CONCLUSIONS: The intratumoral single administration of a simple nanoparticle, 211At-AuNP-S-mPEG, was shown to suppress the growth of tumor tissue strongly in a particle size-dependent manner without radiation exposure to other organs caused by systemic spread of the radionuclide.


Assuntos
Astato/uso terapêutico , Ouro/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Coloração e Rotulagem/métodos , Animais , Astato/química , Glioma , Ouro/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Polietilenoglicóis , Cintilografia/métodos , Ratos , Distribuição Tecidual
17.
Eur J Nucl Med Mol Imaging ; 47(1): 192-217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471713

RESUMO

PURPOSE: To summarise data with radium-223 dichloride (223RaCl2), a mechanism-mediated targeted alpha therapy (TAT), in metastatic castration-resistant prostate cancer (mCRPC) and to chart the development of TAT in mCRPC and in other tumour types. METHODS: Literature for this systematic review was identified using a PubMed search: ("targeted alpha therapy" or "targeted alpha particle therapy") or (213-bismuth or bismuth-213 or 213Bi) or (225-actinium or actinium-225 or 225Ac) or (211-astatine or astatine-211 or 211At) or (212-lead or lead-212 or 212Pb) or (227-thorium or thorium-227 or 227Th) or (223-radium or radium-223 or 223Ra or alpharadin) and (malignancy or cancer). Results were limited to English-language publications in humans, with the article type "clinical trial". RESULTS: Forty-one publications were included (30 from the literature search and 11 from manual searches/reviews). In clinical trials in mCRPC, 223RaCl2 monotherapy is well tolerated, with significantly longer overall survival than placebo and improved quality of life. Clinical trial data have been reinforced by findings from real-world studies. 223RaCl2 has also shown promise in other tumour types with bone metastases, including advanced breast cancer and advanced renal cell carcinoma (in combination with anti-vascular endothelial growth factor). Several astatine-211- and bismuth-213-labelled molecules have demonstrated anti-tumour activity and acceptable toxicity in other tumour types. CONCLUSIONS: 223RaCl2 has demonstrated "proof of concept" for use of TAT in cancer in clinical practice. The efficacy and safety of 223RaCl2 monotherapy have been demonstrated in mCRPC, and 223RaCl2 combination therapies are under investigation in various tumours. TAT has broad applicability across tumour types.


Assuntos
Astato , Neoplasias Ósseas , Neoplasias de Próstata Resistentes à Castração , Rádio (Elemento) , Actínio , Bismuto/uso terapêutico , Neoplasias Ósseas/radioterapia , Humanos , Radioisótopos de Chumbo , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Qualidade de Vida , Radioisótopos , Rádio (Elemento)/uso terapêutico , Tório
18.
Chem Pharm Bull (Tokyo) ; 68(6): 538-545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475858

RESUMO

There are various diagnostic and therapeutic agents for prostate cancer using bombesin (BBN) derivatives, but astatine-211 (211At)-labeled BBN derivatives have yet to be studied. This study presented a preliminary evaluation of 211At-labeled BBN derivative. Several nonradioactive iodine-introduced BBN derivatives (IB-BBNs) with different linkers were synthesized and their binding affinities measured. Because IB-3 exhibited a comparable affinity to native BBN, [211At]AB-3 was synthesized and the radiochemical yields of [211At]AB-3 was 28.2 ± 2.4%, with a radiochemical purity of >90%. The stability studies and cell internalization/externalization experiments were performed. [211At]AB-3 was taken up by cells and internalized; however, radioactivity effluxed from cells over time. In addition, the biodistribution of [211At]AB-3, with and without excess amounts of BBN, were evaluated in PC-3 tumor-bearing mice. Despite poor stability in murine plasma, [211At]AB-3 accumulated in tumor tissue (4.05 ± 0.73%ID/g) in PC-3 tumor-bearing mice, which was inhibited by excess native BBN (2.56 ± 0.24%ID/g). Accumulated radioactivity in various organs is probably due to free 211At. Peptide degradation in murine plasma and radioactivity efflux from cells are areas of improvement. The development of 211At-labeled BBN derivatives requires modifying the BBN sequence and preventing deastatination.


Assuntos
Antineoplásicos/farmacologia , Astato/química , Bombesina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Compostos Radiofarmacêuticos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Bombesina/análogos & derivados , Bombesina/síntese química , Bombesina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Células PC-3 , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Células Tumorais Cultivadas
19.
Mol Pharm ; 16(8): 3524-3533, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31268724

RESUMO

The use of nanobodies (Nbs) as vehicles in targeted alpha therapy (TAT) has gained great interest because of their excellent properties. They combine high in vivo affinity and specificity of binding with fast kinetics. This research investigates a novel targeted therapy that combines the α-particle emitter astatine-211 (211At) and the anti-HER2 Nb 2Rs15d to selectively target HER2+ cancer cells. Two distinctive radiochemical methodologies are investigated using three different coupling reagents. The first method uses the coupling reagents, N-succinimidyl 4-(1,2-bis-tert-butoxycarbonyl)guanidinomethyl-3-(trimethylstannyl)benzoate (Boc2-SGMTB) and N-succinimidyl-3-(trimethylstannyl)benzoate (m-MeATE), which are both directed to amino groups on the Nb, resulting in random conjugation. The second method aims at obtaining a homogeneous tracer population, via a site-specific conjugation of the N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide (MSB) reagent onto the carboxyl-terminal cysteine of the Nb. The resulting radioconjugates are evaluated in vitro and in vivo. 2Rs15d is labeled with 211At using Boc2-SGMTB, m-MeATE, and MSB. After astatination and purification, the binding specificity of the radioconjugates is validated on HER2+ cells, followed by an in vivo biodistribution assessment in SKOV-3 xenografted mice. α-camera imaging is performed to determine uptake and activity distribution in kidneys/tumors. 2Rs15d astatination resulted in a high radiochemical purity >95% for all radioconjugates. The biodistribution studies of all radioconjugates revealed comparable tumor uptake (higher than 8% ID/g at 1 h). [211At]SAGMB-2Rs15d showed minor uptake in normal tissues. Only in the kidneys, a higher uptake was measured after 1 h, but decreased rapidly after 3 h. Astatinated Nbs consisting of m-MeATE or MSB reagents revealed elevated uptake in lungs and stomach, indicating the presence of released 211At. α-Camera imaging of tumors revealed a homogeneous activity distribution. The radioactivity in the kidneys was initially concentrated in the renal cortex, while after 3 h most radioactivity was measured in the medulla, confirming the fast washout into urine. Changing the reagents for Nb astatination resulted in different in vivo biodistribution profiles, while keeping the targeting moiety identical. Boc2-SGMTB is the preferred reagent for Nb astatination because of its high tumor uptake, its low background signals, and its fast renal excretion. We envision [211At]SAGMB-2Rs15d to be a promising therapeutic agent for TAT and aim toward efficacy evaluation.


Assuntos
Astato/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias Ovarianas/radioterapia , Receptor ErbB-2/antagonistas & inibidores , Anticorpos de Domínio Único/administração & dosagem , Partículas alfa/uso terapêutico , Animais , Astato/química , Astato/farmacocinética , Benzoatos/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Camundongos , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Distribuição Tecidual , Compostos de Trimetilestanho/química , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Bioorg Med Chem ; 27(1): 167-174, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529152

RESUMO

125I- and 211At-labeled azide and tetrazine based prosthetic groups for bioorthogonal conjugation were designed and tested in a comparative study of five bioorthogonal systems. All five bioconjugation reactions conducted on a model clickable peptide led to quantitative yields within less than a minute to several hours depending on the system used. Transferability to the labeling of an IgG was demonstrated with one of the bioorthogonal system. This study provides several new alternatives to the conventional and suboptimal approach currently in use for radioiodination and astatination of biomolecules and should accelerate the development of new probes with these radionuclides for applications in nuclear imaging and targeted alpha-therapy.


Assuntos
Iodobenzenos/química , Compostos Organometálicos/química , Peptídeos/química , Proteínas/química , Compostos Radiofarmacêuticos/química , Astato/química , Azidas/química , Química Click , Reação de Cicloadição , Compostos Heterocíclicos com 1 Anel/química , Radioisótopos do Iodo/química , Iodobenzenos/síntese química , Compostos Organometálicos/síntese química , Peptídeos/síntese química , Proteínas/síntese química , Compostos Radiofarmacêuticos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA